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where K is given by (89) and
ay=3(E+m)[gvPFga(m+E) P,
be=3(E+m)(ExP){[gv— fr(m+E) T
+Lga—ha(E—m) P},
¢=(E+m)"'m{[gv— fv(m+E)}
—[ga—ha(E—m)J}.

If we assume further that the conserved current
hypothesis holds, then gy and fy are given explicitly
by (43). The functions g4 and %4 can then be deter-
mined by using (97) and (98). In particular, the
difference,

(doy—dos)= 3 [do.(ls)—dos(lst)],

=L,R

(98)

gives a sensitive determination of g4. We have, similar
to (44) but without the »;=1 approximation,

(doy—das)= (dxm?k,?) "¢ [4Amk, — ¢*—mi2 |

Xgvgad(g®). (99)
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(vi) If v;=1, then
K= (8k,2) [ (k,+k;)2— P,
y=(E+P)'m,
and

yl=(E—P)m.

The ay, b, d functions of Sec. III are related to the
present ones by
d+=(l+(R),

a-=a_(L),
b= 53 [yb () +y710-(5)+c(s) ],

and

d=[yby (R)+y~'0_(R)+c(R)]

—[yo (L) +y~8-(L)+¢(L) ] (100)
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A self-consistent calculation of pionic = and A decays has been carried out in the pole approximation of
an S matrix approach in order to get information on (a) the angular momentum in which the decay =+ — nrt
takes place, (b) the relative (ZA) parity, (c) the possible existence of other than global symmetric solutions.
On the basis of existing experimental data, the model predicts that =+ — nz" decay must occur in the s
wave, and, somewhat less definitely, that (ZA) parity is even.

INTRODUCTION

ECENTLY, Beall et al. have established that the
helicities of the protons in the nonleptonic decays
of 2+ and A° are opposite.! This result, while confirming
an important prediction of the global-symmetry hy-
pothesis, contradicts the predictions of several other
models of hyperon decay. In particular, it disagrees

2

with the bound-pion model of Barshay and Schwartz,?
in which the A decay is taken as the primary decay,
and thus invalidates one of the arguments used by
Nambu and Sakurai in favor of odd Z-A parity.? We

* This work was done under the auspices of the U. S. Atomic
Energy Commission.

1 On leave from the Tata Institute of Fundamental Research,
Bombay, India.

1 On leave from the Atomic Energy Establishment Trombay,
Bombay, India.

LE. F. Beall, B. Cork, D. Keefe, P. G. Murphy, and W. A.
Wenzel, Phys. Rev. Letters, 7, 285 (1961).

2 S. Barshay and M. Schwartz, Phys. Rev. Letters 4, 618 (1960).

3Y. Nambu and J: J. Sakurai, Phys. Rev. Letters 6, 377 (1961).

have, therefore, considered a simple self-consistent
model in which both these decays are treated as equally
fundamental, with parameters to be determined by
requirements of consistency. We have, then, tried to
seek answers to the following questions: (1) Are there
solutions other than the global-symmetric one that fit
the experimental data? (2) Does odd Z-A parity fit the
data better, or vice versa? (3) Can one predict which
of the two decays—Z=+— nxt or 2~ — nr——goes into
s wave and which into p wave? With regard to the last
question, it has been well known for some time, from
the experimental data on the 2 triangle of Gell-Mann
and Rosenfeld,*® that one of these decays must go into
s-wave and the other into p wave, but it has not been
possible so far to say which goes to which.

4 M. Gell-Mann and A. H. Rosenfeld, in Ann. Rev. Nuclear Sci.
7, 407 (1957).

5B. Cork, L. Kerth, W. A. Wenzel, J. W. Cronin, and R. L.
Cool, Phys. Rev. 120, 100 (1960).
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THE MODEL

Ours is essentially an S matrix approach carried out
in the pole approximation which has given reasonable
results in the theory of strong interactions and has
also been successful in the treatment of the = decay.
The diagrams considered are shown in Fig. 1. The
contributions of the black boxes to the matrix elements
are shown in the figure.®=® Here, g, ga, g= are coupling
constants; aa, as, b, bz (as also gy, gz) are to be fitted
from experiment!’; and T' takes the value 5 or 1 ac-
cording as the relative Z-A parity is even or odd. Time-
reversal invariance implies that &, and bz are real.
Then the matrix elements for =+ — pr°, 2+ — nrt, and
2~ — nw, respectively, are given by

Mo=V2[Bx(gz+gn)+ivsdz(gz—gn) ],
M ={Baga— Bx(gs+2gn)+ivs[Arga—As(gz—2gn) 1},

and
M_= [:BAgA—{—Bzgz-i-i‘Ya(A AgA+A 282)]~

Here we define

Bz=(asbs)/ (ms+my) and Asz=asz/(mz—my),
Ba=anbs/ (mr+mn)

for I'=+;, and

and Ax=ar/ (mr—my),

Br=iar/(ma—my) and Apr=1iasbn/(mr+my)
for I'=1. Also, we have
M x=V2[[(Bagn— Bsgn) —tvs(Angn+4:g4) ]
for I'=+;, and
M= —V2i[ (Argn+Azgn) —ivs(Bagn—Bzga) ],

for I'=1. Introducing the conditions that the asym-
metries in 2+ — nrt and =~ — nr— are zero, and that
the s/p ratios in 2+ — pa° and A — pr— decays have
values xo and xa, respectively, we can eliminate the

6 We have used the |AT| =% rule in writing these contributions.
Until the recent experimental results of Beall ef al. (reference 1),
Fowler et al. (veference 7), and Leitner et al. (reference 8), there
has always been the possibility, emphasized by Okubo et al.
(reference 9) that the | AT| =3 rule for A decays could be accidental,
since the same branching ratio in A decay is also predicted by the
current-current form of the universal Fermi interaction which
violates the |AT| =% rule. However, the prediction of the latter
theory that the proton helicity in A decay must be negative is
contradicted by these experiments, and one is now left with the
|AT| =% rule as the only explanation of the observed branching
ratio in A decay.

”W. B. Fowler, R. W. Birge, P. Eberhard, R. Ely, M. L. Good,
W. M. Powell, and H. K. Ticho, Phys. Rev. Letters 6, 134 (1961).

8 J. Leitner, L. Gray, E. Harth, S. Lichtman, M. Block. B.
Brucker, A. Engler, R. Gessaroli, A. Kovacs, T. Kikuchi, C.
Meltzer, H. O. Cohn, W. Bugg, A. Pevsner, P. Schein, M. Meer,
N. T. Grinellini, L. Lendinara, L. Monari, and G. Puppi, Phys.
Rev. Letters 7, 264 (1961.)

9 S. Okubo, R. E. Marshak, and E. C. G. Sudarshan, Phys. Rev.
113, 944 (1959).

10 These six parameters have to fit six experimental numbers—
four decay asymmetries and two lifetimes. However, it is not obvi-
ous that a fit will be obtainable with reasonable values of the
coupling constants.
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Ax, As, By, and Bz and get a relation between the
various strong-coupling constants. Another relation be-
tween the coupling constants is given by the ratio
|Mx|/| M|, which is known from the measured life-
times of = and A.* We now have four cases to consider:
I'=1orv;;and pure s wave or pure p wave in =+ — nrt.
The corresponding relations between the coupling con-
stants are given below.

Case I. T'=+v;; 2+ — nxt, s wave.

(gz—gn) (g2 +g=gn) XAMA

(gz+gw) (ga2+gzgn—2gn%)  wouz’

1
3

g’ tgzgn . | M 4| /1+x02 xi)
oaleztan) | Mo \MAag x
Case II. T'="s; Zt — nrt, p wave.

(g2—gn) (gn’—gogn—2gn")  Zaua

(g=tgw) (ga*—g=gw)

- b)
Youz

gt —gsgn B ]MA|/1+9€02 Mf)%
gr(g=—gn) | Mo \1+a? p2)

Case III. T=1;Z*— nxt, s wave.

(g=—gn) (ga®+g=gw) 1

(g=+en) (ga*+gagn—2¢n")  ®o¥auzus

g2t gsgn IMA[/1+x02)* 1
=4 —_
galgzten) | Mol \1ay?
U For recent measurements of the lifetimes, see William E.

Humphrey, Lawrence Radiation Laboratory Report UCRL-9752,
1961 (unpublished).

ToMA
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Case IV. I'=1, Z+ — nxt, p wave.

(gx—gn) (ga’—gsen—2g5") 1

b
XOXAMZUA

(g2+gn) (ga2—g=gn)
gl —gsgn | M| (1+x02)§
==+ AR .
ga(g=—2gw) | M| 14242

Here us and ps—kinematical factors for A and = decays,
respectively—are given by

MA= QA/ (EA‘{'mN)—'l’0.0SS
and
uz=qz/ (Es+mn)~0.10,

where, g and ¢z are the momenta, and E, and Es the
energies of the proton in the decays at rest of A and Z,
respectively. When the |AT| =1 rule is assumed in the
analysis of experimental data, x¢ is known to be® very
nearly —1, while x4 has a greater uncertainty attached
to it. For further discussion, we shall take xo=—ux,
=—1,and |M4|/| M| =1, which values are consistent
with the experimental data. To simplify the calcula-
tions, we will also take ua=0.05 (instead of the more
exact value of ~0.053). We then get the following solu-
tions for the coupling constants:

Case I. T'=+;, Zt — nrt, s wave.?

— 2
£z= —38n,

gl=gx"=(4/9)gn*

Case I1. T'=+~5, Tt — nrt, p wave.

g==—(5/3)gw,
ga2=g:*/25=¢gn*/9.

Case III. T'=1, 2% — nrt, s wave.
g2=—4gn,

ga23g N2

Case IV.T'=1, Zt — uxt, p wave.

2:~0.02gy,
gﬂzZng?zO.OlgN%

12Tn this case, gz=--ga=1 might appear to be an acceptable
solution. A look at our expression for M, shows, however, that
these values of the coupling constants would give zero asymmetry
in 2t — px0,

13 This is the only solution where all coupling constants are
nonzero. One could write down two other solutions in this case:
(i) g===ga=1 which is not acceptable for the same reason as in
case I; (ii) gz=0, ga==2. Though the possibility of a vanishing
ZZm coupling has been considered by some authors in the discus-
sion of the branching ratios of Y* etc., we have, as discussed below,
thought it more interesting to look for solutions where all the
strong coupling constants are of the same order. For the same
reason, we are neglecting an alternative solution to case III, viz.
gz~2, gp==1/30.

M. UDGAONKAR

DISCUSSION

In the absence of definite knowledge of any of the
strong strange-particle coupling constants, it is im-
possible to make a clear choice between the four cases
considered. We have, therefore, taken the following as
an additional criterion in the choice of a favored solu-
tion: that all the strong couplings be comparable with
each other. In that case our results above may be taken
as an indication that the decay =+ — nr* takes place
in the s wave. If it took place in the p wave, one would
have gs2~25g,* for the case of even Z-A parity, and
ga2~25¢52~0.01gx? for the case of odd Z-A parity. The
question of relative =-A parity is somewhat more diffi-
cult to decide.* But if neither of ga? and gsz? is to be
greater than gy?, we are left with I'=+s, i.e., even Z-A
parity. The case which thus remains (Case I) is of the
global symmetry type'®!® in that gs2=gs

Once we have thus chosen the g’s the parameters
as, a3, ba, and by are completely determined in this
self-consistent model. We will not, however, give ex-
pressions for them, since we have no way of deciding
what should be the reasonable values for them until we
have analyzed the weak boxes further. When that is
done, we hope we can make more definite statements
about all these questions and about the relative Z-A
parity in particular. It may also be remarked that in
the above calculation, only the relative sign of %, and
x4 has been used, and not the absolute sign of either. The
latter affects only the signs of a’s and b’s.

We would like to remark upon the relation of our
model to the similar models of Feldman et al.,'” and of
Wolfenstein.!8 Feldman ef al. take K poles also into
account, in the spirit of a completely dispersion theo-
retical approach, where no particles are to be regarded
as more fundamental than others. In doing so, however,
they introduce two additional parameters—(grafx),
(gx=fx), where fx is the strength of the Kr vertex—
into a problem in which there are already a large
number of parameters. It is then impossible to make a
definite statement on any of the questions to which we
have sought answers. In fact, it is impossible even to

1 We could perhaps make a somewhat stronger statement in
discarding case III, if we note that in this case where Z and A
have opposite parities one of the coupling constants gz, ga is a
scalar coupling constant while the other is a pseudoscalar coupling
constant. With our criterion, the scalar coupling constant would be
expected to be ~0.1 g2.

15 Note that our result gs?=ga? refers to the renormalized cou-
pling constants of conventional field theory, and not to bare
coupling constants as in the usual symmetry schemes based on
Lagrangians.

16 There is, however, an important difference. Our solution has
a negative relative sign for gs and gy, whereas global symmetry
has a positive relative sign. In fact, the calculations of g J.
deSwart and C. Dullemond [Ann. Phys. 16, 263 (1961)] are
sensitive to this relative sign, and if our preferred solution is the
correct one, it would be an evidence against global symmetry.
We are indebted to Dr. J. J. Sakurai for pointing this out to us.

17 G. Feldman, P. T. Mathews, and A. Salam, Phys. Rev. 121,
302 (1961).

18 L. Wolfenstein, Phys. Rev, 121, 1245 (1961).
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predict the relative helicity of the protons in the =+
and A decays, which depends on the sign (ggs/gga) in
the case considered by them in detail. In our model, on
the other hand, the same helicity for the proton is
almost definitely ruled out if the relative =-A parity is
even, since a fit requires gz=2gy, ga= £ 2gy for Z+— nrt
going in s wave, and gz*= (8.54£2.9)ga?, ga?= (gz+2gn)?,
for Z+-— nxt going in p wave. The choice is more
difficult in the case of odd Z-A parity, since the values
of the coupling constants turn out to be practically the
same as those which give rise to opposite proton
helicities in the two decays.

Wolfenstein’s model assumes that K decay is the
more fundamental decay and that = and A decays are
secondary. He, therefore, neglects baryon poles com-
pletely, but has to include two-particle intermediate
states. His model, like that of Feldman et al., also has
(KYN) vertices, and his prediction regarding the
angular-momentum states involved in > * decays into
a neutron depends on the (KVN) and (ZA) parities
assumed. Further, while in our model the fact that
2t — nat goes into s wave and 2~ — na~ into p wave
is due to a dynamical cancellation between various
diagrams, in the model of Wolfenstein, the 2+ goes
into s wave only because a certain parity is assumed for
the K meson and for (ZA), so that only a single diagram
(K-pole diagram) contributes to it.!?

1 Wolfenstein’s expressions could be used to evaluate gs/ga
from his model in the way we have done. In the case considered
by him, if one assumes xo=—x4 and |Ma|=|M,|, one is led to
ga=gy in his model too. It is curious that with both, our model
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We have already remarked about our omission of the
K-pole diagrams. Apart from the fact that their inclu-
sion would have increased the number of parameters
in the problem, we were encouraged to neglect them by
the frequently expressed conjecture that the K couplings
are weak compared to the = couplings. It is, therefore,
interesting that we are able to fit the experimental
data without the inclusion of these diagrams. We have
also omitted diagrams involving more than one-particle
intermediate states, which would have to be included in
a complete S-matrix approach. The lowest mass two-
particle diagram has a pion and a nucleon in the inter-
mediate state. Because the J=% N interaction is
known to be small at the relevant energies, the con-
tribution of this diagram may be expected to be small.
We expect the #Y intermediate-state diagrams to
make an even smaller contribution since there is no
strong J=% interaction of the #¥ system either.?
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which includes only baryon poles and excludes K poles, and
Wolfenstein’s model which excludes baryon poles, one is led to a
global-symmetric solution.

2 Note that the only charged Y* known has a spin >3; see
Robert P. Ely, Sun-Yiu Fung, George Gidal, Yu-Li Pan, Wilson
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A rigorous mathematical discussion of the N /D method is presented. It is shown in particular that we
can always make sure that the N/D solution is the correct one in the sense that the D function has no
redundant zeros, by examining the high-energy behavior of the phase shift in the solution obtained. It is
also shown how the N/D method exhausts all the possible solutions of the original equation systematically
according to the high-energy behavior of the phase shift. Virtually, the same arguments are shown to be
applicable to the inverse method. It is, however, pointed out that the &//D method is preferable to the inverse

method for both technical and physical reasons.

1. INTRODUCTION AND THE STATEMENT
OF THE PROBLEM

HE N/D method! has been widely used in the
dispersion theoretic approach to the scattering
problem; the partial-wave scattering amplitude F(z)

* This work was supported by the National Science Foundation.

t Now at Department of Physics, Hokkaido University,
Sapporo, Japan.

1See, for example, J. S. Ball and D. Y. Wong, Phys. Rev.
Letters 7, 390 (1961), which quotes virtually all other references.

(z stands for the complex c.m. energy) is represented as

F(2)=N(2)/D(3), 1)
where N (2) and D(z) are individually analytic every-
where except for certain poles and cuts, and the coupled
equations for N(z) and D(2) are solved. The inverse
method,? which deals with the equation for the inverse
amplitude has also been used.

2 B. H. Bransden and J. W. Moffat, Phys. Rev. Letters 6, 708
(1961) 8, 145 (1962).



