
2248 T. D. LEE AND C. N. YANG

where Eis 'given by (89) and (vi) If vt ——1, then

a~= rs(E+m) '[gi P+g A (m+E) )',
b =-', (E+m)-'(EaP){[g —f ( +E)]'

+[gA —kg (E—m)]s), (98)
c= (E+m) 'm(—[gv fv—(m+E) j'

—[gA —hA (E—m) jsl.

and

E= (8srk s)—'[(k.+kt)' —Ps)

y= (E+P) 'm)

y '=(E P) 'm—

If we assume further that the conserved current
hypothesis holds, then g& and fv are given explicitly
by (43). The functions g& and k& can then be deter-
mined by using (97) and (98). In particular, the
difference,

(do „do.„)=—Q-—[da, (l, ) d. o e—(l,—+)j,
e=L, R

gives a sensitive determination of gg. We have, similar
to (44) but without the vt ——1 approximation,

(do.„—do. v) = (4Irm'-k„s) —'q'[4mk„—q' —mtsl

~gvgAd(q') (99)

The u+, b, d functions of Sec. III are related to the
present ones by

a„=a~(R),

a =a (1.),

b= Z [yb+(s)+y 'b-(s)+c(s)7,

and

d=[yb+(R)+y 'b (R)+c(R)j
—[yb+(I)+y 'b-(I)+ (L)3 (1«)
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A self-consistent calculation of pionic Z and A decays has been carried out in the pole approximation of
an S matrix approach in order to get information on (a) the angular momentum in which the decay Z+ —~ nir+
takes place, (b) the relative (ZA) parity, (c) the possible existence of other than global symmetric solutions.
On the basis of existing experimental data, the model predicts that Z+ —+ n~+ decay must occur in the s
wave, and, somewhat less definitely, that (ZA) parity is even.

INTRODUCTION

ECENTLY, Beall et a/. have established that the
helicities of the protons in the nonleptonic decays

of Z+ and A' are opposite. ' This result, while conhrming
an important prediction of the global-symmetry hy-
pothesis, contradicts the predictions of several other
models of hyperon decay. In particular, it disagrees
with the bound-pion model of Barshay and Schwartz, '
in which the A decay is taken as the primary decay,
and thus invalidates one of the arguments used by
Nambu and Sakurai in favor of odd Z-A parity. ' We

*This work was done under the auspices of the U. S. Atomic
Energy Commission.
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$ On leave from the Atomic Energy Establishment Trombay,
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'E. F. Beall, B. Cork, D. Keefe, P. G. Murphy, and W. A.
Wenzel, Phys. Rev. Letters, 7, 285 (1961).' S.Barshay and M. Schwartz, Phys. Rev. Letters 4, 618 (1960).

s Y. Nambu and J.J. Sakurai, Phys. Rev. Letters 6, 377 (1961).

have, therefore, considered a simple self-consistent
model in which both these decays are treated as equally
fundamental, with parameters to be determined by
requirements of consistency. We have, then, tried to
seek answers to the following questions: (1) Are there
solutions other than the global-symmetric one that fit
the experimental data' (2) Does odd Z-A parity fit the
data better, or vice versa' (3) Can one predict which
of the two decays —Z+ —+a++ or Z —+ex=goes into
s wave and which into p wave? With regard to the last
question, it has been well known for some time, from
the experimental data on the Z triangle of Gell-Mann
and Rosenfeld, 4 ' that one of these decays must go into
s-wave and the other into p wave, but it has not been
possible so far to say which goes to which.

4 M. Gell-Mann and A. H. Rosenfeld, in Any. Rev. Egclear Sci.
7, 407 (1957).'B. Cork, L. Kerth, W. A. Wenzel, I. W. Cronin, and R. L.
Cool, Phys. Rev. 120, 100 (1960).
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THE MODEL

Ours is essentially an S matrix approach carried out
in the pole approximation which has given reasonable
results in the theory of strong interactions and has
also been successful in the treatment of the m decay.
The diagrams considered are shown in Fig. 1. The
contributions of the black boxes to the matrix elements
are shown in the figure. ' ' Here, g~, g~, g~ are coupling
constants; aA, ttz, bA, bz (as also gA, gz) are to be fitted
from experiment"; and I' takes the value yg or 1 ac-
cording as the relative Z-A parity is even or odd. Time-
reversal invariance implies that bg and bg are real.
Then the matrix elements for Z+ b Ps 0, Z+ —b tsar+, and

—+ n~, respectively, are given by

Fro. j.. Diagrams for Z and
A decays via baryon poles.
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M =(BAgA+Bzgz+iyp(AAgA+Azgz) j.
Here we define

Bz (azbz)/(—m—z+mN) and Az ——az/(mz mN—),
BA= aAbA/(mA+mN) and A A= aA/(mA mN), —

for F=ys, and

BA iaA/——(mA mN) —and A A=iaAbA/(mA+mN)

for 7=1.Also, we have

MA=v2$(BAgN BzgA) its(—AAgN+—AzgA) j
for I'=pm„and

MA= ~i/(AAgN+AzgA) iv p(BAgN B—zgA) j, —

for I'=1. Introducing the conditions that the asym-
metries in Z+ —+ ex+ and Z —+ m= are zero, and that
the s/p ratios in Z+ —+ pgrp and h. —+ par- decays have
values xo and xq, respectively, we can eliminate the

' We have used the ) tAT ) = —, rule in writing these contributions.
Until the recent experimental results of Beall et al. (reference 1),
Fowler et at. (reference 7), and Leitner et af (reference 8), t. here
has always been the possibility, emphasized by Okubo et el.
(reference 9) that the

~

tA T i = -,'rule for A decays could be accidental,
since the same branching ratio in A decay is also predicted by the
current-current form of the universal Fermi interaction which
violates the

~
tAT

~

=-', rule. However, the prediction of the latter
theory that the proton helicity in A decay must be negative is
contradicted by these experiments, and one is now left with the

~
tAT

~

=-', rule as the only explanation of the observed branching
ratio in h. decay.

7 W. B.Fowler, R. %'. Birge, P. Eberhard, R. Ely, M. L. Good,
W. M. Powell, and H. K. Ticho, Phys. Rev. Letters 6, 134 (1961).

J. Leitner, L. Gray, E. Harth, S. Lichtman, M. Block. B.
Brucker, A. Engler, R. Gessaroli, A. Kovacs, T. Kikuchi, C.
Meltzer, H. O. Cohn, W. Bugg, A. Pevsner, P. Schein, M. Meer,
N. T. Grinellini, L. Lendinara, L. Monari, and G. Puppi, Phys.
Rev. Letters 7, 264 (1961.)' S. Okubo, R. E. Marshak, and E. C. G. Sudarshan, Phys. Rev.
113, 944 (1959).

'0 These six parameters have to 6t six experimental numbers—
four decav asymmetries and two lifetimes. However, it is not obvi-
ous that a fit will be obtainable with reasonable values of the
coupling constants.

A~, A~, Bq, and B~ and get a relation between the
various strong-coupling constants. Another relation be-
tween the coupling constants is given by the ratio
IMAI/IMpI, which is known from the measured life-
times of Z and A."We now have four cases to consider:
I' = 1 or y 0, and pure s wave or pure P wave in z+ —b ear+.
The corresponding relations between the coupling con-
stants are given below.

Case I. F=y5, Z+ —+ em+, s m ave.

(gZ gN) (gA +gZgN) XAttA

(gz+gN) (gA +gzgN —2gN ) xottz

gA +gzgN

gA(gz+gN)

IMAI 1+xo'xA' i

IMpI 1+xA' xo'

Case II. I'=pp, Z+-+ tss+, p tt&at&e.

(gz —
gN) (gA gzgN 2g—N ) x—AttA

(gz+gN) (gA gzgN)

gA' —gzgN I MA
I

1+xp ttz'

gA(gz gN) I
Mo

I
1+xA»

Case III. F= 1; 2+ ~ ex+, s eave.

(gZ gN) (gA +gzgN)

(gz+gN) (gA'+gzgN 2gN') xoxAttzttA—

gA'+gzgN IMAI 1+xp' f 1

&~irz+D)I&r, l
(,1+x, ) x,p,

"For recent measurements of the lifetimes, see William E.
Humphrey, Lawrence Radiation Laboratory Report UCRL-9752,
1961 (unpublished).
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Case IV. 1'= 1, 2+ —+ rsvp. +, p wave.

(gz —g~) (gs —gzg~ —2g~')

(gz+g~) (gs' g—zg~) xsxV z~s

gA gag~

ga (gz —gx)

(M~( (1+x,')*'
xspz~

&1+x,'

ps= qs/(Es+mx) 0 053.

Isz= qz/(Ez+m~) 0 10, .

where, q~ and g~ are the momenta, and Eq and A'~ the
energies of the proton in the decays at rest of A and Z,
respectively. When the

~ AT| =-,'rule is assumed in the
analysis of experimental data, xo is known to be' very
nearly —1, while xz has a greater uncertainty attached
to it. For further discussion, we shall take xo= —x,y
= —1, and I 3fs ) / ~

Ms )
= 1, which values are consistent

with the experimental data. To simplify the calcula-
tions, we will also take ps=0.05 (instead of the more
exact value of 0.053). We then get the following solu-
tions for the coupling constants:

Case I. F=yq, Z+ —+ em+, s maze. "
gZ= —3gV,

gs =gz = (4/9)g-v.

Case II. I'= ps, Z+ —+ m.+, p wave. "
gz= —(5/3) g~,

gs =gz /25= gx /9.

Case III, F= 1, Z+ ~ n~+, s wave.

gr——gx,

gx —3gx

Here p& and p&—kinematical factors for A and Z decays,
respectively —are given by

DISCUSSION

In the absence of dehnite knowledge of any of the
strong strange-particle coupling constants, it is im-
possible to make a clear choice between the four cases
considered. We have, therefore, taken the following as
an additional criterion in the choice of a favored solu-
tion: that all the strong couplings be comparable with
each other. In that case our results above may be taken
as an indication that the decay 2+ —+ ex+ takes place
in the s wave. If it took place in the p wave, one would
have gz'~25g+' for the case of even Z-A parity, and

gz ~25gp ~0.01g~ for the case of odd 2-A parity. The
question of relative Z-A parity is somewhat more diK-
cult to decide. "But if neither of g~' and gq' is to be
greater than g~', we are left with F=y5, i.e., even Z-A

parity. The case which thus remains (Case I) is of the
global symmetry type" "in that g&'=t, z'.

Once we have thus chosen the g's the parameters
az, az, bh, and bz are completely determined in this
self-consistent model. We will not, however, give ex-
pressions for them, since we have no way of deciding
what should be the reasonable values for them until we
have analyzed the weak boxes further. When that is
done, we hope we can make more definite statements
about all these questions and about the relative Z-A

parity in particular. It may also be remarked that in
the above calculation, only the relative sign of xo and
x~ has been used, and not the absolute sign of either. The
latter a8ects only the signs of a's and b's.

We would like to remark upon the relation of our
model to the similar models of Feldman et al. ,"and of
Kolfenstein. " Feldman et ul. take K poles also into
account, in the spirit of a completely dispersion theo-
retical approach, where no particles are to be regarded
as more fundamental than others. In doing so, however,
they introduce two additional parameters —(g&sf&),
(grczfrc), where frc is the strength of the Err vertex—
into a problem in which there are already a large
number of parameters. It is then impossible to make a
definite statement on any of the questions to which we
have sought answers. In fact, it is impossible even to

Case IV. I"= 1, 2+ —+ nv+, p wave.

go~0.02gg,

gp ~25gg ~0.01g~ .
'2 In this case, gy. =+gg= 1 might appear to be an acceptable

solution. A look at our expression for F0 shows, however, that
these values of the coupling constants would give zero asymmetry
in Z+ —+ pw'.' This is the only solution where all coupling constants are
nonzero. One could write down two other solutions in this case:
(i) gz= egg = 1 which is not acceptable for the same reason as in
case I; (ii) go=0, gz= &2. Though the possibility of a vanishing
ZZm. coupling has been considered by some authors in the discus-
sion of the branching ratios of F*etc. , we have, as discussed below,
thought it more interesting to look for solutions where all the
strong coupling constants are of the same order. For the same
reason, we are neglecting an alternative solution to case III, viz,
gg 2, gg=~&PO,

"We could perhaps make a somewhat stronger statement in
discarding case III, if we note that in this case where Z and A.

have opposite parities one of the coupling constants gy. , gg is a
scalar coupling constant while the other is a pseudoscalar coupling
constant. With our criterion, the scalar coupling constant would be
expected to be ~0.1 g'~.

"Note that our result gg'=gg' refers to the renormalized cou-
pling constants of conventional field theory, and not to bare
coupling constants as in the usual symmetry schemes based on
Lagrangians.

"There is, however, an important difference. Our solution has
a negative relative sign for gp and gz, whereas global symmetry
has a positive relative sign. In fact, the calculations of . J.
deSwart and C. Dullemond [Ann. Phys. 16, 263 (1961) are
sensitive to this relative sign, and if our preferred solution is the
correct one, it would be an evidence against global symmetry.
We are indebted to Dr. J. J. Sakurai for pointing this out to us."G. Feldman, P. T. Mathews, and A. Salam, Phys, Rev. 12l,
802 (&96&).

"L.Wolfenstein, Phys. Rev, 121, 1245 (1961).
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predict the relative helicity of the protons in the Z+
and A decays, which depends on the sign (g&z/grrA) in
the case considered by them in detail. In our model, on
the other hand, the same helicity for the proton is
almost definitely ruled out if the relative Z-A parity is
even, since a fit requires gg = 2g~, gg = &2g~ for Z+~ex+
going in s wave, and gz'= (8.5+2.9)gA', gA'= (gz+2gnr)',
for Z+ —+no+ going in p wave. The choice is more
diKcuult in the case of odd Z-A parity, since the values
of the coupling constants turn out to be practically the
same as those which give rise to opposite proton
helicities in the two decays.

Wolfenstein's model assumes that E decay is the
more fundamental decay and that Z and A decays are
secondary. He, therefore, neglects baryon poles com-
pletely, but has to include two-particle intermediate
states. His model, like that of Feldman et al. , also has
(EF1V) vertices, and his prediction regarding the
angular-momentum states involved in g+ decays into
a neutron depends on the (EYE) and (ZA) parities
assumed. Further, while in our model the fact that
Z+ —+ n7r+ goes into s wave and Z —+ n7r into p wave
is due to a dynamical cancellation between various
diagrams, in the model of Wolfenstein, the Z+ goes
into s wave only because a certain parity is assumed for
the E meson and for (ZA), so that only a single diagram
(E'-pole diagram) contributes to it."

's Wolfenstein's expressions could be used to evaluate gz/gA
from his model in the way we have done. In the case considered
by him, if one assumes co= —xA and (3EA( = )Mo ~, one is led to
gg=gg in his model too. It is curious that with both, our model

We have already remarked about our omission of the
IC-pole diagrams. Apart from the fact that their inclu-
sion would have increased the number of parameters
in the problem, we were encouraged to neglect them by
the frequently expressed conjecture that the E couplings
are weak compared to the + couplings. It is, therefore,
interesting that we are able to fit the experimental
data without the inclusion of these diagrams. We have
also omitted diagrams involving more than one-particle
intermediate states, which would have to be included in
a complete S-matrix approach. The lowest mass two-
particle diagram has a pion and a nucleon in the inter-
mediate state. Because the J=-,'xE interaction is
known to be small at the relevant energies, the con-
tribution of this diagram may be expected to be. small.
We expect the m I' intermediate-state diagrams to
make an even smaller contribution since there is no
strong J=-', interaction of the xI' system either. "
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which includes only baryon poles and excludes E poles, and
Wolfenstein's model which excludes baryon poles, one is led to a
global-symmetric solution.

Note that the only charged V* known has a spin &~; see
Robert P. Ely, Sun-Yiu Fung, George Gidal, Yu-Li Pan, Wilson
M. Powell, and Howard S. White, Phys. Rev. Letters 7, 461
(1961).
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A rigorous mathematical discussion of the E/D method is presented. It is shown in particular that we
can always make sure that the N/D solution is the correct one in the sense that the D function has no
redundant zeros, by examining the high-energy behavior of the phase shift in the solution obtained. It is
also shown how the 1V/D method exhausts all the possible solutions of the original equation systematically
according to the high-energy behavior of the phase shift. Virtually, the same arguments are shown to be
applicable to the inverse method. It is, however, pointed out that the cV/D method is preferable to the inverse
method for both technical and physical reasons.

1. INTRODUCTION AND THE STATEMENT
OF THE PROBLEM

'HE 1v/D method' has been widely used in the
dispersion theoretic approach to the scattering

problem; the partial-wave scattering amplitude F(s)
*This work was supported by the National Science Foundation.
t Now at Department of Physics, Hokkaido University,

Sapporo, Japan.
'See, for example, J. S. Ball and D. Y. Wong, Phys. Rev.

Letters 7, 390 (1961), which quotes virtually all other references.

(s stands for the complex c.m. energy) is represented as

~(s) =-~'(s)/D(s), (&)

where 1V(s) and D(s) are individually analytic every-
where except for certain poles and cuts, and the coupled
equations for lV(s) and D(s) are solved. The inverse
method, ' which deals with the equation for the inverse
amplitude has also been used.

' B. H. Bransden and J. W. Morat, Phys. Rev. Letters 6, 708
(1961) 8, 145 (1962).


