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Electromagnetic Production of Charged Vector Mesons*t
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The Coulomb scattering, Compton scattering, bremsstrahlung, and pair production of charged particles
of spin one is investigated, in comparison with spin zero and one-half. The singular role of the longitudinal
meson degree of freedom in high-energy processes is emphasized. The pair production of charged vector
mesons of unit and zero magnetic moment is calculated in Weizsacker-Williams approximation and compared
with the cross section for their production by neutrinos.

I. INTRODUCTION

]r HARGED vector mesons have recently been hy-~ pothesized as possible intermediary quanta in the
weak and strong interactions. In this paper we wish to
consider the standard electromagnetic processes —Cou-
lomb scattering, Compton scattering, bremsstrahlung,
and pair production —as applied to mesons of spin one.
%e are specifically interested in the possibility of photo-
production of 8+ pairs in the Coulomb field of some
nucleus of charge eZ. The cross section, 0.~, for this
second-order electromagnetic process is of order
zxZ'(e'/MDc')', or about a thousand times larger than the
cross section o.„cPZ'G for the semi-weak process in
which weakly coupled vector mesons are supposed to be
produced by high-energy neutrinos in the nuclear
Coulomb field, eZ.

The most interesting feature of this cross section, (T~,

is that for the production of high-energy vector mesons,
when the momentum transfer to the Coulomb field is
small, ot is (in Born approximation) expected to in-

crease linearly with photon energy. This increase of the
cross section with energy is well-known for the brems-
strahlung by charged 5= 1 mesons, and is the basis of
Christy and Kusaka's conclusion from the size of cosmic-
ray bursts that the spin of cosmic-ray mesons had to be
less than one. ' Nevertheless this increase in cross section
at high energies does not obtain for particles with S=0, —,

and cannot be expected to continue indefinitely with
increasing energy. Therefore, in the next two sections
we will compare the Coulomb and Compton scattering
of 5=1 particles with that of S=O, —', particles. We will
find that the increasing cross section is associated with
the longitudinal polarization state that does not exist for
S=O, ~. Application of the unitarity limit to the

Compton cross section will enable us to obtain a theo-
retical limit for the applicability of our formulae.

In Sec. IV we will then use the Compton cross sections
obtained, in order to calculate by the Weizsacker-
Williams method' the cross sections for bremsstrahlung
and pair production in the low-momentum-transfer
limit. In the concluding section, we will discuss qualita-
tively some of the experimental difficulties associated
with electromagnetic —as compared with neutrino—
production of 8 mesons.

II. COULOMB SCATTERING

The cross sections for vector-meson processes turn out
to have a much stronger energy dependence than those
for S=O, —', particles and, in the Born approximation,
increase indefinitely with energy. In this section we
investigate the Coulomb scattering of vector mesons
and show that this singular behavior is associated with
the extra longitudinal-spin degree of freedom that S= 1
particles possess.

We begin with the plane-wave expansion of the free
vector-meson field,

U. (~)=(2n) '2
r=l

zPp

(2E) '*

Xfe„rare '& *+e„r+br+e'& e7, (2.1)

where E is the meson energy, and a", 6" are respectively
destruction and creation operators for particles and
antiparticles of spin polarization e„" (r = 1, 2, 3).Because
of the subsidiary condition, B„U„=0, we have

p e"=y s"—Ee "=0

If we choose the s axis in the direction of propagation
so that
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then in the two transverse polarization states (r= 1, 2),
we have ~3"——eo"——0, and e' and ~' are each unit vectors in
the xy plane. For the longitudinal polarization state we
can write

a'= (O,O,E/M), es' ——p/M. (2.2)
t

C, F. v. Weizsacker, Z. Physik 88, 612 (1934); E. I. Williams,
c Phys. Rev. 45, 729 (1934); W. Heitler, The Qzzantzzrn Theory of

RaCiotion (Oxford University Press, New York, 19$4c)z 3rd ed,
Appendix.
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In the plane-wave expansion (2.1), the amplitude of the
longitudinally polarized state therefore exceeds that of
the transverse polarized states by the factor E/M,
which can be large for a fast-moving vector meson. In
the rest frame there is, of course, no distinction among
the three possible polarization states.

Because e', e', and y/ ) p I
are orthogonal unit vectors,

we have
2

2 s'"s "=3' P'P /—P' (2.3)

for p, v=1, 2, 3, 4.
For the interacting Lagrangian we have

2=-', U„, +( vU, —ir, U„)+-,'(v „+U.+—ir,+U„+)V„,
,'U„„+—V„-„+M'U„+V„

+ (icy/2) (U„+U„U„+U„)F-„„
+ (ieri/4M')$U„„+Ui, U)+U—„„]8iF„„, (2.5)

where m-„= 8„—ieA„, and y and q are specific magnetic-
moment and electric-quadrupole moment factors. In
this paper we will assume q=0 and consider only &=0
(or, in Sec. III and IV, y = —1), i.e., vector mesons of
unit magnetic moment eh/2Mc (or zero magnetic
moment). The matrix element of the vector-meson
current operator between free-particle states of momen-
tum p and p' is then

(p'I ~.l p) = —ko(2~) '(EE')-'L(p.+p.')'»'
+ (1+7)(p. p') (os's. —s'")] (—2 6)

For the differential cross section for Coulomb scatter-
ing we find (for y=0)

doc..i/dQ= ox(1/4E') L4(p. n)'('")'
+ (p s )2(n' s)2+ (p .s)2(n. s )2

+2 (p s') (p' s) (n s) (n. s')
—4(p n)(p c')(n s)(s s')

-4(P ')(" n)(P n)('s')], (2 7)

where e„ is the polarization of the virtual photon and

aZ -' 1 t' 1 )' 1
(2 g)

2Pv sins(8/2) 4 ~Ps'/ sin'(8/2)

is the relativistic Rutherford cross section for scattering
through the angle 8 (y=E//Mc', P=P/E, rs —es/Mc'). —

a. Transverse transverse spin -transitions When both.
the initial and final mesons are transverse polarized,
Eq. (2.7) gives

do/dQ=oo(e s')'

or, if Fq. (2.3) is used to sum over the transverse

for i, j=1, 2, 3. The covariant polarization sum is

given by
3

g s„"s„"=8,„+p„p„/M',

polarizations,

do/dQ= o~(1+cos'8) (trans. -trans. ). (2.9)

b. Longitudinal lon-gitudinal spin transitions. When
both the initial and final mesons are longitudinally
polarized, Eqs. (2.2) and (2.7) give

do/dQ= o it cos'8 (long. -long. ). (2.10)

c. Transverse long-itudi nal spin transitions Finally,
when the initial meson is transversly polarized and the
longitudinal meson longitudinally polarized (or vice
versa), we have

do/dQ =ops(E'+M. ')/2ME]s (y' s/ ) y )
)'

By summing over the transverse polarizations, we
obtain

doc,„i/dQ = o ~ ((1+y')/2y)' (trans. -long. ). (2.11)

We sum over final polarizations and average over
initial polarizations by adding Eqs. (2.9), (2.10), and
twice (2.11) (to account for both transverse-longi-
tudinal-transverse transitions) and then dividing by
three, the statistical weight of the initial state. We then
obtain, ' for 5= 1,

doc.,i/dQ=

op�(1+-,

'P4y' sin'8). (2.12)

For comparison, the cross sections for the Coulomb
scattering of particles with S=O and —,'are respectively,

d0 cpoi/dQ 0 it~ (2.13)
and

do-c.„i/dQ= oil[1—P' sin'(8/2)]. (2.14)

Of course, in the nonrelativistic limit (P —+0), the
Coulomb cross section is given in all cases by the classi-
cal Rutherford formula. The cross section (2.12) in-
creases with increasing energy pMc2 of the vector
meson. By reference to Eq. (2.11),we see that this in-
crease of the cross section with increasing energy is due
to the increase with energy of the matrix element for
spin-Rip transitions. In the next section, we will see that
transitions involving longitudinal vector mesons also
lead to Compton, bremsstrahlung and pair production
cross sections that (in Born approximation) increase
with energy.

III. COMPTON EFFECT

The scattering of photons oR' vector mesons of unit
magnetic moment has been calculated by Booth and
Wilson, ' who obtain in the rest frame of the initial
meson

doc, /dQ=oo 1+cos'8+ (7—16 cos8+3 cos'8)
12m2

k'+k"
+ (29—16 cos8+cos'8), (g= 1), (3.1)

48m2

'H. S. W. Massey and H. C. Corben, Proc. Cambridge Phil.
Soc. 35, 463 (1939).

4 F. Booth and A. H. Wilson, Proc. Roy. Soc. (London) 175, 483
(1940).
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so that
e c=pro'(k'/k)'. (3.2)

we obtain
Here k and k' are the momenta of the incident and
scattered photon, and 0 is the scattering angle, so that

s+t+t2=0,

M'
&cd&ab =—ra' dQ„

2 8+Ms
(3 8)

k' M

k M+k (1—cos8)

M—k'(1 —cos8)
(3 3)

1—cos8= (1—cos8,)
1+P cos8,

(3.9)

This cross section also increases for increasing k'.
Ke have recalculated the Cornpton cross section for

vector mesons of zero magnetic moment (gyromagnetic
ratio g=0, or y= —1) and obtain

4 kk'
do.o, /dQ=oc 1+cos'8——

3 m2
cos8(1—cos8)

k'+k"
(5+cos'8) (g =0). (3 4)

3m2

That Eq. (3.4) shows the same increase with energy as
Eq. (3.1), suggests that this effect is not associated with
the precise value of the magnetic moment but is again
associated with the third kinematic degree of freedom.

For comparison, the Compton cross sections for
particles with S=O, —', are

doo, /dQ=o [1c+cos'8] (S=O), (3 5)

doc. /dQ=oc[1+cos'8+ (k'/k)+ (k/k') —2j
(5'= s) (3 6)

In the long-wavelength limit (k —+ 0), these cross sec-
tions all reduce, of course, to the Thomson cross section
(3.5). In the forward direction (k'=k) the Klein-
Nishina formula (3.6) agrees with the Thomson formula
(3.5), but the 5= 1 cross sections (3.1) and (3.4) do not.
This difference between the S= 1 forward scattering and
the classical result is again due to longitudinal-trans-
verse vector-meson (6M= 1) transitions at the absorp-
tion and emission of the electromagnetic quantum. This
over-all ~=2 transition leads to forward scattering of
the photon with spin flip (6m= 2); in the scattering of
S= ~ particles, on the other hand, Am=2 is impossible.

The Compton cross sections (3.1) and (3.4) can not
increase indefinitely with energy. It is interesting to
impose unitarity as a limit on the validity of these
formulae. For this purpose, one must express the Comp-
ton cross section in the photon-particle center-of-mass
(c.m. ) system (designated with subscript c).s Now da is
invariant. Introducing the invariants

8= (p+k)' M'= 2p, (E,+p,),—
t = (P—P')'= —2P,'(1—cos8,),
I= (p—k')' —Ms= —2p, (E,+p, cos8,),

(3.7)

5 We are indebted to Dr. S. Frautschi for helpful discussions of
this point.

where P= (p/E), is the velocity of the center of mass
relative to the meson rest frame. Equation (3.9) is the
relativistic angular-aberration formula. The right-hand
side of Eq. (3.8) contains no dependence on the c.m.
scattering angle 8,. The angular dependence of (da/dQ),
is therefore contained in the square brackets of Eqs.
(3.1), (3.4), (3.5), and (3.6). In terms of the invariants
(3.7), we have:

cos8 = 1+2Mst/8 (8+t),

(k/k')+ (k'/k) —2 = t'/8 (s+ t),
kk'/M' =s (8+t)/ (2M')',

(ks+ k~2)/Ms [s2+ (s+ t)2$/ (2M2)2

(3.10)

dacoit/dQ,

&ro'8/SM'. (3.12)

The requirement that Eq. (3.12) not exceed (3.11),
the unitarity limit, restricts the validity of Eqs.
(3.1) and (3.4) to

8/M' & (SN) l(137).

Since, in the laboratory frame, we have 8/M'=2k/M,
the vector-meson Compton-scattering formulas (3.1)
and (3.4) will not violate unitarity for photon energies

&&500M. (3.14)

This result allows us to confidently apply, in the next
section, these Compton scattering formulas to the
calculation of pair production. '

The same limit to the Born approximation has been derived by
J. R. Oppenheimer, Phys. Rev. 59, 462 (1941)and by L. Landau,
J. Phys. U.S.S.R. 2, 483 (1940). Oppenheimer requires that the
interaction energy in the center of mass be small compared with
the total energy. Landau requires that the cross section for all
competing processes be small compared with the cross section in
question.

so that, particularly when I (the energy available in the
center of mass) is large, none of the square-bracketed
terms is very sensitive to t, which contains the de-
pendence on 8,. The angular distribution (do o, /dQ), is
therefore relatively Qat, which suggests that, in the c.m.
system, only a few partial waves contribute to the
Compton scattering. These cross sections will therefore
be limited by unitarity to some few multiples of 7r/p' or,

unitarity limit 1V/s, X 10. (3.11)

Referring to Eqs. (3.1) and (3.4), we have, for the
Compton scattering by vector mesons
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IV. BREMSSTRAHLUNG AND PAIR PRODUCTION

A. Coherent and Incoherent Pair Production

Our principal purpose is to arrive at a cross section
for the electromagnetic production of vector-meson
pairs in the Coulomb field of a nucleus of charge eZ and
radius d. LWe define d as the radius of the equivalent
uniform charge distribution so that for heavy nuclei'

and
d= (1.2)A' fermi,

q . =A/d

(4.1)

(4 2)

and
d= 1.4 fermi,

q „=500 Mev/c.

(4.3)

(4 4)

In the production of charged particles of mass M by
photons of momentum k,

q;„=M'/2k (4.5)

is the minimum possible momentum transfer to the
nucleus. For

k (M'/2q, , (4.6)

the pair production will be off individual nucleons
rather than the nucleus as a whole. The cross section for
the pair production coherently off the nucleus as a
whole is proportional to Z'F'(q), where F(q) is the
nuclear form factor. In the high-momentum-transfer
limit, this factor is replaced by ZFp (q), where Fp(q) is
the nucleon form factor. According to Eq. (4.6), for
8 mesons with the mass of the E meson produced off
lead, coherent production is to be expected for photon
energies k) 16 Bev. It thus appears that for existing or
presently envisaged electron synchrotrons or linear ac-
celerators, any 8 mesons produced will be produced in-
coherently off individual nucleons, and that for 8
mesons produced in really high-energy accelerators, the
coherent production off heavy nuclei will be more
important.

For low photon energies (high momentum transfer),
the meson-spin degrees of freedom cannot be excited,
and the cross section for the production of pairs of S= 1
mesons will be similar to that of $=0, 2 particles.
(This is clear for bremsstrahlung, where a threshold
theorem applies; pair production and bremsstrahlung
are, of course, related by the substitution rule. ) We will
therefore devote ourselves to the calculation of vector-
meson pair production in the opposite limit of high
energies or low momentum transfer. In this limit,
features specifically characteristic of vector mesons do
appear. The most interesting of these features is that the
cross section (4.38) or (4.39) is expected to increase

' R. Hofstadter, Ann. Rev. Nuclear Sci. 7, 231 (1957).

is the maximum momentum value occurring in the
analysis of the nuclear momentum distribution. Thus
A/Mcd=(rl /M)A '.7 For an individual nucleon we
have'

with increasing photon energy. This means that the
coherent pair production by photons of energy k is
ultimately expected to exceed the incoherent production
by the factor

k A
P'2

M 3fcd

k 1 iV
ZF'(q) =Zl——

M F'(g) M
(4.7)

B. Weizsackel-Williams Ayyroximation

In the low-momentum-transfer limit we can calculate
pair production from the Compton cross-section for-
mulas in Sec. III using the method of Keizsacker and
Williams. ' tA'e first calculate bremsstrahlung in the low-
momentum-transfer limit and obtain the pair-produc-
tion formulas by the usual substitution rule. The
bremsstrahlung from vector mesons of unit magnetic
moment was calculated by Christy and Kusaka in this
way. '

In the Keizsacker-williams method, the brems-
strahlung from a meson moving rapidly past a nucleus at
rest is calculated by going to the opposite Lorentz
frame in which the meson is at rest and the heavy
nucleus is passing by rapidly. In this frame, the brems-
strahlung of photons off the meson is viewed as the
Compton scattering of virtual photons of initial energy
k* (from the electromagnetic field of the fast moving
nucleus) to give (real) photons of energy k'". (Un-
starred and starred quantities are respectively in the
laboratory frame, where the nucleus is at rest, and in the
meson rest frame. Ke recall that the Compton cross
sections (3.1) (3.4) (3.5), and (3.6),

doco =did ooL 7, (4 8)

were all calculated in the particle rest frame. Therefore
the 0, 0, k, and k' appearing in these formulas will, in
this section, all carry stars. )

If, by using Eq. (3.3), we express the angle of
scattering in terms of the scattered quantum energy k'*,
then Eq. (4.8) becomes

do o.~——vrrp'(M/k*') dk'*L 7. (4.9)

k'*= (2E'/M) k, (4.11)

where E'=—E—k', and we have assumed E))k. From
Eqs. (4.10) and (4.11) we have

dk'*/k*' = dk'/Ek*, (4.»)
so that in terms of the bremsstrahlung quantum energy
k' in the laboratory frame, we can write

dao, =7rrpp(Mdk'/Ek+)L 7=&(k',k+)dk'. (4.12)

In the bracket, coso* is also to be expressed in terms of

For a fast-moving meson, the Lorentz transformation
from the nuclear rest frame to the meson restframe gives

k*= (2E/M)k, (4 1o)
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k~ and k'; we have gives the Poynting Aux at distance b, one obtains

where

-', (1—cose*)= k,„;„*/k*,

k;„*= (M/2) (k'/E')

(4.13)

(4.14)

nZ' 1
p(v*) =-

m' v* b'
(4.21)

is, by Eqs. (3.3) and (4.11), the minimum momentum
transfer permitted by the kinematics.

It is useful to define

Equation (4.21) is restricted by an approximation in-
volved in estimating the Poynting Aux, to values

y—=k;„*/k*=-,'(1—cos8*),
b&b, = (E/k*) P/Mc), (4.22)

which runs between the limits

where
B&y&1,

8= k „„*/k .*= (k'/2E') (Mcd/k)«1.

Then, in the four cases considered we have:
~min= d (4.23)

where 8 is the meson energy in the nuclear rest frame.
(We are neglecting screening, i.e. , assuming b,„
&137(k/Mc)Z ~, the atomic radius on the Thomas-
Fermi model. )

The lower limit in the integral (4.20) is determined by
the nuclear size,

L(S=o)3= 2 —4y+4y'

I
(S=k)j=E/E'+E'/E —4y+4y',

L(S= 1), (g= 1)j=1+(1—2y)'+y '(k"/48EE')
XL7—16(1—2y)+ 3 (1—2y)'

+y—'(k"/192) (1/E"+1/E')
X L29—16(1—2y)+ (1—2y)'j (4.17)

I:(S=1) (g=0)j=1+(1—2y)'
—y

—'(k "/3EE') (1—2y) 2y

+y '(k"/12) (1/E"+1/E')
XP+ (1—2y)'j (4 18)

b; =k/Mc. )

Thus, we can write

2nZ'dk* b .
q(k*)dk*= ln

&min

(4.24)

where b, /b; = (E/k*)(k/Mcd) for an extended nu-
cleus, and b,„/b;„=E/k~ for a poin. t nucleus.

From Fqs. (4.19) and (4.12) we have,
The cross section for the bremsstrahlung of a photon

of energy k' is thus given by

(4.15)
(For a point nucleus, b; is determined by the require-
ment that the impact parameter be considerably larger
than the wave packet size in order for the Weizsacker-
Williams classical picture to apply; then we have

msn

g (k*)dk*p(k', k*)dk'. (4.19)

* dk* M E
do~ ——2gdk' L $—ln —,(4.25)

I, ;.* k~' E k*Mcd
where

Here q(k*)dk* is the equivalent number of virtual
quanta with energies between k* and k*+dk* that is
contained in the Coulomb field of the nucleus. The
integration over virtual quantum energies in Eq. (4.19)
extends from a k;„*determined by the kinematics, to
a k, * determined by the spatial extension of the
nucleus.

The number of equivalent quanta of momentum k* is
determined by integrating over impact parameters the
quantity p(v)dv, which is the number of equivalent
photons of frequency v*=k*/k appearing at impact
parameter b in the electromagnetic field of the fast
mor ing nucleus. Thus we have

&max

dk' 8'
dog ——4p — dxt g 1nAx,

k'. E
(4.26)

where A = (2EE'/Mk') (k/Mcd) for an extended nucleus,
and A =2EE'/Mk for a point nucleus, and the expres-
sion in the brackets is given by Eqs. (4.15) through
(4.18) for the four cases being considered.

&=aZ'ro'=Z'(6X10 "cm')(Mrr/M )'

For a point nucleus the logarithm should be replaced by
lnE/k*. Finally, we have

q(k*)dk*=

By the condition that

min

p (v)d v2+bdb. (4.20) C. Bremsstrahlung Cross Sections

Carrying out the integration (4.26), we obtain in the
no-screening, relativistic limit (E, E ))M):

p(v*)kv*dv*,
4E' dk'

do~ ——Q lnA, (S=0),
3E k'

(4.27)
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E'—-'EE'+E" dk'
dtrtt = 4ttr lnA— (S= st),

The cross sections for the production of charged
particles of energy E, and E'= k -L~' t—hat are obtained in
this way are

7E' 12E—E'+ 7'"
do tt

——4P

7E'+20EE'+ 7E"E E'—

96E'
ln'A

8EE'
do p y(——ln8), (S=- 0)

3k'

4 (Es+E's+ sEE')
dop= j(in') dE, (S=-,')

(4.32)

(4.33)

4 E' E E' 5E—'—36EE'+5E"

3 E—E' E' 96E'
7E'+12EE'+7E" 7k' 34EE'—

op=Q ln'8

e
3 E—E

E'+12EE'+E"E E' dk'—

48E' E~ E'

(S=1, g=1), (4.29)

E'+E" A dk'
do tt

——Q (S=1, g=o).
cd ~c'

(4.30)

In obtaining Eqs. (4.28) and (4.30), we have retained
only the leading terms in k* or y '. The remarkable
difference between the two 5= 1 cases and the S=O, 2

cases is due to the singular energy dependence of the
vector-meson electrodynamics expressed in the energy-
increasing Compton cross sections (4.1) and (4.4).

Cross sections (4.27) through (4.29) are the same as
those quoted by Pauli (for an extended nucleus), '
together with original references. Cross section (4.29) is
qualitatively no different from (4.28), that obtained
by Christy and Kusaka' by the same method. Our result
merely serves to suggest that energy-increasing cross
sections obtained in vector-meson electrodynamics are
not peculiar to any particular magnetic-moment value.

26EE'+5k' 8EE'
lnB

26 EE' k' —14EE' dE
+— +

3 k' 8EE'
(S=i, g=1), (4.34)

k

k ) 3(Es+E')
do p ——y

~

dE, (S=1, g=0), (4.35)
Mcdl Mc'k'

where 8= (2EE'/Mk) (k/Mcd) for an extended nucleus,
and 8=2EE'/kM for a point nucleus. In these formulas
we have assumed E, E'«3fc', but screening has been
neglected, i.e., 2EE'/Mk((137Z '. Equation (4.33) is a
standard result. ' Equation (4.32) differs, as Drell has
already noted, " by a factor of two from the result
quoted by Pauli for 5=0.

Integrating Eqs. (4.32) through (4.35) from E=M
to k —3f, we obtain the total cross sections for the
production of pairs by quanta of energy k (assumed
large compared with M):

D. Pair Production

To go from bremsstrahlung to pair production we
merely change k' to k, change the sign of E relative to E'
(except in the logarithm) and change the phase-space
factors

=4(1 $)(4/9), (S=o),

or=a(ink) (28/9), (S= s),

5 5 39 13
o r ——y —(+—insg+ —1n'P+ —in(,

12 12 16 24

(4.36)

(4.37)

p' dk' 1 pp'dE
-+ (2S+1)—

p k' 2 k'
(4.31)

o.r ——P$, (S=1, g=0),

(S=1,g= 1), (4.38)

(4.39)

On the right side, p and p' refer to the momenta of the
two charged particles produced and k= E+E'.The spin
phase-space factors (2S+1) and s are present because,
while in bremsstrahlung we average over spins of the
incident particle and sum over the two photon polariza-
tion states, in pair production we sum over spins of the
emergent antiparticle and average over the photon
polarization states.

' W. Pauli, Revs. Modern Phys. 13, 203 (1941).

where P= (2k/M) (k/Mcd) for an extended nucleus and
)=2k/M for a point nucleus. Dividing Eqs. (4.32)
through (4.35) by the corresponding quantities err in
Eqs. (4.36) through (4.39), we obtain the normalized
probabilities of producing a pair with energies E and E'

~

In units of the photon energy $E=kx, E'=—k(1—x)), —

s W. Heitler, The Quantnm Theory of Radiation (Oxford
University Press, New York, 1954), 3rd ed.

M S. D. Drell, Phys. Rev. Letters 5, 278 (1960).
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this distribution is given by

do it/o r ——6x(1—x), (S=0)

= (3/7) (4x' —4x+3)dx, (S= -', )
= (3/20)(2x' —2x+7)dx, (5=1,g=1)

=$(2x' —2x+1)dx, (S=1,g=0).

was used to calculate Eqs. (4.38) and (4.39). This cross
section increases only logarithmically with k because the
greatest contribution to the neutrino production is at

(4.41) relatively la,rge impact parameters in the Coulomb field.
The ratio of Eq. (4.38) or (4.39) to (5.1) is about

4.42
n (h/Mcd) (h/M c')67rV2/QM'

= 2000(trt /M) A &(h/Mc') .(5.2)

The probability of producing a pair of spinless mesons is
thus a maximum for E=E'=h/2 and falls to zero for
E or E'= 0. On the other hand, for a Dirac particle and
for the two vector-meson cases considered, the proba-
bility that one member of the pair will take all of the
photon energy is respectively 3/2, 21/20, and 2 times
the probability that the photon energy will be divided

equally. The energy distribution of vector mesons pro-
duced is thus rather Qatter or steeper than the energy
distribution for relativistic spin one-half particles, ac-
cording to whether the meson magnetic moment is zero
or one meson magneton.

V. CONCLUSIONS

The total cross section for the production of single 8
mesons in the Coulomb field of a nucleus by neutrinos
of momentum k is"

o.„=ctZ'(G/6n-V2) ( (g—2) (in&)s

g I
—(7/2) (g—2)'+24(g —1)$(ln()'y. ) (5 1)

in the same low-momentum-transfer approximation that

"T. D. Lee, Proceedings of the Z960 Annnal International
Conference on IIegh Energy Physics-at Rochester (Interscience
Publishers, Inc. , New York, 1961),p. 567

The cross section for the electromagnetic production of
vector mesons is thus large compared with that for the
neutrino production. The probability of competing
electromagnetic processes is also extremely large. This
"background" will consist principally of photoproduced
pions which decay into muons and electrons, and of
pairs of electron and of muons (for which P is at least
10' or 25 times larger, respectively, than for 8 mesons).

The 8 meson is to be distinguished from this large
background by its large mass and prompt decay. On
both these accounts, the 8-meson decay products will

tend to appear at relatively large angles compared with
direct1y produced particles. Two interesting 8-meson
signatures would seem to be wide-angle p+, p. , or y+t,+
coincidences. Each of these leptons will typically have
one-quarter the original photon energy, while with
directly produced pairs each of the particles obtains on
the average one half the photon energy. The lepton
products of the semi-weak 8-meson decay wiB"also be
partially polarized.

It would seem that the neutrino and electromagnetic
production of 8 mesons may constitute parts of two
different programs: one a study of weak neutrino inter-
actions, the other a study of the electromagnetic
creation of new charged particles.


