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Recent experiments on (E,P) scattering led us to the study of the elastic scattering 1+2 ~ 1+2 in the
energy region where the inelastic process 1+2 —+ 3+4 sets in, for the case that particle 3 is unstable. We call
"woolly cusp" the phenomenon which corresponds to the sharp cusp in the stable case. The procedure fol-
lowed is to consider the inelastic channel to be of the three-body type where the three-body states are
parametrized by a Breit-Wigner formula around a mean mass m* of particle 3. The connection between a
woolly and a sharp cusp is made evident. The problem is studied in terms of a two-channel S-wave E matrix.
In the two-channel approximation the woolly cusp necessarily shows a decrease in the elastic cross section
0. above a characteristic energy. As a function of energy, 0. will either show a maximum, or an inQection point.
In either case, the energy at which this happens may lie above or below the inelastic threshold for the
6ctitious case that particle 3 has a sharp mass m*. The sign and magnitude of the elastic scattering phase
shift at this "m* point" approximately determines which case is actually realized.

p(k) =k, above threshold,
=i

( k ~, below threshold,
(1 4)

where k is the p-channel momentum. It is again a dy-
namical consideration which must decide the region of
validity of this linear (5-wave) approximation to the
inhuence of the new channel.

In this note we consider the question: What happens
to the cusp phenomenon if one of the channel p particles
(say 3) is unstableP There is now no longer question of
a sharp threshold. Yet it is obvious that, the longer the
lifetime of 3 is, the closer we should obtain an anomaly

' E. Wigner, Phys. Rev. 78, 1002 (1948).
~ As is often done, we use the term "cusp" to denote what may

either be a mathematical cusp or else a rounded step.

I. INTRODUCTION
' 'T was observed by Wigner' that scattering and re-
~ ~ action cross sections show an anomaly in the cross
section at energies where competing channels open up.
Consider for example scattering of particle 1 by particle
2 as well as production of 3 and 4:

1+2-+ 1+2, (1 1)

(1.2)

with trts+fts4)rrtr+rtts. At the threshold for (3,4) pro-
duction, the (1,2) scattering cross section has a cusp. '
The size of the cusp is a matter of detailed dynamics.
But the very existence of the effect, regardless of its
magnitude, is understandable on essentially kinematical
grounds. Thus let T be the transition matrix, denote the
(1,2) and (3,4) channels by n and P, respectively, and let
p(k) be the density of states in channel P. Then, around
the threshold

T =T '+iT p'p(k)Tp, ', (1.3)

where the superscript I refers to values taken at the
threshold. By a weH-known argument

resembling the mathematical cusp for the stable
case. Thus, if we consider for example the cusp in
sr +p —&A+E at ZE threshold, the instability of all
particles can safely be ignored. However, as a matter of
principle, the question remains. On the other hand, there
are conceivably cases of practical physical interest to
which our question applies. I'or example, consider
(E,p) scattering in the energy region where F'*+sr sets
in, P* being some hyperon isobar. %e now have one
"particle, " I'*, whose lifetime is so short that its 6nite
width cannot be neglected and it is interesting to ask
what then takes the place of the sharp cusp.

Actually, observed anomalies in the E pscattering-
at =400 Mev/c lab momentum' aroused our interest in
this whole question. As has been pointed out, ' this
momentum corresponds in fact to the "threshold" for
the reaction E +p~ Fr*+sr, where I'~* is the mass
1385 Mev and isotopic spin one hyperon isobar. It
should be noted that only if the I'&* has spin —,

' can there
possibly be a signiicant correlation between the onset
of (Fr*+sr) production and E pscattering at this—
energy. '

It will be our purpose to give an approximate descrip-
tion of the modi6cations due to a Gnite width, in such a
way that the transition to the zero-width case is clearly
brought out. Any mythology as to whether particle 3 is
"elementary" or "composite, "will be immaterial to the
argument. The procedure is the following. Let 3 be un-

e P. Nordin, Phys. Rev. 123, 2168 (1961);R. Tripp, M. Ferro-
Luzzi, and M. Watson, Bull. Am. Phys. Soc. 6, 350 (1961);Phys.
Rev. Letters 8, 28 (1962).We are indebted to all these authors for
discussions on these experimental results.

4 A. Pais, Revs. Modern Phys. 33, 492 (1961).' The reasons are the following: The (E,P) anomaly shows up
as a rather sudden onset of a cos'8 term in the angular distribution
at 400 Mev/c, whereas at lower energies the distribution is
nearly isotropic. As was noted in reference 3, this indicates the
presence of a considerable Dg partial wave. On the other hand,
the system (Y&*+e) is essentiaHy in an orbital s wave at the
energy concerned and therefore can only be coupled to the
(X,p) Dt wave for (spin Y&*)=s.
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2tn*m46

m +m4

(1 5)

Here k is the c.m. momentum in the P channel corre-
sponding to a sharp mass m*. The real part of p(3,k),
when weighed by a two-body mass distribution around
m*, gives an approximate description of the three-body
phase space. If the mass distribution contracts to a 6
function we clearly obtain Eq. (1.4) for 5=0 as a
limiting case, since p(0,k) =p(k).

In the next section we develop the theory in terms of
a 2 by 2 E matrix' corresponding to the channels o. and
p. As is customary for a sharp cusp, we assume that over
the woolly cusp region the E-matrix elements are slowly
varying compared to the phase space factors referring to
the inelastic channel. In the present case this assumption
is somewhat more questionable than for the sharp cusp,
because the size of the woolly cusp region may be
appreciable. In terms of laboratory momentum we have
the following. In the rest system of particle 2, the mo-
mentum half-width ~ over which the woolly cusp should
kinematically be relevant is given by

(w+—~+0( ),

(m*+m4)' —(mt+ms)'- l
VO=

(m*+m4)' —(mt —ms)'

(1 6)

stable for the decay 3~ 5+6. Then the p channel is
considered' to be the three-particle channel 4+5+6. We
now parametrize the three-body states~ in terms of a
mean mass m* of 3 and its half-width d. Actually we
need more than these two numbers, namely the shape of
the distribution around m*. For this we take a Breit-
Wigner formula. This is of course not exact in general,
but it serves to bring out the nature of the problem.
Ke then show that in this way the cusp for the stable
case, described by Eq. (1.4), is replaced by a "woolly
cusp" which is described by a function p(3,k) given by

(k4+—34) '*+k' ' -—(k4+34) r —k'- &

p(b, k) = — +i

(1,2) and (3,4) but the formalism can readily be
extended to include higher angular momenta. ' For a
two-channel problem of the kind of Eqs. (1.1) and (1.2)
and with stable particles, conservation of probability
demands" that the elastic cross section 0- decrease right
above the threshold for reaction (1.2). Thus there are
two types of possible discontinuities, depending on
whether 0 rises or falls just below threshold. Provided we
may consider the cusp eRect as a perturbation, the ratio
of slopes above and below threshold is fixed entirely by
the elastic scattering phase shift at that energy. "We
will show in Sec. II that corresponding, but somewhat
more refined, distinctions can be made also for the
woolly cusp. The analog of the "rounded step" type
of sharp cusp discontinuity is here an inQection point.
To the inverted V-type sharp cusp corresponds a
maximum. However, while for the stable case the energy
value at which the anomaly occurs is of course the
threshold for reaction (1.2), the position of the corre-
sponding characteristic point for the woolly cusp needs
further specification. I.et us call the m* point the thresh-
old for the reaction (1.2) if the particle 3 would have a
sharp mass m~. The inRection point or the maximum,
as the case may be, may lie above, at or below the m*

point. We show that both distinctions: inAection point
or maximum above or below the m* point are approxi-
mately conditioned by the value of the elastic scattering
phase shift at the m* point. (See the discussion of Eqs.
(2.42) and (2.43) below. ) Actually, because of the re-
quirement of slow variation for E-matrix elements, the
region of validity of our calculations should at best
extend to energy intervals 6 below and above the m~

point. Therefore we cannot attach much signi6cance to
the occurrence of a point of inflection or of maximum if
the phase shifts are such as to put this point at dis-
tances &)6 from the m* point.

After this work was completed we found that the
same problem has recently been considered by Baz'."
We agree with his conclusions. We believe that the
present work is nevertheless of some interest because an
alternative and somewhat more general method of
derivation is followed here (see also footnote 15 below).
Another approach which includes some dynamical
eRects has been given by Ball and Frazer. "

In practically interesting situations, orders like c~ Sd
can well be reached.

As a first orientation we consider in this paper a K
matrix which refers specifically to S waves for the states

s The threshold region for (4,5,6) production will play no role in
what follows. This implies that m* is well separated from m5+ms,
a condition which is satis6ed in cases of practical interest. For a
discussion of true three-body threshold eGects see L. Delver,
Nuclear Phys. 9, 391, 1958; L. Fonda and R. Newton, Phys. Rev.
119, 1394 (1960).

This is similar to the procedure followed by B.Sakita, Nuovo
cimento (to be published), and by R. Dalitz and D. Miller, Phys.
Rev. Letters 6, 562 (1961).

8 An exposition of the E-matrix formalism is given by R. Dalitz
and S. Tuan, Ann. Phys. 3, 30'I (1960).

II. FORMALISM

For the sake of simplicity we assume here that all
particles have zero spin and isotopic spin. I.et T ., T p,

Unlike the situation for the sharp cusp, such an extension may
even be necessary for the (3,4) state in the cusp region. In fact,
the "threshold" value m*+zr4 for (3,4) may lie considerably above
the sharp threshold for (4,5,6) production and it can therefore in
principle not be excluded that the dominant angular momentum
of the (3,4) system is larger than zero right from the onset of
reaction (2)."R.Newton, Ann. Phys. 4, 29 (1958), Sec. V.

"A. Baz', J. Exptl. Theoret. Phys. (U.S.S.R.) 40, 1511 (1961)
Ltranslation: Soviet Phys. —JETP 13, 1058 (1961)].' J. S. Ball and W. I razer, Phys. Rev. Letters 7, 204 (1961).
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and Tpp denote the respective transition amplitudes for
the reactions (1.1), (1.2), and for 3+4 ' 3+4. As was
stated earlier, the reaction (1.2) should really read
1+2 —+ 4+5+6. However, we assume that T p depends
on the (5,6) variables only through the (variable) energy
m of 5+6 in its own center-of-mass frame. m is then just
the variable mass of the unstable particle or resonance 3.
We neglect any dependence of T p on the orientation of
the relative (5,6) momentum with respect to the other
momenta involved in the reaction. If we now restrict
ourselves to S waves, we have simply T,p

= T p(E; m)
where E is the total c.m. energy. Likewise 3+4 —+ 3+4
really stands for the triple collision 4+5+6 ~ 4+5+6
but we put Tpp Tpp(E——; m, m'), where m and m' are the
respective initial and final mass distributions of 3.

The requirements of unitarity and of space and time
reversal invariance of the S matrix imply that the
transition amplitudes T;, satisfy the following condi-
tions for E)m4+ms+ms.

ImT..(E)=
~
T..(E) ~'p. (E)

+J"
~

T p(E; m)
~
'pp(E; m)dm, (2.1)

ImT p(E;m)=T (E)T p*(E;m)p (E)
+fT,p(E; m') Tpp(E; m', m)

&&pp(E; m')dm', (2.2)

ImTpp(E; m, m') = T.p(E; m) T.p*(E; m') p. (E)
+J'Tpp(E; m, m")Tpp(E; m",m')

&&pp(E; m")dm", (2.3)

where the range of integration over m is given by
(ms+ms) &m& (E—m4). This corresponds to the physi-
cally allowed masses of the unstable particle state 3 at a
total energy E. Nonrelativistically p (E) is the center-
of-mass momentum in channel o.,

and the diagonal phase-space matrix,

t'p-(E)

l, 0

0

pp(E; m)i
(2 9)

we can write the Eqs. (2.1)—(2.3), in a more compact
form as

ImT= TpoT*, (2.10)

where an integration over m is implied, and 8 is a
diagonal step-function matrix

/'g(E —m, —m, )

0

0

8(E—m —m4) 8 (m —ms —m, ))
(2.11)

where 8(a) = 1 for x)0, 0 for x(0.
We now introduce' the reaction matrix E:

K (E) K p(E; m)

'EK p(E; m) Kpp(E; m, m')1
(2.12)

T 'lEpT= E. (2.13)

Since we have left out the step-function matrix 8 in
Eq. (2.13) the range of integration over m is now from
ms+ms to ~. For a fixed value of E, pp(E; m) becomes
imaginary for m) E—m4. The proper analytic continua-
tion is to set pp(E; m) =s

~
pp(E; m)

~

in this interval. It
can be readily verified from Eq. (2.13) that Eqs. (2.1)—
(2.3) are satisfied if the K matrix is real."We now as-
sume" that around the m* point all E matrix elements
vary slowly with E as compared to their variation with
respect to m. Accordingly, we put

which is related to the transition matrix T by the
equation

p-(E) =as=
2mym2

fE (mt+ms) $ . (2.—4)
-mr+ms

K..(E)=K...
K p(E; m)=K ~(m),

(2 14)

(2.15)

Furthermore,

pp(E; m) =q4qM, (2.5)

where q4 is the momentum of particle 4 in the over-all
center-of-mass system, and q56 is the momentum of
particles 5 and 6 in their relative center-of-mass system,

Kpp(E; m, m') =Kppiti(m, m'), (2.16)

where E,E„p, and E~p are real constants referring to
the fixed value m*+m4 for the E variable. The function
q s(m) can be interpreted as the mass distribution of 3
and the average mass m* of this unstable particle is then
defined by

q4(m) =
2mm 4

[E (m+m4)]-m+m4- (2 6)

2m5m6
ass= (E (ms+ms)]-

ms+ms
(2 7)

(2 g)

In terms of the symmetric transition matrix T,

~T..(E) T.,(E; m)

&T.p(E; m) Tpp(E; m, m')1

(mg+m6)

mph' (m) dm. (2.1/)

"For the corresponding relativistic phase-space terms p and
pp, Eq. (2.13) no longer defines a real E matrix in the physical
region. The reason is that the relativistic momentum does not
remain imaginary below threshold due to an additional branch
point in the energy square variable. Therefore, our treatment is
restricted to nonrelativistic kinematics."For the case of two-body channels only, the E-matrix elements
are regular functions of E in the physical region, see R. Oehme,
Nuovo cimento 20, 334 (1960).In this case the assumption of slow
variation of X(E) is justified. It appears that E is not regular when
three-particle channels are involved. Nevertheless, the condition
of slow variation used here may still be justified for not too large 5.
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Likewise, the function g'(m, m') can be interpreted as a
joint mass distribution for the initial and final states of
3. In our approximation, we consider the mass distribu-
tion of the initial and final states of 3 to be independent.
Hence

where

X= (1 i—K-p )t1 i—Kppps(E)l+pp(E)p-K-o' (2 27)

and

y(m, m') =y(m)y(m'). (2.18) po(E) = pp(E; m)qP(m)dm, (2.28)

If we now substitute Eqs. (2.14)—(2.18) in Eq. (2.13),
we obtain

Pl iK .—p (E)jT .(E) iK.p—

while in Eqs. (2.24)—(2.27) p is to be taken at the fixed
00 argument E=m*+m4. Note that the entire energy

y(m') dependence of the transition amplitudes T;, is therefore
(mfi+m6) given by pp(E). This is the counterpart of the woolly

cusp case of the k dependence in Eq. (1.3) through
pi)-y

iK sy—(m)p (E)T (E)+T s(E; m) If we substitute for g (m) a Breit-signer distribution

iK ops(—m) re(m') pp(E; m')
my+f6)

qP(m) =
(m —m*)'+LB

(2.29)

XT«o(E; m')dm'=K«p4(m), (2 20) we obtain for 6/m*«1 Lextend the lower limit in the
integral (2.28) to —~ )

Tpo(E; m, m') iKs—~(m) y(m")
(ms+f6)

y po(E; m") Top(E; m",m')dm"

2m*m4
pp(E)=q (E m* m—4+i—Aj, (2.30)

m+ m4-
where q= qss(m*), the decay momentum of 3 evaluated
at m=m* see Eq. (2.7). In Eq. (2.6) put q4(m*)=—k.
Then we have

iK ~(m)—p (E)T o(E; m') =Keg(m)P(m'). (2,21)

Setting
(2.22)T„p(E;m)= Tp( E)y( m),

o. (E)=47r
I
T..(E)

I

' (2.32)

o p (E)= (4irl p ) I
To (E) I

' Reps(E)

respectively. Substituting Eqs. (2.24) and (2.25) in
(2.26) Eqs. (2.32) and (2.33) we obtain

XT =K i(K Kpp K— p')pp(E), —(2.24)

(2.25)XT p=E p,

XTpp Kpp i(K——Kpp —Ks') p. , —

ps(E) =qLk'+ibjl=qp(b, k), (2.31)
Top(L&; m, m') = Tpp(E)re(m)re(m'), (2.23) where p(6,k) was defined in Eq. (1.5).

The total S-wave cross sections for processes (1.1) andEqs. (2.10'—t', 2.21' can be solved readily for T in terms
j1.2~ are given by

o..(E)=

-.s(E)=

4x x'+ 2psxLxs —y'g+ (pi'+ ps') (xs—y')'

p
' 1+x'+2piy'+2psL&+x(xs —y')1+(pi'+ps')L~'+(» y'H

y px

p
' 1+x'+2pry'+2ps&&+ x(» y') j+(pi'+ ps') L—~'+ (» y')'j—

(2.34)

(2.35)

Note that

p, =Repp ——2—*'L(k4+84)&1k'$&q,

ps
——Iinps = 2—

iL (k4+54) &—k')&q
(2.36)

where x=E p, y'=K, p'p, and s=Kpp are real con-
stants and

4m y'p&
tTPa—

p
' (1+x')

(2.39)

4ir x 2y p ps)
I pi+—I, (238)

p„' (1+x') (1+x') E x 1

pips= q'fi'I2, pi'+ps'= q'(k'+o')'. (2.37)

For
I
O'I &2 we have pi and ps& 2, and for sufficiently

small 5 we need to keep only linear terms in pp and p2 in
Eqs. (2.34) and (2.35). Hence

"Our E-matrix treatment implies that @(m) is real. This leads
us to believe that the present method is not general enough because
in equations like (2.22) one expects p in general to be complex cf.
reference 7. However, for 6«/m«1 the restriction to real @(m)
should not affect the elastic scattering cross section.
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The extremum for o, (k') is therefore given by

pi= (1/x) ps, (2.42)

which can be satisfied provided x&0. At this extremal
point~

d &aa

(dk')'

4xx'y Pi
(0,

p '(1+x')' (k'+84)
(2 43)

X ~ —I/2

X = -I
X= —2
X=+
X=2
X= I

X~ l/2

Fzo. 1. Plot of —(p|+x 'ps) as a function of O'S ',
for various values of x.

4m x'y'
Py

p ' (1+x')' t
k4+84j& x

(2.40)

We now examine the behavior of the elastic scattering
cross section 0- near k'=0. Evaluating the first and
second derivatives with respect to k', we find

and therefore the extremum is always a muximlm ie
0- . For 0(x(1 the maximum occurs for k') 0, while
for 1(x it occurs for k'(0. In order that this maximum
appear within the range of validity of our approximation
~k'i &os, it is clear that x 1. For x&0 we can only have
an inQection point. "

These results are illustrated in Fig. 1 where we have
plotted —(pi+p2/x), the energy-dependent part of the
elastic cross section o, Eq. (2.38) as a function of k'/2
for various values of the parameter x, It can be readily
verified from Eq. (2.22) that in the limit 8 —+ 0, x= tant s

where 80 is the S-wave scattering phase shift at the m*
point for the inelastic process (1.2). This remains
approximately valid for finite but narrow width 8.

iVote added r'rz proof. The transition amplitude Tpp for
which the unitarity condition LEqs. (2.1)—(2.3)j applies
contains an unconnected process in which particle 3 is
produced and decays without interaction with 1 or 4.
Such a contribution can be eliminated by considering
the discontinuity of the transition amplitudes T;; in 8
across the physical cut instead of the unitarity condition
Lsee R. Blankenbecler, Phys. Rev. 122, 983 (1961)].It
is then possible to factor out a complex propagator
P(nz) and get rid of the difficulty that we encountered
in factoring the J matrix (see reference 14). For small
widths 6, however, the results of this paper remain
essentially unchanged.

(dks) 2

4' x'y' 1
( (/k4+54 j&—2k') pi

p,' (1+x')' 2Lk4+84j&

+ (ttk4+b' jr+2k') ps/x). (2.41)

'6 The case of a maximum at k'=0 is mentioned in reference 11.
It should be noted that some intermediate steps in the cited paper
are not strictly correct. The quantity e,z in reference 11 is
actually the energy of the decay particles in their own rest frame,
and not (as was stated) in the rest frame of the reaction.


