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Measurement of Linear Photon Polarization by Pair Production*
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The cross section for production of electron positron pairs by
linearly polarized high energy photons is calculated for the case in
which the pair particles and the photon are nearly coplanar. The
cross section is integrated over the polar angles 01 and 82 between
the momenta of the positron and the photon, and the momenta of
the electron and the photon, respectively, and over a small range2' of the azimuthal angle q = p& —q ~ between the pair particles
about y=x. The asymmetry ratio, defined as the ratio of the
number of pairs emitted parallel to the photon polarization plane
to the number of pairs emitted perpendicular to this plane, is
plotted as a function of Ap for the cases of no screening and com-
plete screening. It is shown that for very small 6@the cross section
is a very rapidly varying function of Ap, such that the pairs
emitted within the angular region 22 @ are predominantly perpen-

dicular to the polarization plane for ng(5&0 Ln&0 = 1.23 (Zt/111)
for complete screening, for example7 and predominantly parallel
to this plane for A@&6@0.

A discussion and comparison of several possible experimental
methods for measuring the asymmetry ratio is given, viz. , ob-
serving nearly coplanar pairs, observing only one of the pair
particles and, lastly, observing all pairs except those which are
emergent over a narrow angular range 2dp. The asymmetry ratio
for the last method is also calculated and curves of the asymmetry
ratio, as a function of the angular range 2h@ over which pairs are
rejected, are given. This last method gives higher asymmetry
ratios than do the two others.

Coulomb corrections have been included.

I. INTRODUCTION

'T was suggested by Yang' and by Berlin and
- - Madansky' that pair production may be used to de-
termine the polarization of high energy photons by
utilizing the correlation between the photon polarization
plane and the plane of production of the electron posi-
tron pair. Berlin and Madansky' calculated the polariza-
tion dependent Born approximation pair cross section
for linearly polarized photons. With the photon direc-
tion as s axis, they denote the azimuth of the electron
and positron by p and p+ respectively, and consider
the case in which the photon and the electron positron
pair are exactly coplanar, viz. , when p+—

&p
=m-. In this

case they found that the pairs are most likely to be
emitted in a plane perpendicular to the polarization
plane.

It was then pointed out by Wick' that one should not,
however, consider the case in which y=—q+—

q is
exactly equal to x, but rather average over a small range
of & close to x, since this is what is done in any experi-
ment —for example when the pair particles are detected
in counters or in an emulsion. Using the Weizsacker-
Williams method which seemed to e6ect such an aver-
age, he obtained a result opposite to that found by
Berlin and Madansky, ' namely that the pairs are pro-
duced predominantly im the plane of polarization.

The discrepancy between these two results may seem
somewhat surprising in view of the fact that the range
of the angle q over which one averages is small. How-
ever, as we shall see below, for q close to ~ the cross
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section is a rapidly varying function of p, which makes
its value at y=m considerably different from the aver-
age over a small range about y= sr.

The present paper is written in order to reconcile this
discrepancy and to give a quantitative theory which

may be applied to experiments currently in progress.
In Sec. 2 we give the polarization dependent and

polarization independent parts of the differential cross
section for the cases of no screening and complete
screening, and these are integrated over the polar angle
between the electron and photon directions as well as
over a range —2),p to Ag of the azimuthal angle p= vr —q

for 6$((1.
In Sec. 3 the integration over the remaining angle

variable —the polar angle between the positron and
photon directions —is performed for the particularly
simplifying assumptions AP))8 for no screening and
DP))P for complete screening (but still hP(&1 in both
cases), 8 being the minimum energy transfer to the
nucleus in units of mc', g ' the screening radius of the
atom in Compton wavelengths. The asymmetry (the
ratio of the number of pairs produced in the plane of
polarization to the number of pairs produced perpen-
dicular to the plane of polarization) is given under these

simplifying assumptions, and plotted in Figs. 2 and 3
for the case in which the energies of the final particles
are not observed.

In Sec. 4 we give a check on the results of Sec. 3, pro-
vided by integrating the cross section over the regions
excluded in Sec. 3, viz. ,

—~&&(—hp and 5&&p&7r,
thus obtaining the total cross section, which is shown to
agree with that obtained from Eq. (10.3) of reference 4.

The results of Sec. 2, integrated over the polar angle
between the positron and photon directions, but without
the simplifying assumptions (hp))5 and Ap))P) made
in Sec. 3, are given in Sec. 5 for the case of complete
screening and in Sec. 6 for the case of no screening. The
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corresponding asymmetry ratios are also given in these
two sections and plotted in Figs. 2, 3, and 4.

In Sec. 7 we discuss the relation between the results
obtained here and those of Berlin and Madansky and
of Wick. Several possible experimental methods for
measuring the asymmetry ratio are considered in some
detail there. One of these methods, which involves the
removal of the very nearly coplanar pairs and gives a
high asymmetry ratio, is described in Secs. 7 and 8.
Graphs pertinent to this method are given in Fig. 4.

Jaorn =4m' {1—F (q) }
((up+ vr))+ k(P —

2)) )-
2

(3)

' Haakon Olsen and L. C. Maximon, Phys. Rev. 114, 887 (1959).
Note p. 892 Eq. (4.5), p. 893 Eq. (4.10), and p. 889 Eq. (3.3) and
text following Eq. (2.12). It should be noted that in the second
term in Eq. (4.10), p. 893, the factor

~

J e*~s should read
~

J e~s.
'This follows from the fact that nearly coplanar events are

those from a small angular region: p close to m. . Thus the cross
section for such events will be negligible unless the momentum
transfer to the nucleus is also small, the cross section being pro-
portional to q '.

' Haakon Olsen, L. C. Maxirnon and Harald Wergeland, Phys.
Rev. 106, 27 (1957), p. 28, and text following Eq. (7a.10) on p. 40.

7 Reference 4, p. 891 Eq. (3.21).

II. DIFFERENTIAL CROSS SECTIONS FOR NO
SCREENING AND COMPLETE SCREENING

We wish then to consider a photon of momentum and
energy k, k and associated linear polariza, tion vector e
which produces an electron positron pair having mo-
menta and energies p&, e2 and p&, e& respectively. Energy
and momentum are measured in units of mc' and mc re-
spectively. We shall always use the usual high energy

approximations —replacing pi and p, by ei and c2, re-
spectively, and replacing the sine of the angle between
yi or ys and k by its argument, thereby making errors of
0(1/e'). Further, we consider nearly coplanar events, by
which we mean that the angle @=2r—22 is small. Here

+1 p2 where p& and p2 are the azimuthal angles
referring to the positron and electron, respectively,
measured from the direction of the polarization vector c.

For high energies the cross section for pair production
is given by4

1 8 A
d~= ——g lA elsprsdp, dn, dn„(1)

(22r) mc mc k sw'~~

where, summing over the spins of the electron and
positron,

A el'=4('k'J' 2eresl J..l')
.spina

Here A e= Qs, , tr ee'"'p, ) is the amplitude for pair
production and J is defined in Eq. (3) below.

It is important to note that for nearly coplanar
events only small momentum transfers to the nucleus
(q=

l

k—pi —psl((1) give a non-negligible contribution
to the cross section. ' This has two important conse-
quences. The first is that the Coulomb correction is
negligible, ' and thus J is given by the Born approxima-
tion value, ~ viz. ,

Here a=Zes/Ac, Z being the atomic number of the
nucleus, u and v are respectively the components
of yi and y2 perpendicular to k, and )=1/(1+us),
r)=1/(1+vs). P(q) is the atom form factor. The second
consequence is that since q' appears in the denominator
of the cross section, the cross section itself is a rapidly
varying function of p near p=x. We are now going to
prove this. If q, and qJ denote the components of q in
the direction of and perpendicular to k, respectively,
then q' may be Written aS qs=q, 2+qrs=q, 2+(u+V)2.
Further, for p close to m. we may write

q'=q, s+ (u —n)2+us(2r —q)2,

noting that for small q, I—e must also be small. Now
for high energies the important contributions to the
cross section come from small angles of 0(1/e) between

pi, p2 and k, and hence u and a are of 0(1).Further,

1+u' 1+e2 k
+ )

262 26J 6g

and therefore of 0(1/e). Thus q as well as the cross sec-
tion will vary considerably over an angular interval
2r —y of 0(1/e). Thus we cannot expect the value of the
cross section at p=vr to be equal to its average over a
small range of y about ~, which is what is done in an
actual experiment, as Wick pointed out. '

In the present range of small momentum transfers q,
the convenient variables are u, w=u —s, and $=2r —y.
In terms of these variables the differential cross section
is given by substituting Eqs. (2) and (3) in (1):

4 e' 5 dpi
do =

(22r)' mC2 mC k

&(d(prl rk'J2 —2eres(J e)25u'dudgdw (4).
The angular differential pise22dQid02 in (1) iS nOW

usdudgdwd p, . Instead of the differential dq, dvp2 we have
here d(pidQ.

We are going to consider the cross section for the
emission of nearly coplanar pairs, in a plane making an
angle yr with the polarization plane' (Fig. 1).The perti-
nent quantities in Eq. (4) follow from Eq. (3) on making
the approximations valid for small momentum transfers
q(&1 (viz. , u —v«1 and 2r —&p= p((1) and denoting the
angle between u and e by y&. (The angle between v and
e is then &pr

—p). They are

42ra) 2 p(w2+u2&2)
J2= l, (No sc.)j (q 2+w2+u2y2)2

Note that in fact in the analysis we keep p&, the positron
azimuth, fixed, and integrate over a small range of values of
q 2= y1—y. It is immaterial which one of the angles y1 and q 2 is
varied since the cross section is symmetric with respect to the
positron and electron. However, it might appear that we should
integrate over a small range of both q» and q». This is unnecessary
since for a given @ the cross section is indeed a slowly varying
function of yi.
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The integrated cross section of interest is then

4 e' A dog
do'= ——dpi(-', O'I —2elesIe) .

(2~)'mc'mc k

We now note that since for q small, q, = (1+u')ll is a
function of u only, the w and g integrations are the same
in the case of no screening

I Eqs. (5) and (6)] and com-
plete screening I Eqs. (7) and (8)j. The integrals are
elementary and the results are, for the case of no
screening,

4ma)'I=
I

sr
k i

uP 2 log
uk/ p (uk') '

+I I
I+1 I

q, (Eq, i

FIG. 1. Angles occurring in the integration of the diGerential
cross section.

uDp p t'uhpq'
I
+1 I

du. (No sc ) (12)
q. &kq, i

tr4ma)'

&xif4rru)' pr fw(1 u') c—os&pl+~ sinyl)'
(J.e)'=

I(ei (q 2+w2+usy2)2
uk' ptruDp '

+I I +1I- q. (Eq.
(No sc.) (6) &(ln

—sin'pl
I I I

+1 I du. (No sc.) (13)
q, &kq, i

The corresponding expressions for complete screening
are(4~g) 2 g2(w2+usy2)

i (p2+ w2+ u2y2) s
(Compl. sc.) (7)

4mu '
I= m uP 21n

k ()

uk' ( (uk''
p &&pi+I I I+' I

(47rG'l pI W((1—u ) COSyl+~ S1Ilplj
(J e)'=I

Eui uAP p(uAPy'
I
+1 I du, (Compl. sc.) (14)

p (&pi
(p2+w2+u2y2)2

(Compl. sc.) (8)
and

in the case of no screening (F(q) =0).
The corresponding formulas for complete screening' "

(L1—F(q)$/q'=1/(q'+P'), 2eles/k&)111Z 1=P ') are
given by similar expressions, but where now q, is re-
placed by P',

dP dw J',

and the polarization dependent integral

dw (J e)'. (10)
0

' H. A. Bethe, Proc. Cambridge Phil. Soc. I, 524 (1934).Note
Sec. 8, p. 538.

'0 Reference 4, p. 901 Eq. (9.13) and p. 897 Eqs. (6.30)—(6.34).

The quantities I' and (J.e)' are integrated over p be-
tween the limits +A&. The angular range 26&((1 over
which pairs are accepted is determined by the conditions
of the experiment. Since the cross section is negligible
for w=u —e))bP, we may take the limits on w to be
~ ~. Similarly, the limits on I are taken to be 0 and ~.

In the cross section, Eq. (4), the integrals which are
needed are then the polarization independent integral

Xln
uk' p uk' '

+I +1 I

p

uk' f uk' '
—sill p I

+1

(Compl. sc.) (15)

At this point we must consider the cases of no screening
and complete screening separately. In Sec. 3 we shall,
moreover, for simplicity, make the approximations
hp)&8 and Ap))p for the cases of no screening and com-
plete screening respectively, (but still of course 6$«1).
This will generally be the condition of experimental
interest at high energies.
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III. CROSS SECTIONS AND ASYMMETRY RATIOS

a. No Screening and Alt))S

Introducing $= (1+u') ' as a variaMe and keeping
only the largest terms in (12) and (13), these integrals
become

tr4s-a 's- 2A@I=
~

— in[/(1 —$)]+2 log —1 d( 1.0

= (4s a/k)'7r [ln (221'/8) —-,'],
and

P47ra~' x.
Ie=

i i

— [1—4t(1—
&) cos'&pr]kk) 4,

f26$—
X in(((1 —$))+2 log~

—2 sin'&pr d(

(4s.a/k)'(s/2) {(1—-', cos'y, ) ln(26&/8)

—2+ (14/9) cos' d'or }. (17)

9

p
l l

6

FIG. 2. The asymmetry ratio when the energies of the pair parti-
cles are not observed, R= J'o(van=0)d. si/fo(vr= ',s)dsq, a-s a
function of -'„kd,@ for the case of no screening. Curve c: Approxi-
mate calculation t Eq. (21)g, valid for -',MP))1, hP«1. Curve b:
Exact small angle calculation (Eq. (46)g, valid for Ap«1.

do (lpt ——0) ln(4k') —4
= 1+-', (21)

do. (yr s-/2) ——1n (4khy) —41/12d (pg

do =4Z'— {(ers+ess)[ln(2'/8) ——,']
Ac mc' k' 2m

Comparing (21) with (19a) it is to be noted that con-
siderably higher asymmetry ratios are obtainable by
selecting particles of equal or almost equal energy.

R as given in Eq. (21) is plotted as a function of rs H P
in Fig. 2. Note the comment at the end of Sec. 6.

+eres+ s eres cos'y, [ln(26$/8) —7/3]}. (18)

The ratio of the number of pairs produced in the
plane of polarization to the number produced perpen-
dicular to this plane (the asymmetry ratio) is, therefore,
when the energy of the particles is also determined, b. Complete Screening and AP)&g

For the case of complete screening (P')&5', P =Z1/111)
and also hP))P one Gnds, from (11), (14) and (15),
corresponding to formulas (18) to (21),

l&(et, (pr= 0)
R(er) =

do (er, yr ——s./2)

-', sr es[ln (2AP/0) —7/3]
(19) e' e' ~' der der

( '+ .')[1 (»~/~) —l]+ " {(el +es )Dn(2&g/P) ——',]
hc mc'j k' 2s.

Substituting (16) and (17) in (11) we have the cross In this case the asymmetry R is given by
section for nearly coplanar events in the case of no
screening and 2),p)&5:

In particular, for er ——es ———',k we have 5=2/k and
+eres+seres cos (pr[ln(26&/P) —s]}, (22)

ln (khan)
—7/3

R(er ——-', k) =1+a
ln(khan) —1

(19a) from which we obtain

l "D.(»~/~)-!]
(23)

(eP+ es') [ln (2hP/P) ——',]+sres
R(er) = 1+

In particular, for e~ ——~2 ———,k we have

If one does not distinguish between the energies of the
pair particles, then the cross section (18) must be
integrated over e, from er = 1 to er

——k —1 (recall
5=k/2eres), giving

do= (8/3)Z' —
I

~

{ln(4kay)
Ac l mc') 2s.

ln(2ay/P) ——,
'

R(er ———',k) = 1+ss-
ln(2ay/P)

(23a)

—41/12+ s cos'rp, [ln(4kB@)—4]}. (20) When the energies of the particles are not observed, the
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from Eqs. (18) and (28),

e' f e' ' der dppq
do. = 4Z'—

~ {(pP+p2') [ln(1/8) —-',]
Acknsc' k' 2'

+pge2+ ;pg-pp cos'q g[ln(1/6) —2)). (29)

where

f(n) =cosh 'n/(n' —1)',
=1)
= cos 'n/ (1—n') l,

o.& 1)
A= 1)
o.(1.

(32)

The dependence on Ap ha, s disappeared, as it should.
Formula (29) is in agreement with Eq. (10.3) of

reference 4 (neglecting the Coulomb correction there)
when the latter is integrated over u [recall $= (1+u') ']
and summed over electron spin states,

g2/ e2 2dpydp~ 1

do.=2Z'—
~ {(e +p2 )[2 1n(1/8) —1]

Ac(me' k' 2m p

+2p~ep+16e~pp cos'q ~u'P[ln(1/8) —2])d$
2 ~2 2 d6y=4Z'— {(p~'+ep')[in(1/t') —2)

Ac mc' k' 2x

Here we take cosh 'o.& 0 and 0(cos 'o.(-',m.

By a similar partial integration of the logarithmic
term we obtain from Eq. (15),

k 2 o.'—1
—n'+n'f(n)

0!
+ cos'q i[n' ——',n(2n'+1) f(n)] . (33)

(n' —1)

Substituting (31) and (33) in (11) we have the cross
section corresponding to Eq. (22):

which is identical to Eq. (29).
For the case of complete screening we find corre-

spondingly, by adding Eq. (22) to Eq. (28),

+ g p+-;pge2 cos'q g[ln(1/8) —2]), d 4Zp
e' e' )' de~ dp~ 1

Ac mc') k' 2n- 2(n' —1)

dt's d(py
do. =4Z'—— {(pP+ p2P) [ln(1/P)+-', )

Ac mc' k' 2x

+e~pp+-', p, p2 cos'pp~[ln(1/P) —7/6)), (30)

which again may be shown to be identical to the result
obtained from Eq. (10.3) of reference 4, using the value
of I" given there for complete screening (reference 4,
p. 897, Eq. (6.34)) neglecting Coulomb correction:

and integrating over u.
These results show that the calculations in Sec. 3 are

correct.

V. CROSS SECTION AND ASYMMETRY RATIO
FOR COMPLETE SCREENING AND 4$«1

In this section we shall calculate the cross sections and
asymmetry ratio R, integrating over the region —hQ&p
& b,P without making use of the approximation hQ))P
of Sec. 3. For simplicity, we shall consider the case of
complete screening here; the case of no screening is
treated in the next section.

The quantities I and Ie given in Eqs. (14) and (15)
assumed only that g«1 and Ag«1. A partial integration
of the logarithmic term reduces the integral in Eq. (14)
to

+2pyep[n' nf(n)] 4pyp2—

Q
X- cos'ppg[n' —-',n(2n'+1) f(n)) . (34)

(n' —1)

It is easy to see that Eq. (34) goes over into Eq. (22)
when 0.))1. For equal energies of the pair particles,
p&

——p2= —',k, we have, directly from (34), the asymmetry
ratio

~(pi= pk) =1+(n' —p)

&&[—n+ p (2n'+1)f(n)]/L(n' —1)'f(n)]

R(eq ———,k) as given in (35) is plotted in Fig. 4 as a
function of n= AQ/p.

For the case in which the energies of the pair particles
are not recorded, the integration over e& is extremely
simple with complete screening, since I and Ie are then
independent of energy. Integrating (34) over p& we find
the asymmetry ratio

R= 1+ (2n' —3)[—n+-', (2n'+. 1)f(n)]/
(n' —1)L—n+(4n' —3)f(n)] (36)

A plot of R (Eq. (36)) as a function of n is given in
Fig. 3, where it is compared with E. obtained with the
additional approximation n))1 (Eq. (25)).

J= 7CCk

(1+u') (1+n'u') l

VI. CROSS SECTION AND ASYMMETRY RATIO
FOR NO SCREENING AND 4$«1

4 The cross section without screening, and assuming4ma 7r
np+n(2np 1)f(n)) (31) only hp« 1, may be obtained from Eqs. (12) and (13).

k 2 (n' —1) It is, however, more convenient to change the variable



L. C. MAXIMON AND HAAKON OLSEN

1.4

elliptic integrals:

f'4~a '
pr

Ie 7

k k 2 p

(3x'—1)dx

(1—x') &L1+r'(1 —x') jf
(2x' —1)dx

(1—x')-*'I 1+7'(1—x']

(39)

1.0
+

I
rcos q'1k) 2

(1—2x'+-'x4) dx

, (4o)
(1—x') lt 1+r'(1 —x') ]**

ge have thus

4~a 't'vr '
I

— L~f '(F+ F-) —vF+)— (41)

2 3 4 5 6 & iS//f

Fra. 4. The asymmetry ratio for equal energies, 61= E2= gk, as a
function of Ap/P for complete screening. Curve a: Exact small
angle calculation LEq. (35)7 valid for AqK&1. Pair particles ob-
served emergent over angular region 2A@. Curves b and c:All pair
particles observed except those absorbed by a wedge of angular
width 2hp«1. Curve b: Z=29 (Cu). Curve c:Z=78 (Pt).

of integration in these equations from I to x,

2p ' F+—F —pF+

+cos'p iLQp '(( 2+~') F+—(2+2'')F-)

21 '(F+—F )+f F—+])-, (42)

where ii= r/(1+r')'' and F+ and F are hypergeometric
functions, simply related to the complete elliptic func-
tions of the 1st and 2nd kind:

and thus

x=2&—1= (1—I')/(1+I') F+=F(s, s 1;f—')=(2/ )It(~)
F-=—F(—s, s;1; f ') = (2/~)&(f )

(43)

%e then obtain
q.=Z/(x+1). If we wish to integrate the cross section equation (11)

t 4~ass ~
I=

I I

— 2 1n{r(1—x')&+I 1+r'(1—x')]')
kk) 2 p

4 e2 fZ dog
d0 = dq iL-,'k'I —2eiesIe], (44)

(2e-)4mc'mc k

and

r(1—x')' over ei (1(er(k —1) it is more convenient to return to
(39) and (40) than to integrate (41) and (42) directly.
Substituting

4s.a)' pr

Ie=
I

— L1—(1—x') cos'pr) ln{r(1—x')'*
k) 2 p

r(1—x')-: sin'y, )+L1+rs(1—~))&)— Id., (3S)
I 1+r'(1—x'))l)

where r=Ap/(28). Integrating the ln term by parts,
each of these integrals may be written in the form of

ei/k = —', (1+a),
r =-',key(1.—ss),

(45)

in (39) and (40) and expanding the square root in an
infinite series for sikh&(1, the integrals are all of the
form JP(1—x') "dx= —

'prowl'(v+1)/I'(p+s).

The resulting
infinite series can be summed in closed form in terms of
the generalized hypergeometric functions sFs to give the
cross section integrated over final energies:

e2 e2 2

o =gssZs — d(pr {—2y—'L sFs(—1/2, —1/2, 3/2; 3/4, 5/4) —y') —1]
AC mC2

—4y 'L sFs(—1/2, —1/2, 1/2;3/4, 5/4; —y') —1)+py ' cos'prI sFs(—3/2, 1/2, 1/2; —1/4, 1/4; —y') —1)

+sy ' cos'ppiI sFs(—3/2, —1/2, 1/2; —1/4, 1/4; —y') —1)

+(512/945)7' cosset sFs(3/2, 3/2, 5/2; 11/4, 13/4' —y')) (46)
where

q=-', km'.
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In order to compare with the result of Berlin and
Madansky, ' who consider the case 6&=0, we may ex-
pand (46) for y= rskhg«1, giving

g2(~2 2

o'= sZ —
~

dpi'rt 1—s cos yt
hc kmc'

—(1/15)y'(1 —(52/21) cos'q i)+ .J. (47)

Thus, as 6&~0, we find

R= ~(v i=0)/~(v t= s~) = s

Berlin and Madansky' gave R= 0.814.
A plot of R (from Eq. (46)) as a function of 4k' is

given in Fig. 2. However, since the functions in (46)
converge only for srkh~t &1, we have substituted (39)
and (40) in (41), and performed the integrations over x
and e& by means of an IBM 704 computer. For the
integration over e~ we used the variable s as given in
(45). R=~(yi 0)/o (yt——', rr) wa—s—t—hen computed, the
values thus obtained demanding only hp«1 for their
validity. In order to see for what values of khan one may
use the simple expression for R (Eq. (21), which assumes
1/k«dg«1) we have also plotted R as given in Eq. (21)
as a function of ~kh@ in Fig. 2.

It should be noted from Fig. 2 that the Eq. (21) is
only valid for «khan) 5, so that it must assume k»20,
i.e., k&)10 Mev. For actual experimental conditions,
Eq. (21) is thus quite limited, since for k»20 Mev there
would in general be considerable screening.

VII. DISCUSSION OF EXPERIMENTAL METHODS

From Fig. 2, which gives the asymmetry when pair
particles of all energies are included, the connection be-
tween the calculation of Berlin and Madansky' and that
of Wick' is clearly seen. For very small values of khan one
is more likely to find a pair in a plane perpendicular to
the plane of polarization. In particular, for 5/=0, which
is the case considered by Berlin and Madansky, we find
with no screening, E=-45. Their result is 0.814. The
reason for this slight discrepancy is not clear. For the
case of complete screening we find, at 6&=0, R=-', . As
one increases the angle 2' over which particles are
admitted, R increases monotonically, becoming larger
than one for 4tkhg) 1.89 in the case of no screening and
dP/P) 1.23 in the case of complete screening. It is seen
that Kick's value, E.= 3, is an overestimate.

Wick's result may be understood in the foHowing way:
As is well known, the Keiszacker-Vhlliams method re-
quires the predominance of arbitrarily small momentum
transfers for its validity, and is therefore exact in the
limit of extremely high photon energies and only when
screening is neglected. Under these conditions, as the
photon energy is increased more and more of the
contribution to the integrated cross section comes from
momentum transfers g((1," and therefore also from
small values of the angle P=m —y (see Sec. 2). The

"Reference 9, Sec. 7, pp. 537—538.

Keiszacker-%illiams method, which replaces the pair
production process in the field of the nucleus, in which
there are three particles in the final state, by the pair
production process by two photons, in which there are
only two particles in the final state, has already affected
the angular integration over one of the Anal state par-
ticles, viz. over 02 and p. Since, as mentioned above,
the contribution to the cross section comes only from
small values of @, the cross section integrated over y
will contain only almost coplanar pairs; thus y2 is
closely confined to the plane of k and pt. Thus, to obtain
the Keizsacker-Williams approximation result, the re-
gion of integration over q, viz. 25&, must be so large
that the entire contribution to the cross section is in-
cluded; thus hg»1/k, but otherwise hP need not be
speci6ed. From the work in this paper we have R& 1 for
hp»1/k in accordance with Wick's result. On the other
hand, the actual numerical value of R in the%eiszacker-
%illiams approximation, viz. —„is valid only in the hmit
of extremely high energies and by neglecting screening,
as mentioned above.

Varick's result, R= —'„would thus be obtained from
Eq. (21) if we could put in(4khg)»1. As this is never
the case for real experimental situations one might be
tempted to conclude that the method is not as useful as
has been supposed, i.e., that for most experimental
situations R is quite close to unity. In fact it is inter-
esting to compare this method with the simpler method
of recording only one of the pair particles, irrespective
of the direction of motion of the other particle.

For lower photon energies, for which there is no
screening, we have, integrating (29) over ei,

ln (2k) —11/3
1+s

rr((pi ,'a) ———ln(2k)—25/12

ln(1/p) —7/6
R =1+a

ln (1/P) +3/4
(49)

Using P=Z1/111, R' is seen to be smallest for the
heaviest elements. For uranium E'=1.17 and thus
E.'& 1.17.

From Fig. 3 it can be seen that at high energies this
experimental method, i.e., observing only one of the
particles, therefore gives a higher value for the asym-
metry than can be obtained by observing coplanar
pairs. "This may be understood if one considers curve

'~ It should be noted that if one could observe pairs emergent
over an extremely narrow angular range 25cp one could obtain a
larger asymmetry ratio than by observing only one of the particles:
From Fig. 3, for rip/P &0 4 we have 1.17& (1/2) & 1 5. For Z =29
e.g., Ap/p &0.4 implies A& &0.63'. The observation of pairs within
such a small angular range seems, however, to meet with experi-
mental difhculties.

from which we find R'= 1.00 at k = 10 Mev and R'= 1.07
at &=15 Mev.

At higher energies, for which there is complete
screening, we have, integrating (30) over ei, the asym-
metry ratio
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(a) in Fig. 4 (complete screening and et ——e~ ——-', k). We
see that exactly coplanar pairs are predominantly per-
pendicular to the photon polarization plane. As the
angle 2AP over which pairs are accepted is increased
beyond 2.45P, the pairs are mostly parallel to the
polarization plane. This suggests the conclusion that is
in fact borne out by a Born approximation calculation"
of the ratio of the cross section differential in &p, R(P)
=do. (pt =0)/do. (&pt ———',~), namely that for complete
screening R(p) &1for)&04), R(g) )1for 04) & q (-,'n,
and again R(p) &1 for —,'~&p&7r. In fact, for et ——e2

———',k

and Z=29, R(P) attains its maximum value of 2.05 at
&=32.3'. Thus one obtains a larger asymmetry ratio by
observing the two pair particles at a Axed azimuthal
angle y~ —q~

——147.7'; the low intensity of such pairs
would, however, make such an experiment difficult. The
asymmetry ratio R'=1.35 (for et ——c2 ———',k, Z=29) ob-
tained by observing only one of the pair particles, is an
average of R(P) properly weighted over the number of
pairs at each angle. For an experiment what is needed
is a value of

~

R—1~/( R+1) as large as possible. This
may be obtained in two ways: Either by accepting only
those pairs coming from a very narrow angular region
2&P for which R(P) & 1, predominantly, or, if this is not
feasible, by rejecting some or all of these pairs, thus
leaving a predominance of pairs for which R(P)) 1.

Thus we may consider three methods for measuring
the polarization of the photon beam. First, as proposed
by Vang, by observing coplanar pairs. This method has
the difficulties erst pointed out by Wick and discussed
here in detail. Second, that of observing only one of the
pair particles. This is undoubtedly the simplest from the
experimental standpoint, but gives, as we have noted,
an asymmetry ratio which is a weighted average of
R(P) rather than a value close to the largest that is
theoretically obtainable. Finally, we may speak of the
wedge technique suggested in the previous paragraph,
by which some of the pairs are either absorbed by a
narrow wedge or rejected by counters in anticoincidence.
This method allows one to obtain a higher asymmetry
ratio than is obtained by observing only one particle,
but with the loss of only a fairly small fraction of the
intensity. The calculations pertinent to this method are
given in the following section.

ln(1/P) in Eq. (30) by'4 ln(1/P) f—(Z) where f(Z) is
given by Davies et al."Thus one obtains the asymmetry
ratio

ln ——f(Z)+1—ctf(n) . (50)

R„as a function of n= dp/P is plotted in Fig. 4, curves
(b) and (c), for Cu and Pt. The presence of a wedge is
seen there to increase the value of E„above that ob-
tained when only one of the particles is observed, viz.
R (n=0). It should be noted, however, that R„de-
creases with increasing n above n=2. This is to be
expected since for large values of n increasing the angle
of the absorbing wedge removes pairs which are nearly
parallel to the polarization plane.

The effect of the Coulomb correction is to reduce the

asymmetry ratio by an almost constant amount between
a=0 and o.=2.0, viz, , 0.003 for Cu and 0.025 for Pt.

In the integral
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VIII. WEDGE METHOD

The cross section for observing pairs outside the
angular range —D@(g&Ap is obtained directly by
subtracting Eq. (34) from Eq. (30). For simplicity we

will consider here only the case of complete screening
and equal energies, e~= e~=-,'k. The Coulomb correction
is easily included since it only occurs for large angles p.
Thus the effect of the Coulomb correction is to replace

I=2— dp
& +v —2mv cosp

The p and P integrations may then be performed

occurring in Sec. 4 we introduce polar variables p and y
by

n =p cosy, e =p sing.

"This calculation was performed without using the small mo-
mentum transfer approximations of the present paper (viz. ,
u —v«1 and 7(- —q =Q« I).

"Reference 4, p. 897 Eq. (6.34).
'5 Handel Davies, H. A. Bethe and L. C. Maximon, Phys. Rev.

93, 788 (1954). Note p. 791 Eqs. (36)—(39).
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separately: a partial integration gives

(4sraq'
dx sin2x

0

pdp

(1+p' »n'x) (1+p' c»'x)
t 47ra~'

&h)
t2 lnt2

tan2g
e 1—sin2x cosp

dx
I
c»2x[

7r f (1+sin2x) Ap)
Xln tanx —tan '~

2 E [cos2xi 2 I

Since hP((1 we have replaced tan(-', Ad) by stan, P in the
last integrand.

Introducing the new variable t= tang and noting that

Since 6&f&«1 the contribution to the integral comes only
from a small region around t= 1. Thus we obtain, with
1 t=yh—P and neglecting terms of relative order Ad,

dy {—1+in(2&4)+in~ y~ }
1+y2

= (4sra/k)'sr( —1n(26$)+1)

tan2 2]] $ ]. d ] l Ptan y 2f n$ t nf
which is the result used in Eq. (26) in the text. The same

ln tanxdx= — dt= —y—ln~ 1—ts~ rft metho d may be used to obtain the in«gral Ie given in
cos2x (1—t')' 2 Ct 1 t' — Eq. (27).
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An attempt is made to 6nd an analog, for the quantum mechanics of non-Euclidean space-time, to the
classification of representations of the Lorentz group. The difhculty of obtaining any such classification in
terms of curvilinear coordinates is pointed out, and the use of a higher-dimensional set of pseudo-Euclidean
coordinates is chosen as an alternative mode of attack. A class of representations then follows easily. On the
basis of an intuitive approximation it is found that spectra of elementary particles, with conservation of
quantities of the nature of isotopic spin, seem to arise from these representations.

I. INTRODUCTION

~CONSIDERATIONS of covariance have often been~ of value to the development of a theory' '; perhaps
this will also be the case for the generalization of
quantum mechanics to allow for the curvature of space.
It is, of course, true that such generalizations are always
expressed in covariant language. However, there has
been no attempt to enumerate the modes of covariance
allowed to a physical quantity —that is, the set of
representations of the group of coordinate transforma-
tions —such as has been done for the case of Minkowski
space, where this group is the I,orentz group. ' The pur-

*This work has been supported by the Air Force Ofhce of
Scienti6c Research.

f Now at Nucleonics Division, U. S. Naval Research Labora-
tory, Washington 25, D. C.

A. Einstein, The Meaning of Relativity (Princeton University
Press, Princeton, New Jersey, 1950).' E. P. Wigner, Nuovo cimento 3, 517 (1956).' E. P. Wigner, Ann. Math. 40, 149 (1939};Iu. M. Shirokov,
JETP 6, 919, 929 (1958l.

pose of the present article is to consider an approach
which may shed light on this problem, and at the same
time does suggest a possible origin for the observed
multiplet structure of the elementary particle spectrum.

The following considerations are based on the familiar
assumption:

Any physical system (in particular, an elementary
particle) can be representated by a wave function be-
longing to some irreducible representation of the
group of all coordinate transformations.

This is a combination of the quantum-mechanical as-
sumption that systems may be represented by wave
functions, with the requirement that a system describa-
ble in one coordinate system be describable also in any
other coordinate system'; the "Schrodinger picture" is

4 The requirement that the group of wave function transforma-
tions be a "representation" of the group of coordinate trans-
formations means essentially that if wave function transformations
V'1, V~, and V3 correspond to coordinate transformations T1, T2,


