
PHYSICAL REVIEW VOLUME 126, NUMBER 6 JUNE 15, 1962

High-Energy Behavior of Nucleon Electromagnetic Forris Factors*

R. G. SACHS

Department of Physics, Unkersq'ty of wisconsin, jackson, IVisconsin

(Received February 12, 1962)

Theoretical implications of the suggestion that the observed nucleon electromagnetic form factors indicate
the existence of a nucleon "core" are discussed. On the basis of physical arguments concerning the nature of
such a core, it is shown that, for the neutron, both the charge form factor, F,h" (q'), and the magnetic form
factor, F,p(q'), must vanish as q', the invariant momentum transfer, increases without limit. On the other
hand, for the proton F,&,&'(q') —+ Z2&'& and F„„p(q') ~ Zs'&/2M, where Zs~'& is the wave function renormaliza-
tion constant for strong interactions, which is a measure of the probability of the "core state. " In terms of
the Dirac form factor, F1(q'), and the Pauli form factor, F2(q'), these results read FI"(q') —+ 0, F17'(q') ~Z2",
and q'F2(q') ~ 0 for both neutron and proton, The results for FI(q') are the same as those obtained by
Hiida, Nakanishi, Nogami, and Uehara. The other result implies the existence of a relationship which may
be used to eliminate one parameter in the analysis of P'2. The generality of the interpretation of F,h and F .,ff

as Fourier transforms of distributions of charge and magnetization, respectively, is demonstrated in the
Appendix.

1. INTRODUCTION

ECENT experimental results' on the electromag-
netic form factors of the nucleon have given some

indication that the Dirac form factors Fi"(q'), and
FP(qs) of the neutron and proton may become constant
for large values of the invariant momentum transfer.
q'. This has been related' ' to the existence of a core in
the charge distribution of the nucleon, especially by
Olson, Schopper, and Wilson, and by Littauer et a/. ' It
is the purpose of this note to examine more closely the
theoretical aspects of this behavior of the form factors
and their physical interpretation. We shall find that. if
Fir (q') does indeed become constant, the value may be
used to determine the wave-function renormalization
constant Z2" for strong interactions. On the other hand,
our interpretation of F,"(q') indicates that it must
vanish for very large q', a result which may not disagree
with the data even at presently available values of q'
since the determination of Ii ~" at large q' is still rather
uncertain, and the suggested decrease in Ii1" may take
place very slowly.

We also find that the Pauli form factors Fs(q') vanish
more strongly than q

' for both neutron and proton.
This somewhat surprising result implies a useful rela-
tionship between the parameters which are often used
in analyzing the data, as is indicated in Sec. 4.

2. HIGH-ENERGY LIMITS OF FORM FACTORS

The form factors provide a measure of the charge and
current distribution in the nucleon. The behavior of
F (q') in the limit as q' ~ ~ is then related to the be-
havior at the origin of the distribution in configuration

space. If
lim F(q') =const/0

q2~ oo

the spatial distribution contains a 6 function.
The existence of such a 6 function in the distribution

may be understood as follows: If the nucleon state is
expressed as a superposition of products of nucleon and
pion states, in the sense described in Appendix 1, the
only term that can give rise to a 6 function is the term
corresponding to a single nucleon. For every other term
the charges and currents are spread out due to the
relative motion of the particles in the center-of-mass
system.

The constant appearing in Kq. (1) is therefore ex-
pected to be determined by the probability for the
occurrence of a single "bare" nucleon in the physical
nucleon state. This probability is given by the wave-
function renormalization constant Z2", where the
superscript (s) indicates that only strong interaction
effects are included. Electromagnetic effects are taken
into account here only to the lowest order.

If F,h(q') is the form factor measuring the charge
distribution, we then expect that

lim F,h(q') =QZ ",
q2~ oo

(2)

where Q=O or 1 is the charge of the bare nucleon in
units of the proton charge. The charge is not subject to
renormalization because electromagnetic corrections are
not to be included. Furthermore, the magnetic form
factor should satisfy the condition

lim F,s(q') =Zsi'&Qj2M,
q2~ oo
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where eQ/2M is the magnetic moment of the bare
nucleon.

The use of the physical mass in Eq. (3) is justified in
Appendix 1. In effect, mass renormalization counter
terms have been introduced for the strong interactions
in such a way that the bare nucleon has the same mass
as the physical nucleon.
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It is interesting to note that Eqs. (2) and (3) suggest
the possibility of a measurement of the renormalization
constant Z2('. Furthermore this, in turn, suggests a
way to determine whether or not the nucleon is a funda-
mental particle or a composite particle. If Z2" is finite,
we would be inclined to the former view whereas, if it
is zero, the latter would seem more likely.

There will certainly be some difhculty about deciding
what values of q'- are large enough to justify the use of
Eqs. (2) and (3).One may try to use the purely empirical
criterion that q' is large enough when the form factor
seems to be constant. However, this condition may be
misleading. I.et us suppose that the charge distribution
contains an extended core of radius E((m '. We expect
that for q'=E ', this core will manifest itself by a
variation in the form factor with q'. But the rate of
variation will be very small, and becomes smaller with
smaller E'. This can be seen from the relationship

R'= —6P'(q')/F (q'),

where the prime denotes differentiation with respect to
q'. Equation (4) serves to define the radius of the core
which governs the variation of F at the given value of
q'. If, for example, we insert a radius R= (2M) ', which
might be associated with nucleon pair effects, we find

F'(q')/F(q'-) =—2X10 ' f'.

With measurement errors of the order of those charac-
terizing the recent data, it would be very dificult indeed,
to detect the existence of so small a rate of change of
P (q') as that indicated by Eq. (5) without extending the
experiments to considerably higher values of q'. If, on
the other hand, one goes to very large values of q',
q'))4', the electromagnetic radiative corrections are
expected to become large so that it may no longer be
possible to extract reliable values of the form factors
from the data, We may hope' 4 that there is a region of
q' between these two so that Eqs. (2) and (3) have a
domain of validity for q' small enough that radiative
corrections can be ignored. In fact, Eqs. (2) and (3)
have a clear meaning only in a theory containing a
cutoff. ' If the cutoff is denoted by A.', then Ii,h and
Ii,~ are both functions of A' as well as q', and Z2&' is
also a function of A.'. In the sense of current theories,
the former functions are regular for A' —+ ~ but the
latter is not. The meaning of q' ~ ~ here is then that

q'))A',

a condition which may be satisfied even for values of
q' for which the electromagnetic corrections may be
neglected, if the physical cutoff of the strong coupling

' S. D. Drell and S. Fubini, Phys. Rev. 113, 741 (1959);Yung-
Sui Tsai, Phys. Rev. 122, 1898 (1961).
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Karplus, S. Gasiorowicz, and F. Zachariasen, Phys. Rev. 110,
265 (1958).

5 See, for example, M. Gell-Mann a,nQ F, I,ow, Phys. Rev.
95, 1300 (1954).

is not too large. It is on this basis that the conclusions
to be drawn below would be useful.

3. INTERPRETATION FOR NEUTRON AND PROTON

It has been indicated by Ernst, Sachs, and Wali' that
the distribution of charge and magnetization in the
nucleon is given by the form factors

P (qs) =P (qs) —(qs/2M)Ps(qs) (6)
and

(7)F „(q')=F,(q')/2M+F, (q'),

where P~ and Ii2 are the usual Dirac and Pauli form
factors. The distributions given by Eqs. (6) and (7) are
a measure of the interaction of the nucleon with weak,
inhomogeneous, static, electric and magnetic fields. This
is demonstrated in Appendix 2 by showing, by means
of the method of reference 6, that F,z(q') and F „(q')
are, respectively, the Fourier transforms of the distribu-
tion of charge and the distribution of magnetization. It
is to be noted that to obtain the Fourier transform of
the spatial distribution, the invariant variable q' is re-
placed by the square of the three-vector, q'. This is
equivalent to evaluating the form factors in the Breit
frame. The relativistic behavior manifests itself here by
the behavior at very small distances, or large q', as
expected. Thus, the higher the degree of the inhomo-

geniety in the static 6eld, the larger the value of the
argument (q') at which the form factors must be known.

From Eq. (A27) it follows that the interaction of the
nucleon with a static electric field is completely deter-
mined by F,z(q) and the interaction with a static
magnetic field, by F „(q'). We note in particular that
the condition Ft(~)=constant is cot sufficient to
establish the existence of a core in the charge distribu-
tion as is often assumed. The required condition is
F,h(~) =const.

Let us first apply the conditions Eq. (2) and Eq. (3)
to the neutron. Since the charge and magnetic moment
of the bare neutron are expected to vanish (Q=O), we

find that

alid

lim fpt" (q') —(q'/2M)ps" (q'-) j=0
Q2~ eo

lim [P ~(q'-)/2M+F2(q')]=0

The corresponding conditions on Ii ~" and F2" are then,
as( ~ ~)

aiid
Fi"(q') ~ 0

q'Fs" (q') —+ 0

Thus, Ii2" is required to vanish quite strongly while
Ii &" may vanish very slowly. The scatter in the data and
the ambiguities in their interpretation' for the case of
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the neutron are so great that it cannot be said whether
or not the conditions Eq. (10) and Eq. (11) are being
met by the recent experimental results.

In the case of the proton, the conditions LEqs. (2)
and (3)j read (Q=1)

fact, it implies that

dq' ImF, (q') =0, (19)

4. DISCUSSION

The results of Eqs. (10) and (15) for F&(q') are equiva-
lent to those obtained by Hiida et al. ' They obtain the
results in a quite diAerent manner but also give an
interpretation which is essentially the same as the one
presented here. In doing so, however, they have made
the incorrect assumption that the charge distribution
is given by F&(q'), hence they obtain no corresponding
information about Fs(q').

The results for F,(q') are also similar to those obtained
by Gell-Mann and Zachariasen' who show that if
Z&(A') is the value of Zs for a theory with cutoff at

hm EF&(q') —Z&(q')3=0.
$2~ eo

On the other hand, in these terms our results read

lim F, (q', A.') =Zs(A'),

(16)

lim [F p(q') —(q'/2M) F,& (q') ]=Z,", (12)
$2~ oo

lim $Fp(q') j2M+F&"(q') j=Zs&'j23f. (13)
Q2 —+ eo

It is evident that as q' —~ ~

q'Fs" (q"-) ~ 0.
Furthermore,

Fqu(~ ) =Zs(8I

if F,(q') does indeed satisfy a dispersion relation.
In terms of the analysis of Fs(q') as a sum of pole

contributions, as in the Clementel-Villi" analysis used
by Hofstader and Herman s Eq. (19)imposes a condition
on the constants: The sum of the residues must vanish.
This condition is imposed in addition to the requirement
that F&(q') should contain no constant term for either
the proton or neutron. Neither of these requirements is
satisfied by the Hofstader-Herman or Littauer,
Schopper, and Wilson~ analyses of the data, nor is it
implied by these authors that the analysis is to be ex-
tended to larger values of q'. However, an analysis of
even the available data in terms of several pole terms
might turn out to agree with our conclusions. On the
other hand, it must be kept in mind that, particularly
in view of the uncertainties in the data, the experiments
may not have been carried to high enough values of q'
to allow us to ascertain the asymptotic behavior.

The Hofstader-Herman analysis of F,"(q') is also in-
consistent with Eq. (10), but that of I.ittauer et a/ in.
terms of a spread-out core is consistent with this con-
dition. The fact that both seem to fit the data is a good
illustration of the ambiguity in the analysis.

In view of the inadequacies of the Clementel-Villi
analyses noted above, the results obtained in this way
for F&&(q') cannot be taken very seriously. However, it
is just by such an analysis that, in principle at least,
we can hope to determine Z2". Therefore we note, with
many reservations, that the results given by Hofstader
and Herman would indicate

where the connection between the F~(q') appearing in
Eq. (16) and F&(q', A') appearing in Eq. (17) is simply

Fr(q') = lim F&(q', 4').
P2 —+ eo

The possibility of reordering the limits to obtain
Eq. (17) seems to be implicit in the work of Gell-Mann
and Zachariasen, from which it follows that their results
are also equivalent to ours for Ii& although they were
also obtained in a quite different manner. Again, they
do not obtain a condition on Fs(q').

The result, Eq. (14), for F&(q') appears to be new and
is somewhat surprising. It is stronger than necessary for
the validity of unsubtracted dispersion relations. ' In

I. K. Hiida, N. Nakanishi, Y. Nogami, and M. Uehara,
Progr. Theoret. Phys. (Kyoto) 22, 247 (1959).

'" M. Gell-Mann and F. Zachariasen, Phys. Rev. 123, 1065
(1961).

"G, F. Chew, University of California Radiation Laboratory
Report UCRL-8194 (unpublished) G. F. Chew et a/. , reference 4;
P. Federbush, M. L. Goldberger, and S. 8, Treiman, Phys. Rev.
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Z (')=012

We may remark that the asymptotic conditions ob-
tained here are not directly related to those obtained
by Evans" and' by Drell and Zachariasen, "who show
that F,(q') ~ 0 if Zs' ', the renormalization constant
of the photon propagator, is diferent from zero. Since
the electromagnetic radiative corrections are essential
to their argument, it presumably involves values of q'
much larger than those considered here, i.e., large
enough for electromagnetic corrections to the form
factors to be important. '
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Furthermore
2 (0) =2 '(0). (A2)

APPENDIX I

It is the purpose of this Appendix to demonstrate in
what sense we are considering the expansion of the
nucleon state vector in products of nucleon and pion
states. We use here a method introduced by Ernst. "

The form factors are defined in terms of the matrix
element (p'I j„(0)I p), where j„(x)is the current density
operator in Heisenberg representation and

I p), is the
physical nucleon state of four-momentum p. We may
use the method of Yang and Feldman" to define a
free-field operator f'(x) which is equal to the Heisenberg
field 1t (x) when x is on r. We denote the unitary trans-
formation from r to ~' by

p" (x) = U(r')r)ip'(x) U(r, r'). (A1)

Now, since j„(x)=j„'(x) when x is on r, we may write

Now

Hence,

or

e '(1)= U(0, 1) I n, in).

lim +.'(t) =C..

C.=U(0, —~) ln, in),

(AS)

(A9)

(A10)

ln, in)=U( —~, 0)C.. (A11)

Thus, if the physical nucleon state
I p) is expanded in

bare states

we have
I p)=g. C.„'c., (A12)

C is here defined as that solution of the non-interacting
field problem having the same quantum numbers as the
physical state ln, in). In particular, mass and energy
counter terms are introduced" so that 4 has the same
energy spectrum as

I
n, in).

To obtain the desired relationship we note that the
state

I
n, in) in interaction representation is

j„o(0)=U(o, — )j„-(0)U(—,o), (A3) @~=U(—~, 0)lp)=p C „'In, in), (A13)

where j„'" is the "in-field" operator referring to
v= —~. Thus

according to Eq. (A11).Therefore, comparing Eq. (A6),
we find

(A14)
&p'lj. (0)l p)

= &p'I U(o, — )j„'.(o)U(—,o)
I p). (A4)

In particular,
C,„=(Z, )-**,

@,=P.C.„ln, in). (A6)

It is in this sense that the nucleon state may be described
as a superposition of products of physical nucleon and
pion states, since the ln, in) are just such products.
Furthermore, we note that

We may define a complete set of Heisenberg states,
ln, in), in accordance with the procedure of I.ehmann,
Symanzik, and Zimmermann. "Note that

I p) =
I p, in)

is one of these states. If we define an auxiliary state

+.=U(—,0)
I p),

we may expand in terms of the complete set

is the overlap of the physical one-nucleon state with
the bare one-nucleon state.

APPENDIX II

The generality of the interpretation of F,z(q') and
F „(q ) as Fourier transforms of spatial distributions
of charge and magnetization is demonstrated by con-
sidering an arbitrary moment of the charge or current
distribution. As noted in reference 6, it is convenient
to determine the distribution in a nucleon state de-
scribed by a wave packet g(p) in momentum space. The
moments are calculated for an arbitrary packet and
then the proton is brought to rest by taking the limit

&p'I j.(o)
I
p)=&+.'I j'"(o)I+.» (A7) I g(1) I' 5(1). (A15)

and that j„'"(0) is just a combination of creation and
annihilation operators for the one-particle states com-
prising ln, in). Hence, by means of the expansion
Eq. (A6), the matrix elements may be described directly
in terms of the currents associated with the Fock wave
functions which are superpositions of the states

I
n, in).

In this way we may obtain a description of the charge
and current distribution in configuration space.

There is a direct relationship between the expansion
coefficients Eq. (A6) and the expansion of the physical
nucleon state in terms of bare states. The bare state

The terms resulting from the structure of the wave
packet rather than the structure of the nucleon are
not of interest here and are therefore dropped. Any term
involving a derivative of g(p) is of this type.

We dehne a moment of Ãth order of the distribution,
with S=n+P+p, by

d'P' d'P g*(1')g(1)

X d'x *i ~2i'xa'&p'I j„(x)I p), (A16)

'4 F. J. Ernst, Jr., thesis, University of Wisconsin, 1958
(unpublished}."C.N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950}.

'6H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
cimento 1, 205 &1955).

where j„(x)is the current density operator of the system

' It is at this point that the mass renormalization is used in
defining the bare states so that they have the physical mass.
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