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A formalism intended to evaluate the expectation value of physical quantities directly has been applied
to the processes involving multiple production of photons in quantum electrodynamics. This has been
achieved by constructing the Green's function which is done by expanding it in terms of hard and soft
photon parts of the electromagnetic field. A general treatment of infrared divergence is given. The cross
section for I-photon production in Coulomb scattering and pair annihilation has been evaluated. The
limitation of the expansion of the Green's function in terms of hard and soft photon parts is examined. A
plausible generalization regarding the cross section of any primary process in quantum electrodynamics
at high energies with sz-photon emission in the Anal state is enunciated.

account. Thus, the application of this formalism to
the quantum electrodynamical problems, as done in
subsequent sections, does not lead to any infrared
divergence, thus showing that the problem of infrared
divergence is due to the computational technique one
is using rather than the notion that quantum electro-
dynamics is formally not a well-defined theory because
of infrared divergence.

The required transformation function can also be
obtained by the transformation function which de-
scribes the development of the system from the initial
to the final time by time reQection and a phase trans-
formation. ' Consider an interacting system of electron
and electromagnetic fields in the presence of external
sources and external electromagnetic field. The trans-
formation function (Oo i ~Oo.s) is given by'

). INTRODUCTION

HE production of photons during the interaction
of charged particles among themselves or with

external electromagnetic field has been a topic of
interest to the theoretician. It is a straightforward
application of quantum electrodynamics, but the
complexity of the equations prevents a completely
satisfactory solution of the problem. The techniques
developed during one and a half decades have not
made the task easier. ' '

Recently a formalism, which follows Schwinger's
extension' of his action principle, 4 has been developed
by Bakshi and the author. ' In this paper the formalism
is applied to the problem of multiple production of
photons. The details of the formalism will be published
elsewhere. Only cursory details will be given here.

Schwinger has extended the action principle to
generate the expectation values of physical quantities
directly. This is carried out by constructing the trans-
formation function for the temporal development of
a physical system in a closed cycle in time (this being
a mathematical contrivance) in which the develop-
ment from the initial to the final time is governed
by a dynamics different from that of the other part
(the return path). The construction has been achieved
using the retarded and advanced Green's functions.
In this formulation causality and completeness come
out as natural consequences of the fact that the field
operators have to satisfy certain physical boundary
conditions. Another virtue of this method is that,
because the expectation value is evaluated directly,
the e6ect of the presence of all the physically possible
complete set of states is automatically taken into

(Oo i
~

Oo.s) =det(1 —epAGs+)

Xexp (iriG+rf) exp (-,'iEDE), (1)

where q, g are external sources of the electron field,
E is the external current distribution, D is the free
Green's function for the electromagnetic field, and
6+ is the Green's function for the interacting electron
field. Here A stands for A'+(1/i)B/BE, where A' is
the external electromagnetic field, and yA =—y„A &.

Also A= c=1.By applying the transformation, '

on (1) we get'

(Oo s
~

Oo s)+= C(A~) exp(irfGrf) exp( —,iEDE), (2)

where

C(A+) =det(1 —eyA+Gs+) det(1 —eYA Gs )
Xdet(1+I++S I:5+),*Part of a thesis submitted to Harvard University in partial

fulfdlment of the degree of Doctor of Philosophy (1961).' S. N. Gupta, Phys. Rev. 98, 1502 (1955);Phys. Rev. 99, 1015
(1955).' J. Joseph, Phys. Rev. 103, 481 (1956).' J.Schwinger, Lectures delivered at the Institute of Theoretical
Physics at Brandeis, summer of 1960 (unpublished); Proc. Nat.
Acad. Sci. 46, 1401 (1960); J. Math. Phys. 2, 407 (1961).

4 J. Schwinger, Phys. Rev. 91, 713 (1953); Phys. Rev. 91, 728
(1953); Phys. Rev. 92, 1283 (1953); Phys. Rev. 93, 615 (1954);
Phys. Rev. 94, 1362 (1954).' P. M. Bakshi and the author have applied the formalism t
particle production in the presence of external sources and a
external electromagnetic 6eld. The details will be publishe
elsewhere.
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5 (-')=Z~. ( )4..("),

5-(**')=2 ~..(*)~.(*'),

the &P&,„'s being the mode functions of the free electron;

tD++ D+-
=i. . . )

with

and4

Dgg = &Dp+,

D+ = —is (xx'),

D += —is+(xx'),

s—(xx') =P A, ~(x)A, &, (x'),

s+(xx') =5(xx') =P A p&, (x)A, &, (x'),
pk

the A, ~'s being the mode functions of the electro-
magnetic radiation field.

Now the generating function Q(X) of projection
operators for photon states is given by'

Q(l&,)=exp[(P, —1) Q ap&, & &; up~&+&j, (3)

the up~&+) s being creation and annihilation operators
of a photon with momentum k and polarization p.
When X=O, Q(0) is the projection operator for the
vacuum state; when X=1, Q(1)=1 representing com-
pleteness. The expectation value of Q(X) can be
readily generated using Eq. (2). It is given by'

(Q(l&.) )= C(A+) exp(i&&Gi&) exp(2iKDE)
Xexp[(X—1)E+SE $ ~

x o—x . (4)

As a specific example of physical phenomena, the
expectation value of Q(X) in Coulomb scattering is
given by

&Q(l») )"= CB+nvoG &4'+n'3[4'+n'VOG++74='+2 j
Xexp[(X—1)E+5K ]

Xexp(-', iK'DE)
~
x„~x, (5)

p and p' being the initial and final rnomenta of the
electron. In the case of a pair annihilation,

with "~"characterizing the external quantities in the
forward and the backward developments,

t'G+ G+-
G=~=.. . )

with

Gpp ——& (Go"—5+Ip+5+) (1+I~+5+Ip+5~) '

X (1—eyAgGO") ',

G~p ——+i(1—Gp+eyA~)5+(1+Ip+5+Ip+5+) "

X (1—eyAyGo+) ", (»)

(Q(~))..= C—L4..v& v-O .Xi .voG-~.e
Xexp[P —1)K+5K 7 exp(-,'iEDK)

XKp ——O=K, (6)

p and p' being the momenta of the electron and positron.
In the subsequent sections we shall deal with the

detailed evaluation of the right side of Eqs. (5) and (6)
which requires explicit construction of G++ and G
which in turn can be done in certain approximations.
Sections 2, 3, and 4 are concerned with approximations
and explicit construction of the required Green's
functions. Section 5 contains the treatment of infrared
divergence and Sec. 6 the energy loss in Coulomb
scattering due to infrared photons. In Secs. 7 and 8
the multiple bremsstrahlung is considered, and the
validity of the approximations in Secs. 3 and 4 is
discussed. Section 9 deals with radiative corrections
and comparison with earlier results in the literature.
In Sec. 10 the formalism is applied to multiple photon
production in pair annihilation. In Sec. 11 a plausible
generalization is stated and brief concluding remarks
are made.

2. HARD AND SOFT PHOTOKS

In the foregoing section a complete formulation to
evaluate directly the expectation values has been given.
In this and subsequent sections, we shall consider the
application of the formalism to the problem of infrared
divergence (IRD) and the multiple photon processes
in quantum electrodynamics. The expressions given in
the last section are complete in their description of the
physical processes and contain all the virtual pheno-
mena that are involved. Instead of dealing with the
above-mentioned problems in all generality, which at
the moment does not look feasible, we will neglect the
vacuum polarization [which means putting C(A+) in
Eq. (4) equal to unity' and other virtual processes
and make simplifying assumptions which do not look
far away from physical reality. At the end of Secs. 8
and 9 we shall make comments on these assumptions
and try to estimate corrections due to the neglect of
some processes and the assumptions.

As is well known, the infrared divergence problem
which occurs in radiative corrections in quantum
electrodynamics is almost a real process. In other
words, the virtual photons which give rise to IRD are
almost real. Hence in order to deal with IRD problem
alone it is enough to deal with real photons. Our next
problem of multiple photon production in any process
in quantum electrodynamics involves real photons.
Now we shall develop an approximation technique to
deal with these real processes. Before going into
details it should be mentioned that our gigantic expres-
sions for G++ and G [Eqs. (2a) j, which are the ones
that are needed for the description of the processes we
shall deal with, become simplified because of energy-
momentum conservation. This fact becomes clear if
one remembers that 5+ and S functions are defined on
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the mass shell. Bearing this in mind and confining
ourselves to the emission processes, G++ and G
become

tion in the usual sense on the hard-photon part. To
this end we write

G++= G~++= Go+
1—ey A+Go+

G = —Gg = —Go
1—eyA Gp

(7b)

yp+m —ey(As+A+)
= Gs+GseyAsrGs+G eyArrG eyAHG +, (11a)

where

%hen an external field A is present, to the first order
in A~ we can write G++ and G as

G~——Gg++eyA eG~++

G = —Gg eyAeG

(Sa)

(Sb)

At this point it shouM be mentioned that we will
treat Coulomb scattering and multiple bremsstrahlung
up to first order in the Coulomb field.

Any theory which tries to explain the physical
phenomena must also take into account the fact that
they are observed and recorded by an apparatus which
has a limited accuracy. In view of this fact, whenever
there is emission of photons in a physical process, not
all the photons are detected but only those which are
above a certain energy which is the energy resolution
2 eo of the apparatus involved. We shall denote all the
photons below this energy b, oo as infrared or infra
pkotons. We shall divide the photons above this energy
into two parts in comparison with the energy of the
particle involved —electron or positron here. The
photons which have energy comparable to that of the
particle are called hard pkotorts; the photons which
have energy above heo but not comparable to the
energy of the particle as soft pkotons. In what follows,
unless there is a confusion in terminology, we shall
mean by soft photons both soft and infra-photons.

3. APPROXIMATIONS

For the processes we are dealing with the derivation
of an explicit expression for G~ and G has reduced
to the finding of G+ and G because of the relations (7).
So, consider the differential equation for Green's
function for an electron interacting with an electro-
magnetic field A:

(yp+m —eyA)G=1. (9)

The A in Eq. (9), on being replaced by &(1/i)i)/5K~
and made to act on appropriate quantities as in Eq. (4),
gives rise to a description of the emission of photons.
Because in the physical processes we are dealing with,
there are both hard and soft photons, we shaH make
the distinction between the two kinds at the outset
and represent them in the differential equation as

[yp+m —ey(A s+Arr) jG= 1. (10)

This distinction gives us an opportunity to treat them
on different footings. %e shall carry out high-energy
approximations on the soft-photon part and perturba-

Gs-
yp+m —eyA s

(11b)

Looking ahead with a view to how one calculates the
cross section making use of the formalism we have
developed, one infers that

(r —(r(o)+o (()+.. .+o (n)+. . . (12)

where 0.("' is the cross section of the process in question
with e hard photons. The possibility of existence of
0.&"' in 0. must be viewed from the standpoint of con-
servation laws of energy and momentum. For example,
Coulomb scattering can occur with no hard photons
and hence the series begins with 0 "&. In the pair
annihilation two hard photons are necessary and, hence,
the series begins with 0.&'&.

We shall now examine the series (11a). We shall
confine our attention to the third and the fourth terms,
and a similar examination can be made for other
terms. It should be mentioned that what follows is not
a proof with aH mathematical rigor; besides we deal
with a part of the expression ignoring the effect of the
other part on it. Later it will be shown that the con-
clusions reached here are true in specific physical
processes with only certain energy losses. Consider
that part of the expression which gives rise to three
photons in a pair annihilation. The terms are

G'eyA sG'eyAtrG'eyArtG'+G epA~G'eyA sG'eyArrGo

+G eyAttG'eyA~G'eyA sG'
+,GoeyAHGoeyAzzGoe~A„Go (13)

The object is to show that the main contribution to
three-photon production in pair annihilation comes
from the first and the third terms. Consider the first
and second terms:

G (eyAsGoeyA~+eyAHGoeyAs)GoeyAHGs (14).
Making use of Fourier representation, we write (14) as

m'+ p'

m —y(p —ko)
Xey(t(k)„)e'o»+eye(k), )e'"» ega(k, )e'"'"

~m'+ (p —k),)' I

m —y(p —k, —k),) e(n'(u —&') (m pp')
X eye(ko) e"»

ms+ (P—k —k),)' mo+P"

Xdpdp'dk) dk, dk, dy. (15)

e"~(' »(m yp-)
t

— m y(p k,)——
-~ ega(k, )e" &-

m'+ (p —k,)'
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and
G e&A sGoe7AHGoe&AaGo

Goe7A zgoeyAsgoeyAzgo

The matrix ratio of these two terms is given by

We are interested only in the order of magnitude of
the quantities. Making use of the fact that m'+p'=0
=m'+p" because we are dealing with free particles
at the ends, we have for

e'"&*-»(m —yp) (pa(k, ) pa(k&„)
ega(k&,)+ ega(k, )

m'+ p' k pk, pkh

m —y(p —k,—k4)
Xei(1,+~~+~,),

mo+ (P—k,—k4)'

ein'iw —&'i (m —pp)
&&eva(ko) dk, dk&dkodpdp'dy. (16)

m'+ p'

The operation of variational differentiation gives

a(ko) 1/k&,
'* and a(k, ) 1/k, &. Hence, the ratio of the

two terms in (16) is

first term/second term=k&, ~/k, **, (17a)

which is large. This means that in the series (14)
significant contributions come from terms in which
GS in the middle is replaced by G . This is the expres-
sion of the well-known fact that soft photons come out
before and after the hard interaction takes place.
Hence, (11a) becomes

g gs+gse&Azzgs+gse&AHgoe&Azgs+. . . (18)

Now we shall compare first and last terms of the
expression (13):

1 1 e"&' *'&(m—yp')
Gs =Q — dp'

=o (2~)' n! mo+ p"

to that of constructing G + and G . We also observe
that G appears only at the extremities in each of the
terms except the first term of the series (18). The first
term is of any consequence, by energy and momentum
considerations, only if an external field is present and
then we always get G epA G . Appearance of Gs at
the ends simplifies their construction. GS at the left
will be referred to as G ', and that at the right G ".
In constructing these functions we will make use of the
following assumptions:

(i) Our photons are real; hence k'=0.
(ii) The photon rnomenta ki, ko, k can be

neglected in comparison with the momenta p and p' of
the free particles at the ends. We have the relations
mo+po= 0=mo+ p'o. Due to the assumptions (i) and (ii)
we have (with 2p g; k,)2 Q;~, k;k, )

m'+ (p+ki+ko+. +k„)'
=+2p(ki+ko+ +k„), (21a)

m y(p'—+k)ya =ya[m+ y (p'+ k)]+2 (p'+k) a
=pa(m+yp')+2p'a. (21b)

Similarly

ya$re y(p —k)j=—(m+yp)ya+2pa. (21c)

In (21a) and (21c) we are neglecting a term like

(ya)(pk) which is very important because of its spin
dependence. We shall come to the discussion of this
term in Sec. 9.

First consider Gs' which has right coordinate index
free. Making use of (11b) and (21) we can write it as

GoeyA sG'
GoeyA~G'

e
x(

E (2ir)4

p'a(k)
eikzdg

p'k

0 ~g (2) (20)

4. CONSTRUCTION OF G~r AND G~&

Considerations in the latter half of the last section
have reduced our problem of constructing G+ and G

Noting that the free-end Green's functions G in the
numerator and denominator refer to the same momen-

tum, the magnitude of the ratio is ko~/k, &. Now

remembering the fact that the cross section is obtained

by integrating over the density of the final states
which gives an extra factor k for the effective ampli-

tudes, the effective ratio between the first and the last
term of (13) becomes

first term/fourth term= k&, '*/k, '*. (17b)

Hence, the contribution to the cross section for three-
photon production in pair annihilation comes mainly
from two hard photons and one soft photon part.
Hence we can write for three-photon pair annihilation:

(2ir}4

e'4" &~"& (m —yp')
dpf eBy ~ (x)

m'+ p"
(22a)

Similarly

Gsg—

where
(2or)4

e'&i "&(m—yp)
dp e &

*'
) (22b)

2+ o

e p'a(k)
B„(x)= e'o* dk.

(2~)4 p'k
(22c)

S. INFRARED DIVERGENCE IN COULOMB
SCATTERING

As the first application of the foregoing formalism
we shall consider the problem of IRD and multiple
bremsstrahlung. Even though the IRD problem
involves virtual processes, the divergence itself involves
abnost real photons. Hence we can use the Green's
functions which we have constructed in the last section.
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k)E+(k)
dk

roceed by evaluating the expectat~on

( ) b (5)f the enerating functionvalue o g
for photon emission in ou om

"""="'; '-'" '-:—:.--) (-)Xexp/(X —1)EiSK 1 exp oo

ssume that all the photons involved are soft
8 d(8b)bphotons. Then Eqs. (Sa an

24a

= —Gg 8' eyA Gg (24b)

Now substituting (22) and (24)

&+D++&+=
(2m. ' k 26

(27d)

(2m)'

Making use of the identity

E (—k)E (k)
dk . (27e

k'+oo

(28a)

Eq. (27a) becomes

exp f
C—fx(K) =Z(E+C),

& SEi

+nvoG vole -3-Lk+n voG++vo4'+n3

" ev~'G~ '" vol'+-n j= Lgp„vo ~ &Q(~))=f. j
e'i(p—p') (.—')

L G st+eve gg+ +votP+&]XL +y'vo A+

( d'p nz d'p' nz

e-i(p—p') (x'-s)X (++pVo+yp'o7~n'Vog+p)

Xexp X

&(exp 2

(2m
'

d'k( p p' i'
e-' *-"

k, (pk p'ki

( 1 1
dkf

kk' —~' k'+i )

where
. p~+(k)

g „()= '" dk. (25b)

-p i ' — ~' —tB+pi (&)—B+p(&))tB-pi(~')-B-p(~')) e-t p

(25a)
e

]
fxf Using the identity

X'—'-''f . (28b)
Epk p'k)

(29a)=Z—~i~S(k),'-' k'~2&

1 1
=2 iS(k').

k' i c k—'+io
( d'p m d'p' m)

i(2-) p. (2-) p. &2&2

x)e (B-p'—-p & e-— -B- )(") -(B+,-B+,)(.

Making use of (29), Eq. (28b) becomes

(26) (Q(~)&=L je+
fx'f

er the initia spin states and summing
over the Gnal ones, vre get for 2 (29b)

Hence Eq. (23) becomes

(Q(~))=t: j (2n)'

d'k ( p p' i'
e—so 8 s

k, &pk p'k)

—B-(B—pi—B-p x—B- ) (~') -(B+pi-B+p) ()

X +&(u-n') (~&')e

XexpL(X —1)E+E ]expf -,'iKDEj '27a.
an b a+andaIn this equation we mean, y +

1
C+=— )

i SE+(k) i SE (k)
(27b)

(27c)

resentation, we haveIn the momentum repres

dk 1
E E = E+(—k)E (k),

(2')' 2ko

Xexp
(2m)'

(30a)
k, kpk p'ki

ev. 76, 790 (1949).8 J. Schvringer, Phys. Rev.

ls in the last two exponents have gauge-
h t cot i Xi dture. Now t e erm

h th t lhotons, and t e o er
' t' o to hart of the ra ia ivedue to that par

Let us say that theinfrared divergence. egives rise to i
rg and momentumced carry away energphotons produced y

hich ives the upper imi ol it of integration.
d' t' correction integralto deal with ra ia ive

d lculations of Schwingerwe appea o1 t the lowest order ca cu a
'
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d replace the integral byand Newton an rep ll confine ourselves to the pIRD roblem.
r d the soft photon emission.

and X=O Hence th pro b-
re not intereste in e so

Ae due to the infra-photons is given from
and (33)] by

d'k 2 —k 2 ' —k

,)Iko 2pk —k' 2p'k —k'
(30b)

e au e invariant. Besi es it doeshich is chosen to be gaug

h
'

th bo~ et atin e
with renormalized quantities.

The integra s w

. Th can be evaluatedpto the hoton. T ey can
Spence functions. nexactly using

limit they are given by

e
'

&'(~.)=L j
~' d'k

( )2e—ik(z—x')

o &o-(27r)'

( )' d'k-

(2~)' & i ko

ex (34)
Ir. p p~ )P dok

pk pki ko

2!pp! ( m 2!pp'I zz'
m'

(27r)'

m' EE'—1n—+1n-
o2

and

2p —k 2p' —k )-'d'k

(2n-)' 2 k—k' 2p'k —k'i ko

7r- m 2

(2n.)'

Xexp
(2pr)' k i k,

(2m)'

et im osed the restriction that the total
ntum lost by in rare p o o

in the Fourier representa-he. This is done by introducing t e ourier
tion for 8(ho —Pk). Then (34) becomes

( )
— d*d dp

he d8$
2e-iky

o &o

Now consi er'd the emission integral,

(2')'

x d'k p p q

k, pk p'ki

n ( 'd'k

(2pr)' ~ o ko

d'k~ ( p p' y'

where., k, ) kpk p'ki

i(~~'—a &) (~—~')ei~ '

X d&d&'dy eiDey+f (y)

!x'!!x!

, (36a)i &pk p'ki k,
'

-(2~ '
o

ener momentum lost due to the
th fo tan emission process H, (32)cancelled by the radiative par .

electively

! e
—sl:(x—z')

(2m)' g, kp kpk p

I(-'"-1) (36b)

-'"o—1 = iky—(36b that as k~0, e
e inte ral is not divergen .'l l l hrais in the last exponentia a so canintegrals in e

36a becomesdivergent parts. Hence, a

(2m)'

'd'k(p p )
kp kpk pki

&(~o)=,L j
(2m)'

e'2(u—u' —~ ~) (~&')

b the energy resolution ofof the experi-A~o is nothing ut e e
'

of
ment from our definitions in Sec.

. 97 1162 (1955); Phys. Rev. 98,'R. G. Newton, Phys, Rev. 97,
1514 (1955).

X dxdx'dy eiAey+f (y)

p p'~ dk-

(2pr)' g, pk p'k) kp
(36c)
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Using (31a and b), we get

2I pp'I
F(we)= L 1 exp —— ln

(2pr)4 m2 i
EE' &r 2I pp'

I

Xln +—ln
(6 ep)' 2pr p/s'

(36d)

8(h« —gkp). Then instead of (37) we have

& eo v'&so cos'(8/2) l
(~«) =

I

—
I

dQ &,dQ) .&
E' 1—v' sin'(8/2))

d o """'+"""
I expl —-". I. (»)

2pr I ) & ~ )

1 (Ze')'
(ae) = (popo'+p. y'+pri')

dQ (2pr)P 2ms

da (0)

lp'I
e'P'~r&»dy

I)lpl (p —p' —~e)'
— ~) 2lpp'I

xexp ——
I
»

nz' )

Now the cross section for Coulomb scattering with
loss of energy and momentum Ae due to infrared
radiation is given by

0efinlllg

we have"

dn p el~ &OQO
yp

Xexp
(2or)'

21 pp'I
C=—ln

2

(
oepdsk p pI )2

(e ikppp 1—)
ko pk p'k)

(39a)

where

EE'
Xln +—ln

(&so)' 2pr
(37a)

C
=2pr F(C),

Aep
(39b)

po'= po —&so (37b) where

It is very desirable to have no reference to the direction
of total momentum Ae of the photons emitted. This
requires the evaluation of the four-dimensional integral
(J' . dy) in (37a) which does not seem possible to
evaluate analytically. This is the case with all the
processes we are treating in subsequent sections. One
can do the calculation ignoring the recoil e6ect. Foldy,
Ford, and Yennie" have shown that the dynamical
effects due to recoil are of order m'/ME (M being the
mass of the nuclear target) as compared to the complete
neglect of recoil. These effects become very important
in processes like e+e p e+e+y when one of the initial
electron is at rest. Besides the dynamical effects, one has
to take into account the interaction of the target elec-
tron with the electromagnetic field due to recoil.

In the next section we shall evaluate the cross section
ignoring the total momentum of the photons emitted
but taking into account the energy conservation. This
effectively means that we are neglecting the dynamical
effects of recoil but taking into account the kinematical
corrections due to the energy loss.

0. LOSS OF ENERGY IN COULOMB SCATTERING
DUE TO INFRARED EMISSION

We shall first do the calculation for energy loss only
due to the infra-photons. Instead of introducing a four
8-function restriction on (34), we shall introduce

F(C) =e &o/I'(1+C), 7=Euler's constant. (39c)

Hence (38) becomes

do "' C // 6« 'v 6«cos'(8/2) //do.

(& )= F(C)l1—
dD 6eo k E' 1—v' sin'(0/2) «dD pq

EE' 0,

Xexp ——,'C ln +xtC+—. (40)
(&so)'

Now suppose the energy resolution of the experiment
is BE)h«' then one has to integrate (40) over d «
from 0 to hK We shall do this assuming that AE is
very small so that pp= pp'. Then E=E', C is independ-
ent of Aep, and

hep v'heo cos'(8/2) )
~

~I=1.
E' 1—v' sin'(e/2) )

Hence we get

(gE) I I I F(C)e—
& / )el& + / & (41)

k dn ) &,dn)„

This expression was erst obtained by Yennie et al."
The examination of (41) reveals that as DE~0 the
cross section becomes zero, corroborating the con-

"D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys.
"L.L. Foldy, K. W. Ford, and D. R. Yennie, Phys. Rev. 113, (New York) 13, 379 (1961). Most of the references regarding

1147 (1959). infrared divergence are given in this paper.
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t with an apparatus ocross sec loetio n one would g

energy resolution E.AE.

2n 2I pp'I
in —

)I
.

m'
(44b)

7. MULTIPLE BREMSSTRAHLUNG

multi leconsider the production of m 'p

Th o loulomb scattering. e e
1 (33) bof Q(1).), using (30a), (31), an

&Q(~)&

e'~(u—p') (*—&')

) =0 and O'F(C')/(Eo AE—) is unity
n h the energy loss isn ex ression w ereog" p
E we integrate

~ ~

rve that po appearAE to Eo. We observe
rithm is a slowlyBecause the logan m

'-p d't t, thvarying function, w p a ewe ut po oa
error introduced beingein of the or er o
we get

Kod8k( p p& )2
e-' *—'

)' g„ko Epk p'k)
)' 2

ex
I

g-ik(z —x')

(2 )' o k kpk p'k)

ko Epk p'k)
Xexp

=LE et'(u —u') (&—&') e~E:ouo+f '(wo)

xo d3$
Xexp 1), ( )'

(2m)' g„ko
~t' 21 pp'I

Xexp ——
I

ln
m'

IEE' ~ 2Ipp I-
Xln +—ln

(6eo)' 2+ m'
where

f'bo)

'""'-&) (43)OW

k Ipk p'k)(2n.)' o p

as before (neglectingd' '
the same fashion as eProceeaing in

the recoil altogether), we get

da (0)

(x,z,)
dQ

0 (o)

(1).,Ep()
dQ

=
I

—
I

F(O' )F(O)
&dQ).,

-I C+—I, (45 )
1 2

Xexp C'In —Cln
AB

F O' =e ~c' &(&+C'), y=Euler's constan .

ives the crossthe coefficient of X giThe extraction o
. As an approximationr rs- hoton production. s an

' =1.Th (45b) bwe put F(C')=F(C' = . en

do (0)

(),Eo()
dQ

=I —
I F(o)

&dQ).,

—C ln —
I
C+—

I
(46a)Xexp C'ln —Cln

hE

n- hoton production is given byThe cross section for n-p o on

do Eo)"
k dQ )„e!(dQ), ~ hE)

F(O)I —
I

O'F (C') pd~~

E0—dE kdQ, g

od'k) p p'~
x

(2m)' z~ ko kpk p'k)

EE' 1! 2a~-—-'C ln +-I C+—I,Xexp ——, n

O'F (C') ]do ~
F(o)

I

—
I

EdQ, )

Xexp C'ln —-', C 1.8 '

(44a)

— C — . (46b)Xexp —C ln +— C
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bout the work done before' are in
forder. The expon ential factor in i
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8. CONTMBUTION DUE TO THE FIRST
HARD-PHOTON TERM

So far, we have calculated the relevant physical
quantities under the assumption that the photons
emitted are soft. The "proof" we gave in the Sec. 2

is inadequate. Hence, let us examine by taking into
account one hard-photon term. Then instead of (24a)
and (24b) we have to take

do O& Sn do)
(li,Ep)=C j

dQ vrF' dQi. i

C' lE
X1n—Ep' — Ep' l, (50)

m C'+1 i

We shall consider (i) first. With (49a) the integral in

(48a) gives rise to

G = —(+ —+ —in the above expression}.

G++ G„si+eyA cG„+s,+ C' is very small; for 1-Sev electrons and an energy loss
+Gyps'+eyAsGp+eyA eGgps~ of 20 Mev, C'&0.06. Hence the second term can be

+G~+ '+e'YA Go+e'YAI+~+ }& (4») neglected. Hence (50) combined with (44a) gives for

( 7 )
Ep(E/2

O'F(C')
(li,Ep) = X F(C)

dQ Ep—hE

d0 ("

Ep J E,' 1 t 2ni-
Xexp C'ln —-', Cln +—

l
C+—

l~z (~z) 4& ~ i

The first terms in G~ and G combine to give, as
before, the expression (46). The rest of the terms dQ
combine to give dpi'&/dQ(X, Ep(). In this expression
we shall assume that the total energy loss including
the hard photon is &Ep. Then, proceeding as before,
we get the analog of (44a):

do (')

(X,E,)+ (X,E,)
dQ dQ

O'F(C') t do )
F(O')l —

I

Ep—AE EdQi, i

EpF. '1( 2n~
Xexp O'In —Cln +—

l
C+—

l

~F. ~Z 4& ~i

Kp ( E 1—o'

dkp R'(kp)
l

. (48a)
Ep—kp

where

Xl1+~—R&(Eo) l, (»a)
C'

Here LEp/(Ep —kp) J e' comes from the integration
(do )

R&(Ep) =
l

—
l

R&'(Ep).
kdQi. i

(51b)

dy p'( o) o+f'( o)
) 48b

As before, in order to get an expression where the
energy loss is less than or equal to Eo(F/2, we have

where f (yo) is given by (43); ko is the energy of the to integrate over Eo from AF. to Ep. This operation
hard photon. R (kp) is given by yields Lafter approximations similar to (46a)j

(do i
R'(ko) = ko dQI —

I (k),
I dQ&,

do
(48c) —(li,Ep ()

dQ

where (do/dQ)i is the cross section for single brems-
strahlung. The integration over the angle of the photon
has been achieved by Racah. "We shall have his results
for two specific eases:

(i) For kp&E/2,

(do )=
I

—
l

F(C)F(C')
&dQi. i

Z 1( 2n) Ep
Xexp —C ln +-l C+—l+C' ln

~z 4I ~i ~z
Snkp (do ) F.

R&'(kp) =
l

—
l

ln—,
mZ' &dQi, i m

(ii) For kp)E/2,

2nkp (do ) F 1
R)'(ko) =

l

—
l

ln-
kdQi. i m (R—kp)'

"G. Racah, Nuovo cimento 11, 461 (1934).

(49a)

(49b)

4n Ep' F-)
xl1+l — »—l. (52)

~ F' mi

For 1-Bev electrons and Ep ——E/2 we get that the
second term is smaller than the first by a factor of
thirty. Hence, we have about 3% error by neglecting
the second term. Hence, for Ep(E/2, the soft-photon
term gives the main contribution. With this term, the
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production cross section for e-photon production is

(d~ ) 1 Ko)" '
I

—(X,Ko&) (
= I'(C—) Cln

kdD 2 „e! aEi

E 1( 2n)-
Xexp —C ln +—

~
C+—

~

~E

E 40. Ep'
X C ln +n —ln—. (53)

E' m

We shall now consider the case where Kp&E~/2.
From the expression (48a) we infer, as 0&C'&1, that
the integral has a major contribution coming from
Ep=kp. Hence, the expansion about the point Ep will

provide an approximate evaluation of (48a) for
Ep&E/2. ITp to the second term in Taylor series we
have

Hence for Kp&E/2 the soft-photon part alone does
not account for the loss or the production; higher
hard-photon terms come into play.

In the above treatment we have extended the range
of integration of the soft-photon energy from 0 to Ep
where Kp&E/2. This is not valid because in our con-
struction of G ' and G " we have assumed that the
energy and momentum of soft photons are negligible
as compared to that of the electron. One could remove
this restriction provided one takes into account all the
neglected terms in the series. The contribution due to
these neglected terms is very small when Ep&E/2.
When Kp&E/2, there is no distinction between hard
and soft photons as one has to take into account these
terms. Hence, two things happen when Ep&E/2: (i)
The hard-photon term makes significant contribution;
(ii) there is no distinction between hard and soft
photons. This makes the expansion in terms of hard
and soft photons lose its meaning for Ep&E/2.

2n E |'do Ep
E)'(ko) =—»—

~

— + (ko—Ko)
mEdn, i (E—Ko)'

9. RADIATIVE CORRECTIONS AND DISCUSSION

In this section we shall brieRy discuss (i) the con-
struction of G ' and G ", (ii) the estimation of radiative
corrections, and (iii) the comparison of the results
derived before in the literature with ours.

In our construction of G ' and G " we have ignored
the spin-dependent terms entirely. Though these
terms do not contribute to the energy loss or emission
process, their contribution to the radiative corrections
is significant. Schwinger' has calculated the radiative
correction to first order. From that we infer that the
contribution of the (pu)(yk) term is logarithmic. By
looking at the second-order radiative correction calcu-
lations by Newton, ' one feels heuristically that in
general this logarithmic term should appear in the
exponent along with the infrared part of the radiative
correction; the same might be true of the logarithmic
contribution due to vacuum polarization which is
entirely due to the determinant in Eq. (3.36) and
which has been put equal to unity in our approximation.
Because of the logarithmic nature of these terms, the
major part of the radiative corrections to the particular
process of Coulomb scattering comes from this ex-
ponential structure. Hence e ' in Schwinger's work'
would give most of the radiative corrections to Coulomb
scattering. A systematic method of evaluating the
radiative correction using its infrared part has been
given by Yennie et at."

Some remarks about the work done before are in
order. Yennie et al." have obtained an expression
similar to Eq. (12) by using classical arguments com-
bined with Feynman diagrams. They seem to have
superimposed infrared photons not on the scattering
amplitude but on the probability, itself, thus getting
an expression which is the sum of different hard-photon
cross sections corrected for infrared photon super-
position. Even from their most general treatment one

2Ep
X +—,(54)

—(E—ko)' (E—Eo)'-

(da (Ko—ko) E+Ko
=Z)(Ko) ~—

kdQ, g Ep Ji —Ep
Now

da da "& da &" (da."')
+ +i

dQ dD dQ @~p 5 dQ i )@~p
(55)

Using the above expression, integration limits of kp in
2nd term being from 0 to E/2 and integration limits in
the last term being from E/2 to Kp, we get

da C'F (C') da.)—(X,K,) =— F(C) —
i

dQ Ko hE dQ~ .i—
Ep

Xexp C' ln ——,'C ln +— C+-
~E (~E)' 4

(Eo E/2)—
+ R&(Ep), (56)

C'

da/dQ(X, &Ko) is given by integration of Kp from AE
to Ep. Upon doing the integrations approximately, one
finds that the last two terms give rise to a contribution
between 2C and 3.5C times the first term when
Ep ——0.75E and, hence, the error in neglecting the
hard-photon term is between 20 and 35%, with C=0.1
which is the case for 1-Bev electrons. Taking higher
terms in the Taylor series does not help the situation.

(Kp E E+Kp)
X 1+8)(Ko)i—Ep

kC' 2 E Kol—
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cannot get (37a) or (40); one could get (41). Because
of the reasons mentioned above, their treatment of
infrared divergence is deficient, in addition to their
nonrigorous treatment of overlapping divergence.

10. MULTIPLE PHOTON PRODUCTION
IN PAIR ANNIHILATION

This problem can be given as general a treatment
as the Coulomb scattering. Here, also, using the result
for three-photon production in pair annihilation cal-
culated by Joseph, ' one can show that if the difference
between the initial energy and the energy of the two
primary photons is less than half the total energy, the
"loss" is primarily due to the soft photons. But we
shall not go into details. We shall just give the deriva-
tion for the cross section of multiple photon production
when the energy loss is less than half the total energy
and hence is mainly due to soft photons.

The expectation value of the generating function
Q(X) in the case of pair annihilation is given by

it should be noticed that this differentiation gives rise
to radiative corrections when operating on e"~D~

)without vacuum polarization because we have put
the determinant equal to unity in Eq. (4) in our
approximation]. In our treatment of the problem here,
we shall neglect these and carry out the cross-section
calculation and include the major part of this eA'ect in
the exponential as we did in the case of Coulomb
scattering )see after Eq. (30a) and also Sec. 9].

We shall work in the center-of-mass system of the
electron and positron. During the calculation we
assume that the total momentum of the soft photons,
K, is equal to zero. This is a physically good assump-
tion for high-energy electrons and positrons. Proceed-
ing as before, the generator for the cross section when
the energy loss is Eo, which is less than half the total
energy of the initial system, is given by

C'F (C')
a/, ,E,) =Z'— F(C),

Eo—~&

&Q(~))= E~..v.G-v.~,'](~ .v.G-~.~,]
Xe ( x 1)K+sK e$4K—DK (5-7)

By the considerations of Secs. 2 and 3 we will calculate
the contributions to Q(X) with two hard photons.
Then 6++ and 6 are given by

where
4m+' 2E—Eo

02= ln
(2A"—Eo)' m

(60b)

E E 1( 2n~-
Xexp C'ln —Cln +—

~
C+—~, (60a,)

~Z ~Z 4k ~i'

G++ ——G~~s'+eyAK+Gp+eyAK+Gg+s"+, (58a)

G = Gg s—' eyAK Go eyAH Gg s" (58b. )

Using these, we have

L4+nvoG ~—4 97LO n~oG+-+vo4+p-]

)lP~p'rp (GA+ ~+erAK+Go+erAK+G~+ "+)re ~ ]
+g „yo(Gg "-eyAK Go eVAK G~ '" )Vog+,]

(59a)

e dp m)(dp m

k(2m)4 (24r)' pol k(2m)' pp'

)( g '&*' ~) (&+&')e'(~1'+~2'& ~'g'(A'1+~» ~dydee'

m —y(p' —k, ')
X rz+„ya (ka') ya (k.')

m'+ (p' —k, ')'

m —y(p+k2)
Xu „u „pa+(k~) pa+(k )I+,

m'+ (p+ ko)'

Here a2 is just the cross section for the production of
two photons in pair annihilation when the total avail-
able energy is 2E—Eo. Integrating over Eo from AE to
Eo to get the generator with the loss of energy less
than Eo, we have

Pa, ,E )
xn' 2E

ln F(C)F(C')
E' m

E F. 1( 2n
Xexp C'ln —Cln +—

~

C+—,(61)
~Z ~Z 4k

after having neglected Eo inside the logarithmic term
and ignoring 0.75 as compared to 1/C, C being approxi-
mately 0.06 for 1-Bev electrons. Hence the cross section
for the production of n photons out of which (e—2)
are soft photons with total energy Eo&E is given by

2F. F(C) E~ -'
0„(Ep&)=n'—ln Cln

J~' m (e—2)! DF-)

Xe& ~' ~&'*'& ' +~' +~&&'&dkgd—kpdkg'dkp' . (59b)

In Eq. (59b) it is understood that the a's on the line
correspond to the hard photons and the operation of
variational differentiation has to be carried out on the
hard part of the exponential, e + ~- and e' ~ Besides,

E 1 2o.
Xexp —C ln +— C+— . (62)

4

The remarks made at the end of Sec. 7 regarding the
results derived in the literature (Gupta' and Joseph' )
hold in the case of pair annihilation also.
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0(X)=X'"0 dye"' "+~'~"' exp~ X I ~expj — I
~,

(27r)'

where

f'(y)=exp X
0

e(X)=+1, X)0
I(g

—i7cy 1)
)«0.

0 is the modified cross section of the primary process

11. GENERALIZATION AND CONCLUSION

In the foregoing treatment of multiple photon
production, we have calculated the cross section for
Coulomb scattering and pair annihilation, in the
course of which some approximations have been made.
We infer from the examination of these approximations
(see last paragraph of Sec. 8) that the treatment is
valid only when the energy loss is less than half the
total initial energy of the system, all the correction
terms being small. When the energy loss is greater than
half the total initial energy, the corrections are ao
longer small and exact evaluation of them is essential.
With these limitations in mind, the following generali-
zation appears plausible.

The contribution to the multiple-photon-production
cross section in any primary process in quantum
electrodynamics in the range of high energy is pre-
dominantly due to the soft photons if the energy lost
by the primary process is less than half the initial
energy. More specifically, if there are m photons in
the final state of the primary process and s electron-
positron momenta involved (both anal and initial),
the generator for the production cross section is given by

due to the loss of energy momentum; E= (K,EO) is the
total soft-photon energy momentum or the energy
momentum lost by the primary process and is less than
half the initial total energy.

If A=i, 0(1) gives the cross section for the loss of
energy due to the emission of soft photons which is
predominant when Eo is less than half the total initial
energy.

Though we have a method of treating multiple
production with greater ease, we have had to make
simplifying assumptions, the effect of some of which is
hard to estimate when the energy loss is larger than
half the total initial energy of the system. An improved
treatment requires exact or better-approximated expres-
sions for G++ and G ' than have been used before,
Besides, the effect of vacuum polarization has to be
included, which means the evaluation of the expressions
taking C(A+) into account. Because of these reasons
the foregoing treatment is not as complete as one would
desire it to be.
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