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separately: a partial integration gives
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Since hP((1 we have replaced tan(-', Ad) by stan, P in the
last integrand.

Introducing the new variable t= tang and noting that

Since 6&f&«1 the contribution to the integral comes only
from a small region around t= 1. Thus we obtain, with
1 t=yh—P and neglecting terms of relative order Ad,
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which is the result used in Eq. (26) in the text. The same

ln tanxdx= — dt= —y—ln~ 1—ts~ rft metho d may be used to obtain the in«gral Ie given in
cos2x (1—t')' 2 Ct 1 t' — Eq. (27).
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An attempt is made to 6nd an analog, for the quantum mechanics of non-Euclidean space-time, to the
classification of representations of the Lorentz group. The difhculty of obtaining any such classification in
terms of curvilinear coordinates is pointed out, and the use of a higher-dimensional set of pseudo-Euclidean
coordinates is chosen as an alternative mode of attack. A class of representations then follows easily. On the
basis of an intuitive approximation it is found that spectra of elementary particles, with conservation of
quantities of the nature of isotopic spin, seem to arise from these representations.

I. INTRODUCTION

~CONSIDERATIONS of covariance have often been~ of value to the development of a theory' '; perhaps
this will also be the case for the generalization of
quantum mechanics to allow for the curvature of space.
It is, of course, true that such generalizations are always
expressed in covariant language. However, there has
been no attempt to enumerate the modes of covariance
allowed to a physical quantity —that is, the set of
representations of the group of coordinate transforma-
tions —such as has been done for the case of Minkowski
space, where this group is the I,orentz group. ' The pur-

*This work has been supported by the Air Force Ofhce of
Scienti6c Research.

f Now at Nucleonics Division, U. S. Naval Research Labora-
tory, Washington 25, D. C.

A. Einstein, The Meaning of Relativity (Princeton University
Press, Princeton, New Jersey, 1950).' E. P. Wigner, Nuovo cimento 3, 517 (1956).' E. P. Wigner, Ann. Math. 40, 149 (1939};Iu. M. Shirokov,
JETP 6, 919, 929 (1958l.

pose of the present article is to consider an approach
which may shed light on this problem, and at the same
time does suggest a possible origin for the observed
multiplet structure of the elementary particle spectrum.

The following considerations are based on the familiar
assumption:

Any physical system (in particular, an elementary
particle) can be representated by a wave function be-
longing to some irreducible representation of the
group of all coordinate transformations.

This is a combination of the quantum-mechanical as-
sumption that systems may be represented by wave
functions, with the requirement that a system describa-
ble in one coordinate system be describable also in any
other coordinate system'; the "Schrodinger picture" is

4 The requirement that the group of wave function transforma-
tions be a "representation" of the group of coordinate trans-
formations means essentially that if wave function transformations
V'1, V~, and V3 correspond to coordinate transformations T1, T2,
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being assumed here. The reader is referred to reference
2 for a fuller discussion of these considerations, for the
case of Qat space-time and the I.orentz group. In our
case, of course, space-time is not Qat, and the coordinate
systems must be chosen accordingly. It is usually tacitly
assumed that the appropriate coordinate systems are
those consisting of four curvilinear coordinates. How-
ever, this choice implies a transformation group with an
infinite number of parameterss (as compared to the ten
of the Lorentz group) —a quite unwieldly entity. A less
usual but much more amenable choice (namely, pseudo-
Euclidean "hypercoordinates") will be considered in
Sec. III of this paper; and in Sec. IV the results so ob-
tained will be compared with conventional theory by
means of an intuitive approximation. But first we shall
brieQy review the situation for curvilinear coordinates,
in order to emphasize the difficulties inherent in that
approach.

II. REPRESENTATIONS WITH CURVILINEAR
COORDINATES

To avoid subtle considerations in the following dis-
cussion, it will be assumed that wave functions are
always multi-component functions of the coordinates
transforming according to f(x) —+ A,P(f 'x) under the
coordinate transformation x —+ fx, where A, is a finite-
dimensional matrix. Then P(a) —+ A,iJ (a) under the set
ff ) of all transformations leaving a fixed (f,a=a);
thus the set (A ) must be a representation of the set
ff-).

The classical representations known as tensor fields
(i.e. scalar fields, vector fields, second-rank-tensor fields,
and so forth) could be discovered in the following
fashion. The Jacobian matrices ( ~~Bf,/Bx(~(, } form
a representation (the "vector" representation) of
the set ff,}, since kx= fgx implies that (~Bx"/Bx~~
= [(Bx"/Bx'][ )]Bx'/Bx([ where x"=—hx, x'=—gx, and x"
=fx'. Ke obtain the nth rank (contravariant) tensor
representation by taking the direct product of this
representation with itself e times:

F' & "&(x')= (Bx' /Bx&) (Bx'&/Bx")

&& (Bx'~/Bx~)F "" ~(j 'x') (I)—
where Ii carries e indices, Examples of such tensor fields
are provided by the photon field, 2& or Ii I'".

Such fields cannot describe the electron since they
always correspond to integral spin (where this last
phrase denotes merely a particular variety of behavior
under spatial rotations). In the physics of pat space-
time, the matrices ((Bf/Bxj~= [)a„,)[ are required—to be
independent of x and to satisfy the relation ap Gp, p '5 p,

and T3, respectively, for which T&T2=T3, then V'&V'2 ——13. A
representation is "irreducible" if the group of transformations
leaves no vector subspace invariant; this condition must evidently
be satisfied for the set of vectors associated with one physical
system viewed from different coordinate systems.

5 For this choice, the new coordinates are arbitrary functions of
the old; the coeKcients of a power series expansion constitute such
an infinite set of parameters.

such matrices possess a spin one-half representation (U)
(with the Pauli spin matrices as generators), so that
wave functions transforming in the fashion P(x) —+

UP (f 'x) can describe electrons. However, in the case of
curved space-time, there is no restriction on the matrices

~~Bf /Bx))„other than that they be real and non-
singular; and the group of such matrices has eo double-
valued finite-dimensional representations. '~ Thus in
curved space-time the matrices {A,} for the electron
carrot be chosen to form a representation of the ma-
trices

)~
Bf,/Bx)~(, . But this does not rule out the existence

of suitable represents, tions of the set (f,} (in fact, such
representations can be related to the wave functions
used in conventional curved-space quantum theory).
These representations owe their existence to the fact
that with each point of space-time (coordinates x") we

may associate the tangent flat space (coordinates ys), so
oriented, for example, that the tangent to the x' coordi-
nate line lies along the y' axis, the tangent to the x'
coordinate line lies in the y' —y' plane, etc. Any trans-
formation of the curvilinear coordinates then induces,
at each point of space-time, a rotation of the tangent Qat
space. If the matrices (A, ) are chosen to form a repre-
sentation of the set of these (Lorentz) rotations of the
tangent space at the point a, then they will also form a
representation of the set (f,}'—and, in fact, of the whole
set (f}.Thus the transformations f(x)~A,P(f ix) will

indeed form a representation of the set (f}.In particu-
lar, we can choose the matrices A, to belong to the spin
one-half representation of these "local Lorentz rota-
tions, " so that f can represent the electron.

In this way one finds representations of two sorts:
tensor wave functions, presumably applicable to the
photon; and spinor wave functions, quite possibly ap-
propriate to the electron. The question naturally arises
of whether there may be other representations of physi-
cal interest. In fact, the above consideration of spinor
fields might encourage such a thought, for it is con-
ceivable that one could specify the orientation of higher-
dimensional "tangent" Qat spaces at each point oI
space-time. This would mean that wave functions could
belong to representations of rotations in spaces of di-
mension greater than four, and we would have the very
interesting situation of multiplets of spin one-half
particles.

Considering the fairly complex known multiplet struc-
ture of elementary particles and the possibility of a
connection with coordinate covariance, there can be no
doubt that the determination of all representations of

6 This group splits into two commuting subgroups, the group of
uniform dilatations at the point a and the group of transformations
having determinant +1.The latter is locally, except for conditions
of reality, the group 0+(6) of proper rotations in six-dimensional
Euclidean space. ' Although 0+(6) has both single- and double-
valued 6nite-dimensional representations, ~~8fs/Bx~~g itself corre-
sponds to a double-valued representation.

~E. B. Dynkin, Amer. Math. Soc. Transl. Series 2, 6, 319 fF

(1957).
'But not of the set (~~Of, /Bx~l ), as each of those matrices can

correspond to a continuous infinity of the matrices A+.
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general (curvilinear) coordinate transformations would
be of interest. But, on the other hand, the difficulty of
solution of the much simpler problem of finding repre-
sentations of the I orentz group suggests that this may
be an insoluble problem. In this situation it seems justi-
6able to abandon a customary assumption, in order to
6nd a solvable problem which may be related to physics.
This assumption is that the coordinate systems most
appropriate for the description of physics are those with
the minimum possible number (four) of coordinates;
when it is dropped, one is naturally led to the approach
of the next section: the use of pseudo-Euclidean
"hypercoordinates. "

III. REPRESENTATIONS WITH PSEUDO-
EUCLIDEAN COORDINATES

Attention has recently been called to the mathe-
matical theorem which states that any four-dimensional
Riemannian space can be locally embedded in a pseudo-
Euclidean space of dimension ten or less. ' To put it
another way, we can introduce a (redundant) set of
coordinates 2' into space-time such that

sume that also for 0+(ts) only the lowest-dimensional

representations need be considered. For the groups con-
sidered here (et& 10), the two representations of lowest
dimension (next to the scalar) are again the "spinor"
and "vector" representations. These are mathematically
distinguished as the "elementary" representations (forI)5), and the spinor is further distinguished by the
fact that any representation arises from repeated direct
products of the spinor with itself. The vectors of the
vector representation (transforming like the coordinates)
have, of course, e components. The dimensions of the
spinor representations can be expressed as 2; if e is odd,
there is one spinor representation and m = —,

' (e—1); if I
is even, there are two, and rrt= rs (n —2)."

As for e=3 or 4, so in general it is convenient to define

generators of rotations, or "angular momentum" ma-

trices, M„„. The spinor representations result from
setting

where
{I'„,I'„)=25„,.

n

ds'= P e;(ds')' (2)
The F matrices can, in turn, be easily constructed from
Pauli matrices, according to some scheme such as

(where e;=&1 and et&10), at least in some finite region
surrounding any given point. The possibility that all of
space-time cannot be so embedded, or the consequences
if it cannot, will not be considered here. "The legitimacy
of choosing this particular set of coordinate systems out
of the collection of all possible sets of curvilinear
coordinates rests on the same ground as does the choice
of Minkowski coordinates in Rat space; namely, such a
set is (in principle) physically distinguishable, through
comparison of the physically signi6cant quantity ds'
with its value as given by (2)."

As is obvious, the different possible coordinate sys-
tems that can be introduced satisfying (2) correspond
precisely to rotations and translations in the pseudo-
Euclidean space E . Thus wave functions will be multi-
component functions in 8, transforming as lt (x) ~
Alt (t 'x) where the (constant) matrices (A} belong to
some representation of the group 0+(es) of proper rota-
tions in I-dimensional Euclidean space (temporarily
neglecting complications due to the indefinite metric).
As for three-dimensional rotations all elementary par-
ticles seem to correspond to representations of low
dimension (scalar, spinor, and vector), so we shall as-

' C. Fronsdal, Nuovo chnento 18, 988 (1959);L. P. Eisenhart~
Reemalreean Geometry (Princeton University Press, Princeton&
New Jersey, 1926), p. 187 8."However, it may be noted that the Schwarzschild solution can
be entirely embedded in a six-dimensional pseudo-Euclidean
space. '"It should be noted that the above-mentioned difhculties in
finding representations of curvilinear-coordinate transformations
do not depend on the nonRatness of space-time; they would arise
for Bat space-time if we did not restrict consideration to Minkowski
coordinate systems, by the condition that ds'=dr' —dt'.

Fg=oyII ~ ~ .
)

I"2= 0281818
I'3 ——03o. j.I .
I'4= (73L3o-2g)I . ~, etc.

For e odd, the resulting representation of 0+(n) is
irreducible; for m even, it is the direct sum of the two
spinor representations. Finally, it can easily be proved
from the commutation relations that the quantity
PtI'„ifr transforms according to the vector representation.

So far in the discussion of wave functions, we have
made no mention of the space-time surface R4. However,
there must be some feature of the theory corresponding
to the fact that physical observations are always re-
stricted to R4. The simplest assumption is that the wave
functions themselves are so restricted; and we shall
suppose this restriction to be "smooth. " Thus, wave
functions will be assumed to be functions de6ned on E
which vanish at any appreciable distance from R4, but
possess all necessary derivatives, including those in
directions perpendicular to R4. We might describe this
by saying that particles move in a sort of "potential
trough" centered about the surface Re (note also the
last paragraph of Sec. IV). Since the shape of R4 is de-
termined by the distribution of matter throughout the
universe, such a "cosmic potential" is evidently to be
interpreted as a form of interaction with matter at large
distances.

Without investigating. the nature of such a "cosmic

'2The reader will 6nd in reference 7 a general, though not
elementary, account of the representations of these groups,
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potential, "nor even whether this picture has any sense,
let us use it as a model to suggest an approximation by
which the present discussion can be brought into com-
parison with current physical knowledge. According to
the above picture, laboratory experiments take place in
a sort of external fieM due to the presence of distant
matter. %ewish to And those coordinate transformations
under which laboratory experiments demonstrate co-
variance; these will be those which leave this external
field invariant. According to our "potential trough"
picture, they must at least preserve R4. However, we do
not expect R4 to possess any exact symmetries; but this
does not preclude approximate symmetries, some of
which may be obeyed to a high degree of accuracy by
laboratory experiments. The simplest approximation is
to assume that R4 can be replaced by its tangent
hyperplane T4 and that laboratory experiments will
show covariance under those transformations which
preserve T4. Although this rather violent approximation
may seem almost equivalent to the usual assumption of
a four-dimensional pseudo-Fuclidean space from the
outset, " the geometry of R4 still enters the picture
through its determination of the dimension e of our
pseudo-Euclidean embedding space. This approximation
will be considered in the next section.

IV. THE HYPERPLANE APPROXIMATION

In this section we shall suppose (as has been argued in
the preceding section) that the physics of elementary
particles shows symmetry under those transformations
of coordinates (in E„)which preserve the hyperplane T4
tangent to the space-time hypersurface R4. This group
of transformations is the product of the group of rota-
tions and translations within T4 with the group of
rotations leaving T4 point-wise fixed. The first of these
is evidently to be (locally) identified with Lorentz
transformations, and the second, with isospace rotations
(i.e., those related to such internal symmetries as con-
servation of isotopic spin and strangeness). It is
convenient for the following to introduce pseudo-
Euclidean coordinates x& (p=1 to 4) within T4, and
y"= x&+' (p= 1 to n 4) with—in the space orthogonal to
it; then Lorentz transformations act on the coordinates
x&, and isospace rotations on the coordinates y&.

An interesting feature of the elementary representa-
tions is the manner in which they split up under the
reduced symmetry group of this hyperplane approxima-
tion. According to the prescriptions (3) and (4), it is
possible to choose the spinor representation so that the
erst four F matrices are of the form F„=y„II
where the y„are Dirac matrices; in this case the spinors

'3Actually, it may fail significantly of being as good an ap-
proximation. For example, a two-dimensional surface may have
corrugations in a region where the metric is Euclidean; at any
point in such a region, the tangent plane is a very poor approxima-
tion. However, this objection can be removed by extending the
considerations of the next section (relating to approximation by
T4) to the case that T4 is replaced by the best pseudo-Euclidean
approximation to R4 (unpublished; copies on request).

are reducible with respect to Lorentz rotations, of
course, but irreducible with respect to isospace rotations
(as can be seen by comparing the dimensions given
above). The vector representation, on the other hand,
can be chosen so that the first four components trans-
form as a space-time vector/isospace scalar, and the
last I—4 components transform as an isospace vector/
space-time scalar.

These remarks will be illustrated by a simple example,
the case of e= 7."For this we shall choose

and
I'„=y„I for y=1 to 4;

I'„=yg0„4 for p, =5 to 7.

The generators M„„ofLorentz rotations of the spinor
components are then the usual ones (but for a factor of
I), while the generators of isospace rotations are given

by N= l e. Thus we have an isotopic doublet of Dirac
particles, similar to the nucleon. The simplest inter-
action term that can be written down involving spinor
and vector wave functions is then

6"ruA»-g it'v A'&u+ g24"v5~4" ~ (e)

"The simplest possible case would be n=6, according to refer-
ence 9. In this case the structure of "isospace" rotations, in a space
of dimension n —4=2, is trivial: irreducible representations are
simply of the form exp(in3II) with M any number.

"See, e.g., A. Salam and J. C. Ward, Nuovo cimento 20, 419
(1961), and papers cited there.

' I. Tiomno, Nuovo cimento 6, 69 (1957); R. E. Behrends,
Nuovo cimento 11, 424 (1959);D. C. Peaslee, Phys. Rev. 117,873
(1960).

(if one is allowed suggestive notation), where P is the
spinor wave function, and B„and ~ constitute the first
four and last three components, respectively, of the
vector wave function P„. Full seven-dimensional in-

variance results if gi=g2, and invariance under the
Lorentz and isospace groups results in any case.

Larger values of e will, of course, result in more
complicated multiplet structures. It might be worth
noting that 0+(10) contains as mutually commuting
subgroups the Lorentz group and the group SU(3),
currently in vogue in connection with the Sakata
model. ' On the other hand, the upper limit of ten on the
dimension precludes (by one dimension) the inclusion of
the seven-dimensional isospace (with its 8 "baryons"
and 7 "mesons, "here accompanied by the 8„field) con-
sidered by several authors. "However, since fermions

(physically) and spinors (mathematically) seem some-
what more basic than mesons and vectors, it may be
worth noting in passing that 0+(10) has two sixteen-
dimensional spinor representations (the F representa-
tion being of dimension 32) which might be identified
with the 32-component baryon, in a fashion analogous
to the identification of the two two-dimensional repre-
sentations of the Lorentz group with the four-com-
ponent Dirac electron; the vector representation with
six isospace components cannot then, of course, be
identified with the seven familiar mesons.
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The discussion above has been given for the simplest
case of a positive de6nite metric. Actually, not all of the
numbers e, in (2) can be of the same sign, ' so some
further remarks must be added. Suppose that the ~; are
positive except for e, eg, e„which are negative. The
introduction of imaginary coordinates s"='is', s'~= is~,
~, s"=is' produces the formal appearance of a posi-
tive definite metric, to the effect that the above list of
representations can be carried over. The principal change
is that if P —+ UP, Pt &fr

—Ut under a (pseudo-)rotation,
we no longer have U~ U= 1, since some of the parameters
/the n„,'s in the expression U= exp(i P n„„M„„)j are
imaginary. But it is easily checked that p I',I'b I', —+

ftF,Fb .F,U ', so that the scalar and vector quanti-
ties are now ptF 1 b I,.p and ptl', I b I',F„f, re-
spectively.

So far, no specie. c requirements have been placed on
the functional dependence of the wave functions. In the
absence of any external interactions whatever, we would
expect that P B„„P~const P, since P 8» is an oper-
ator commuting with all the generators (M„, and 8„)of
the group of rotations and translations under which P
is to be irreducible. So a plausible assumption in the
presence of interactions is that

where F is some function (of the coordinates and, pos-
sibly, momenta) which determines the interaction with
distant matter. Now suppose we can write F= f(x,B,)
+g(y, 8„) in the tangent-space approximation; then we
consider separated solutions:

Correspondence with conventional theory now requires

f to be (very nearly) constant so that the first of these
equations becomes the Klein-Gordon equation, and we
have

The second of Eqs. (9) has the form of an eigenvalue
equation; except for the number of dimensions, it is the
time-independent Schrodinger equation for a particle

subject to a potential &~g'(y, 8„).&or appropriate be-
havior of g'(y g„) the eigenvalues will be discrete, and
have a spacing given roughly by 8m &(1, where / is a
dimension characteristic of the function g'(y, 8„).T»s
suggests that the different mass states of elementary
particles (or of nuclei) may be pictured as eigenstates of

oscillation in a sort of potential well (of radius l) that
restricts wave functions to a narrow region of the space
E surrounding the space-time hypersurface E4.'7 Such
a restriction is certainly compatible with the physical
requirement that particles must never be "found" far
from ~4,' and the maximum deviation, of the order of an

elementary-particle Compton wavelength, seems rea-

sonable. Unfortunately, practically nothing can be said

the resulting mass spectrum without some

knowledge of g'(y, cl„).

V. CONCLUSIo N

The principal idea, that has been presented is that the

possibility of embedding space-time in a higher-dimen-

sional pseudo-Euclidean space overs an attack on the

problem of finding all representations of the group of

coordinate transformations in nonAat space-time. This
problem may well be of significance for particle physics,
as it is certainly not obvious that the conventional as-

sumption of a pseudo-Euclidean space-time from the
outset is justified. On the other hand, it is inte~e~t~ng

that this approach implies the existence of a»sospace
thus suggesting a fundamental connection between the

macroscopic structure of space-time and interna»ym-
metries of elementary particles. And although no pre-

dictions are possible without the development of a m«h
more detailed theory, there is the possibility of a new

origin for particle mass; thus (for example), particle
interactions could show a higher degree of symmetry
than is allowed by the usual assumption that they are
responsible for the baryonic mass differences.

ACKNOWLEDGMENTS

I should like to thank Professor F. J. Belinfan« f»
offering several suggestions and corrections during the
earlier stages of the development of this pape~, and
Dr. A. H. Aitken for a critical reading at a later stage.

"This is consistent with the "potential trough" picture men-
tioned in Sec. III as motivation for the present hyperplane
approximation.


