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Von Neumann's proof of the ineffectiveness of the use of hidden variables to account for the reduction of
the wave packet is analyzed. A possible weakness of the argument is found in the manner in which the
probabilistic interpretation of quantum theory is employed. An alternative proof is presented which avoids
this aspect of quantum theory. The conclusion is drawn that there is no theory consistent with quantum
mechanics which can account for the occurrence of events in nature.

I. INTRODUCTION
' PHYSICAL theories, whether classical or quantum,

have in common a twofold aspect. On the one
hand, there is the very formal body of mathematical
symbols with their well-de6ned rules of manipulation,
while on the other hand, there is the more or less
informal prescription for relating the abstract symbols
to the world of experience and observation. ' It is in
the manner in which the relationship between the
mathematical symbols and the physical world is
established, that classical and quantum theories exhibit
their striking disparities. For, as a consequence of the
finite value of the quantum of action and the resulting
inability to discern a dichotomy between the atomic
system being measured and the measuring device with
which it is in interaction, concepts of classical mechanics
which are simultaneously meaningful and necessary for
a complete classical description of a physical situation,
are found in atomic phenomena, to be complementary.
That is, a refined analysis of the process of observation
of atomic systems reveals that a complete system
of classical concepts in terms of which we understand
the physical world cannot be made manifest simul-

taneously. Thus, whereas the primary symbols of
classical physics are presumed to have their direct,
simultaneously meaningful, and measurable, deter-
ministic counter-parts in the physical world, the
symbols of quantum theories can only be related to the
world of physical observations in a statistical fashion.

Since human intuition and modes of understanding
are molded by classical experience, many scientists
have found disturbing the inability of quantum theory
to provide a deterministic picture or model of atomic
processes. Thus much eGort has been spent devising
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' That the latter process in classical mechanics is not as trivial
as is frequently assumed, may be seen when a problem is solved
by means of canonical transformation theory. The solution is
generally not regarded as completed until an inverse canonical
transformation is performed, returning one to the original vari-
ables in phase space, it being tacitly assumed that these variables
are the symbols which are to correspond to the concepts of our
experience. For it is a consequence of Hamilton-Jacobi theory
that all classical systems having the same number of degrees of
freedom, can formally be made to appear identical in a local
region of phase space. The diferent classical systems can be
distinguished locally only by specifying how the mathematical
symbols are to be related to measurements.

ingenious deterministic models whose predictions co-
incide with quantum mechanics. ' Fock, ' on the other
hand, has attempted to interpret the existing quantum
mechanical formalism as a deterministic materialistic
theory by assuming that the individual systems of the
objective physical world are correctly and completely
represented by wave functions of the theory. The
principal characteristic peculiar to quantum mechanics,
according to Fock, is that the wave function cannot be
directly observed, but must be inferred by performing
measurements on an (in general infinite) ensemble of
identically prepared systems.

These wave functions do in fact propagate deter-
ministicly via the Schrodinger equation provided the
atomic system is not disturbed by a measurelnent.
However, when an atomic system does interact with
a classical measuring device a characteristic reduction
of the wave packet occurs which is not accountable
or determined within the mathematical formalism of
the theory, but which belongs more to the realm of the
interpretation of the meaning of the symbols of the
formalism. Quantum mechanics thus predicts with
what probability events will occur, but it appears to
have no mechanism for accounting for the fact that
events do in fact occur.

Although a deterministic physical theory is not an
essential requirement for the maintainence of the
materialistic philosophical point of view (namely, that
there exists an objective reality outside of any mind or
will), it is incumbent upon a proponent of a purported
corrtp/etc materialist physical theory to demonstrate
that, in addition to being in accord with experimental
facts when a suitable interpretation is placed upon
the mathematical symbols of the theory, the theory
can account for the fact that events, not merely
probabilities, occur in the material world.

The principal concern of this paper is to investigate
whether quantum mechanics can provide a model of a
deterministic materialistic physical theory, that is,
whether there is a deterministic mechanism consistent
with the presently accepted formalism of quantum
mechanics which can account for the evident fact that

2 For a critique of some of these attempts see W. Heisenberg in
Siels Bob~ and the Developnsent of Physics, edited by W. Pauli
(Pergamon Press, New York, 1955).

' V. A. Pock, Czech. J. Phys. 7, 643 (1957).
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we do observe events in nature, and not merely
probabilities.

In view of the fact that von Xeumann4 has presented
an argument to show that the probabilistic character
of quantum mechanics cannot be accounted for by
hidden variables which are consistent with the theory,
the next section of this paper will be devoted to a
summary and analysis of his argument. It will be seen
that if one grants von Xeumann's characterization of
a measurement then a deterministic mechanistic view-
point might in fact become tenable. In Sec. III it will
then be proven that it is in fact this characterization
of a measurement which is inconsistent with quantum
mechanics, and that there can exist no mechanism
consistent with the most elementary assumption of
quantum theory which can account for the occurrence
of events in nature. Section IV will then conclude with
a discussion of some possible implications of this result.

II. VON NEUMANN'S ARGUMENT

Von Neumann, using the fact that one represents
observables in quantum mechanics by means of
Hermitian operators, readily showed that there are no
dispersion-free ensembles. Thus we can not hope to
prepare a state of a quantum system for which all
observables have predetermined values. However, this
fact in itself does not exclude the possibility that the
particular value of an observable, which one obtains
as the result of a measurement, can be understood by
means of a deterministic mechanism. For, in order to
realize a measurement on a quantum system it must
be made to interact with a classical measuring device,
that is with a device which has an enormous (essentially
infinite) number of degrees of freedom and whose state
is only macroscopically defined. One could readily
imagine that the lack of predictability of the outcome
of measurements stems from our incomplete knowledge
of the initial state of the measuring device with which
the system interacts. If only we knew the precise
initial quantum state of the measuring device and how
each of its degrees of freedom interacts with the
system being measured, we might hope to follow the
interaction and understand the particular outcome of
the experiment. The use of probability in quantum
theory, from this point of view, is purely a consequence
of the fact that we can never know all the degrees of
freedom of a classical measuring device and must
therefore average over all the inequivalent microstates
of the measuring device which give the same macro-
scopic reading. The dispersion in the readings obtained
from identically prepared quantum systems would be
understood as a consequence of the fact that the
measuring devices with which the quantum systems
interact are identically prepared only in the macroscopic
sense. The result of von Neumann, that there are no

4 J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, New Jersey,
1955), pp. 437-439.

where
U, =Q W ~I+II; n, i) (I+II; ss, i~,

[I+II;ss, i &= [I; i) [II;N, i)

It is now assumed that the two systems come into
interaction via the Schrodinger equation. Thus the
final state of the combined system is represented by
the mixture

Uf =SU;St.

If each of the states SK I+II; n, i& has the form

S~IyII;n, i)=tI;n) ~II;n,f),
where

~
I; ss) is an eigenstate of some operator .V, and

t II; f)is@re some other fixed complete set of states for
the apparatus, ' the interaction would have the char-
acter of a measurement, since the system is transformed
into a mixture of eigenstates of the operator iV. In
fact in this case we would have

Uf ——P W [I; ss) [II; ss f) (I; ss~ (II; n f(. (6)
' The index n evidently refers to the eigenvalue of the quantity

being measured, and may nor be regarded as indicating the
reading of the apparatus, (apart from the question of the enor-
mous degeneracy of the states of the apparatus labeled by a
macroscopic reading). The particular value which the apparatus
reads, of course depends on ~II; n,f), which in turn depends on
both (II; n,i) as well as ~I;i) Thus, the G.nal result of the
measurement depends on the initial state of both the apparatus
and the system, as one should expect.

dispersion-free ensembles could be regarded as demon-
strating that the usual interpretation of the quantum
mechanical formalism tacitly assumes that quantum
systems interact with "average, " only macroscopically
normalized measuring devices.

It is to counter the possibility of re-introducing
determinism into quantum physics in a fashion in-
dicated above that von Neumann addresses the
following argument.

A classical measuring device, as we have already
noted, has an enormous (in general infinite) number
of degrees of freedom, the vast majority of which are
unknown, unknowable, and irrelevant for the function-
ing of the apparatus. (Thus, for example, the precise
quantum state of a particular iron atom on the arm of
an ammeter is immaterial to the reading of the
instrument. ) Von Neumann therefore describes the
initial state of the measuring device (system II) by
the mixture:

Uii ——g. W„i II; ss,i) (II; ss,ii, (1)

where
~
II; ss,i) are some complete set of states for the

measuring device and W is the probability with which
we know that the device is in the eth state. The
value of 5' is evidently independent of the state of
the atomic system being observed. If the atomic
system (system I) is initially in the state ~I; i), the
initial uncorrelated state of the combined system is
described by the mixture
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%e could thus conclude that the probability that the
system I evolves into eigenstate ~I; n) is W„, which
value depends exclusively on our knowledge of the
state of apparatus (system II), and is totally in-
dependent of the initial state of system I, ~I;i)
However, from the probability interpretation of quan-
tum mechanics, the probability is

~
(I; N~I;i)

~

. Thus,
von Neumann finds a contradiction between the
assumption of a known mixture of the measuring
apparatus $Eq. (1)], the deterministic reduction of
the wave packet of the atomic system LEq. (5)j, and
the probabilistic interpretation of the quantum
mechanical formalism.

At this point, it is important to question the justi-
fication of equating W„with

~ (I;e~I;i)), which is
the essential step in obtaining the contradiction. Of
course both expressions are probabilities, but are they
probabilities referring to the same choice of ensembles)
In other words, are those physical situations, to which
we usually apply the expression

~
(I; ri

~

I; i) ~', specified
to the same degree of accuracy as is the situation
discussed above, for which we concluded that the
probability had to be TV P For it is notorious that
estimates of probability are drastically altered if we
have different information at our disposal, even though
the objective Physical situation remains unaltered. For
example, suppose that in conformity with the material-
ist hypothesis the apparatus is always in some well
defined state, rather than in a mixture of the type
described by Eq. (1). It would then follow from the
hypothesis of the reduction of the wave packet, Eq. (5),
that the interaction with the measuring apparatus
"grinds" the system I in a deterministic fashion into
some unique eigenstate of the quantity being measured.
Should we then require, in conformity with von
Neumann's argument,

~
(I; e

~
I; i)

~

'= 1 and therefore,

~
I;e)=

~
I; i) up to a phase factor'?

It is conceivable that the final state might be uniquely
determined via the Schrodinger equation, and that the
probability of it occurring should still be taken less
than one. For, as indicated at the beginning of this
section, the probability might be determined by some
sort of averaging over variables which specify those
quantum states of the apparatus which yield the same
macroscopic reading of the instrument. That is, it
might be that the usual probability expression is a
more anthropomorphic quantity than is customarily
assumed in quantum theory, yielding not the prob-
ability of an event occurring, but rather the probability
that we think an event will occur.

More specifically, the expression
~
(I; 6~I;i)~' can

legitimately be interpreted as the probability of
observing the system I in the state ~I; e) given (a)
that it was initially in the state ~I;i) and (b) that;
nothing is known about the initial quantum state of
the measuring system II (apart from that fact it is in
some normalized macroscopic condition appropriate
for it to be used as a measuring device). However, if

we have at our disposal more information, namely
about the initial state of the measuring apparatus —for
example, if we know that it is a mixture as described
by Eq. (1)—it is plausible that this added information
shouM alter our estimate of the probability, in fact
reduce it to 8'„. In this event there would be no
reason to expect W to equal ) (I; a~ I; i) ~', and the
contradictio~ obtained by von Neumann would be
vitiated. It thus appears that, to the very inter-
pretation of the quantum mechanical formalism which
von Neumann sought to exclude, his proof does not
apply.

n(e',j)= ri', (7)

where it is understood that this is intended as a symbolic
equation, the symbols standing not for the numerical
values of eigenvalues, but rather for the states which
they specify. '

If it were possible to find an apparatus with the
above properties there would be no di%culty in accept-
ing the deterministic position. Such a model conforms,
in fact, with the intuitive picture of a measuring
apparatus held by many workers who have given only
cursory inspection to the problems of measurement, in
their fields.

Attribute (a) is a reflection of the materialist position
that physical systems in objective reality are correctly
represented by wave functions. It is our specialization
of Eq. (1) of von Neumann's analysis.

6 In a more cumbersome, but perhaps more precise notation,
Eq. (7) would read

I I; ~(l I ~'&.
I II;j&)&

=
I I; n'& (7')

III. IMPOSSIBILITY OF DETERMINISM

In view of the treacherous and ambiguous consider-
ations one becomes involved with when considering
the use of arguments based on probability, we seek to
avoid the probabilistic interpretation of the quantum
formalism and inquire whether it is possible for an
apparatus to exist having the following attributes:

(a) The initial state of the apparatus can be repre-
sented by means of some well-defined wave function
III;j)

(b) When the apparatus interacts via the Schrodinger
equation with the system I, assumed to be initially in
the state ~I;i), it "grinds" the system into an eigen-
state of the operator Ã, ~I;n(i,j)), where the eigen-
value e(ij) is some unique function of the arbitrarily
chosen initial states of the system and the apparatus,
i and j, respectively.

(c) The apparatus should be a measuring device for
the quantity cV in the sense that if system I is initially
in an eigenstate of lV then, independent of the initial
state of the apparatus, the apparatus will leave the
state of the system unaltered. Or to state this condition
more formally, the function e(i,j) should have the
property
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Attribute (b) is a statement of the intuitive idea
that if we could follow in detail the quantum mechanical
interaction between the system being measured and
the measuring device, we would understand the precise
result of the experiment. It is an expression of the
determinist viewpoint, and corresponds to Eq. (5) of
von Neumann's analysis. It is possible to broaden
attribute (b) in a straight forward fashion to allow for
the possibility that system I is destroyed in the course
of the measurement. However, in view of the fact that
such a generalization would complicate but not other-
wise materially alter the following discussion and
conclusion, we shall not consider it.

Attribute (c) is the statement of the essential

property a system must have if it is to be adequate for
performing measurements in quantum theory. One
can consider a slight generalization of attribute (c) to
make system II more realistic; namely, that there
exists a nonempty class of initial states of system II
which have attribute (c), thereby leaving open the
question of whether system II can be put into states in
which it is incapable of functioning as a measuring
device. However such a generalization will not ma-
terially affect the subsequent argument, and will
therefore be ignored. In our argument, attribute (c)
will replace von Neumann's recourse to the probabilistic
interpretation of quantum mechanics. This attribute
is evidently closely related to the probabilistic inter-
pretation, but it is equally evident that we are demand-

ing a simpler and more fundamental requirement of a
measurement, which is not subject to possible am-
biguous interpretations that we found to be the case
with notions of probability.

We now proceed to show that, as a consequence of
the principle of linear superposition in quantum theory,
the existence of an apparatus having the three attributes
enumerated above is impossible.

In parallel with von Neumann's argument and in
conformity with attribute (a), we assume that the
initial uncorrelated state of the combined system of
the object being measured and measuring apparatus
can be represented by the state vector'

~
I+II; i,j)—= ~I; i) tII; j),

where ~I;i) and ~II;j) represent the initial states of
the atomic system and the apparatus respectively.

The systems I and II are now brought into inter-
action and due to this interaction the combined system
evolves into a 6nal state

~I+II; f)=SKI+II;i,j),
~ I am indebted to Professor Y. Aharonov for the observation

that some proponents of determinism may take issue with Eq. (8)
on the grounds that all elements of the universe may in fact be
correlated due to the past history of universe. However, the
explicit form of Eq. (8) enters in no essential way in the sub-
sequent argument. It is only required that we make a slight,
rather evident, modi6cation of the notation in Eq. (16).

where the only property of the Schrodinger equation
we require is that it is linear.

If we are considering an apparatus which is to
measure the property E of system I it will be convenient
to expand ~I+II; f) in terms of a complete set of
eigenstates, ~I; n) of the operator iV. Thus,

n, k

X(I+II;n, k ~SKI+II;i,j), (10)

(I+II; n(i, j),k~S~I+II;; j)~0
and for all k

(12)

(I+II; n', k
~
S

~
I+II; i,j)=0, n'4n(i, j). (13)

Attribute (c), the statement that system II is a
measuring device, requires that for each j there is
some k such that

(I+II;n, k~S~I+II; n,j)~0,
and that for all j and k

(I+II; n', k
~
S~ I+II; nj) =0, n'Wn (15).

Let us now consider the particular initial state of
system I:

)I; i)=~~1; n, &yP~I; n, ), (16)

where nP(ns —nt) WO and
~
I; nt) and

~
I; ns) are under-

stood to be eigenstates of the operator Ã, which ap-
paratus II is purportedly measuring. From Eq. (8) we

8 The discussion of the choice of notation given here is intended
only for intuitive clarity and is not pertinent to the subsequent
argument. The only relevant assumption is that the operator 3l
has a complete set of eigenstates of system I,

~
I; I) in terms of

which the 6nal state of the combined system, (I+II; f) can be
expanded.

where
~I+II; n,k)=—

~
I; n) (II; n, k).

The states of the apparatus, ~II; n, k), which appear
in the expansion LEq. (10)] are denoted by two letters
to indicate that there are many (in general, an infinite
number of) states of the appartus II which correspond
to a given reading of the instrument. The index e labels
the class of states of the apparatus II which are cor-
related with system I in such a manner that one can
infer from the instrument reading that system I is in
the eigenstate

~
I; n). The index k is to emphasize that

such states of the apparatus II are degenerate, and to
indicate the "hidden variables" which, hopefully, when
averaged over in some suitable fashion, were to give
the usual probability interpretation for the state vectors
of system I.'

Our investigation now focuses on the question of
whether an operator exists whose properties are in

conformity with the remaining attributes (b) and (c).
From attribute (b), which is the hypothesis of the
reduction of the wave packet, we conclude that there
exists a unique n(i,j) such that, for some k
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can now conclude that for all e

(I+II;~P
~
S~ I+II; i,j)
=tr(1+II; tr, klSl I+II;N„j)

+P(I+II; e,k
~
S

~
I+II; ttsj ) (.17)

If we set ts equal to trt in Eq. (17), we have as a
consequence of Eqs. (14), and (15), that for some k

(I+II; ~„&
I
S

I
I.+I

=o.(I+II; e&,k~S~ I+II; nt, j)&0. (18)

Therefore, from Eqs. (12) and (13), we must conclude
that for this particular choice of i and j

ts(i,j)= ~t.t-
However, if, in Eq. (17), we set n =ns we can conclude
in the identical fashion that, for the same choice of
i andj,

tt, (ij ) = tss (20)

We, thereby, contradict the fundamental determinist
requirement of attribute (b), namely, the uniqueness
of N(i,j).

IV. CONCLUSION

The import of the argument just presented is that
although quantum mechanics can deal properly with
the relative probability of events occurring, there is
no mechanism or physical theory consistent with the
formalism of quantum mechanics which can account
for the fact that events do in fact occur. The fact that
events occur is a tacit assumption made in the language
which we use to interpret the symbols which occur in
the quantum mechanical formalism.

Depending upon one's tastes there are several
possible positions one can have with regard to this
state of affairs:

(1) One can demand no more from a physical theory
than that the rules of manipulation of its formalism be
precise, and that there exists a precise interpretation
of its symbols so that its predictions can be investigated
and verified. Anything more is a vacuous play upon
words and an appeal to man's notoriously poor intuition
for realms where one has no experience; or—

(2) The behavior of man and of inanimate matter
are precisely the same not from the nineteenth century
mechanistic point of view, but rather from the point of
view that the behavior of both are governed by laws

which are deterministic for statistical aggregates, but
which, in detail, allow and, in fact, require individual
fluctuations. These fluctuations may be either (a)
random or (b) governed by volition. A proponent of
position (2a) could assert that there are no laws of
nature, but only laws of probability, for ensembles
which are determined by criteria or concepts which the
observer may find appropriate or convenient. A pro-
ponent of position (2b) might thereby be led to the
consideration of teleological forces in nature —a concept
which, in fact, is rather closely related to the existence
of action principles and symmetry principles; or—

(3) Since we do observe events and not merely
correlations, quantum mechanics cannot be an accurate
or complete physical theory. It must be modified, and
the argument of Sec. III can indicate in which direction.
At some point, the linearity of the theory has to break
down. Perhaps the representation space for the physical
states is not a linear vector space, but has a slight
curvature, so that locally (with respect to some suitably
chosen topology)' one still can add vectors, however,
over large distances this becomes meaningless. The
"curvature" of this space would give a measure of the
degree to which a system may be regarded as quantum
mechanical versus classical.

Purely apart from the attempt to reintroduce
determinism into microphysics, an alteration of the
formalism of quantum mechanics along the lines here
indicated is probably desirable. This is due to the fact
that there exists an approximate superselection rule
between states of a quantum system, which becomes
more and more exact as the states become macro-
scopically distinguishable. ' It would therefore appear
preferable to have a formalism which delimits the
possibility of forming linear superpositions of states.

There are undoubtedly many other points of view
which we may have slighted. However, we have listed
the three possible alternatives which we find most
appealing.
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