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General forms of cross sections for the neutrino and antineutrino reactions at high energy are discussed.
Consequences of the point structure of lepton currents are investigated. Particular efforts are made to
separate out the results that are implied by diferent assumptions concerning weak interactions such as time-
reversal invariance, conserved vector-current hypothesis, and

~
nl~ =1 rule.

where

j~(x) = —iLA'747~(1+Vs)4. 3, (2)

ji*(x)= —i'll '&4»(1+Vs)ll ij, (3)

l stands for either e or p, p„and lt i are the field operators
for v and t, respectively. J), and Jz* are current
operators that act only on the strongly interacting
particles. Because of the Hermiticity of Z,«, we have

Ji,*=rl&J&t, (j =Hermitian conjugate), (4)
where

rig ——+1 for X=1 2 3
and

g),
———|for X=4.

The nature of J), and J),*are known so far only in a
few cases. In the relatively high-energy range (mo-
mentum transfer a few hundred Mev) some limited
information of the matrix elements of these current
operators has been obtained from x decay and the
leptonic modes of K decay and hyperon decay. The
most extensively studied case is P decay in which only
momentum transfer of the order of a few Mev is
involved. In such a low-energy limit, the matrix
elements of Jz and J),*are given by

and
(p ~

J& ts) = (i/&2)u„ty4y&, ,(G& G&ys) u„(6)—
(tr

~
Ji,*~ p) (s/&2)u=„y4yi (Gv* G~ ps)u„(7)—

where the symbol * on a c number means complex
conjugation, N„and N„are the spinor solutions of the
free Dirac equation with the same four momenta as
the physical neutron and proton; Gy and G~ are the
Fermi and Gamow-Teller coupling constants. Because
of the presence of strong interactions and the possi-
bility that the weak interactions may be transmitted
through an intermediate Boson, ' it is expected that in

' If the weak interactions are transmitted through an inter-
mediate boson S', we choose the heavy particle current operators
J), and Jq' to include the propagator of 5'.

I. INTRODUCTION
' 'N the present theory of weak interactions it is
~ ~ assumed that all weak reactions which contain
leptons and other strongly interacting particles can be
described by an effective Lagrangian of the form

the high-energy range special forms like (6) and (7)
do not hold and, in general, the behavior of the heavy-
particle currents would be quite complicated.

On the other hand, one expects the lepton currents
ji(x) and j&,*(x), which interact only at a single space-
time point in (1), to have a wider range of applicability.
The recent possibility of doing high-energy neutrino
experiments' makes it, perhaps, feasible to establish
the validity of this particular form of leptonic currents
to the Bev range. It has already been pointed out4'
that the assumption of such a point structure of the
lepton current introduces strong restrictions on the
general forms of the cross sections for all neutrino and
antineutrino reactions. In particular, the rates for
reactions with different neutrino momentum k„and
different final lepton momentum k& are mutually
related, provided that in these reactions the energy
transfer E—m and the magnitude of momentum
transfer I' between the leptons and the strongly inter-
acting particles are the same. (The only complicated
and unknown part of the Lagrangian is the current J.
For two reactions with the same E—m and I', the
matrix elements of J are related. Hence, the rates of
these two reactions are related. ) Some of these relation-
ships have been stated in references 4 and 5. The
purpose of this paper is partly to supply the mathe-
matical details of these relationships and partly to
give a more systematic discussion of the various theo-
retical implications of the high-energy neutrino ex-
periments. Efforts are made to separate and dissociate
the consequences that are implied by different assump-
tions concerning weak interactions such as time
reversal invariance, the possible existence of a

~

AI
~

= 1

rule, the conserved vector current hypothesis, etc. For
the sake of clarity, the results are stated in the forms
of several theorems.

In view of the present technological difficulties in
performing the high-energy neutrino or antineutrino

2At the moderately high energy, the validity of the point
structure hypothesis for the lepton currents can be tested by
analyzing the leptonic decay modes of E' decay. See A. Pais and
S. B. Treiman, Phys. Rev. 105, 1616 (1957).' M. Schwarts t Phys. Rev. Letters 4, 306 (1960);B.Pontecorvo,
Soviet Phys. —JETP, 37, 1751 (1959). For further references see
Proceedings of the 1960 Annual International Conference on High-
Energy Physics at Rochester (Interscience Publishers, Inc. , New
York, 1960). We are informed that such experiments are in
progress at the Brookhaven National Laboratory and at CERN.' T. D. Lee and C. N. Yang, Phys. Rev. Letters 4, 307 (1960).' T. D. Lee and C. N. Yang, Phys. Rev. 119, 1410 (1960).
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experiments, it seems also useful to assume (at least
for the immediate future) the validity of the point
structure of lepton currents, time-reversal invariance,
and the conserved vector-current hypothesis, and to
utilize the experimental results to measure the unknown
matrix elements of Jq such as the axial-vector form
factor. Specific discussions on this aspect are given in
Sec. III 4.

Throughout this paper we only consider the weak
interaction to the lowest order.

II. NOTATIONS

In the subsequent sections, we will consider reactions
of the general type

v(or v)+nucleon (or nucleus) —+ P+
but without the production of any intermediate bosons.
The l+ can be either e+ or p+ depending on the nature
of the incoming v (or v). The following basic notations
will be used throughout the paper: (All momenta and
energies are in the laboratory system. )

A=c=1'

k„, k = momenta of v (or v) and P, respectively;

P= (k„—ki);

k„, ki, P= [k„[, [ki[, [P [, respectively;

s and x axes are parallel to P and (k„XP), respectively;

8= angle between k„and ki,
g= angle between k„and P;

mi m= masses of / and target nucleon (or target nu-
cleus), respectively;

Ei= (mi2+ki2)l.
E= (k,+m —Ei);
vi= velocity of P= (ki/Ei);

M = (E'—P')'*;

q'= (4-momentum transfer)'= P' —(E—m)2;

and
v+P ~ n+l+,

in which the velocity v& of the lepton can be regarded
approximately as 1. In this special case, we have

ol

E= (m'+P') &,

(k.—ki) = (E—m);

q'= 2m(E —m),

q'= 2k„ki(1—cos8).

(10)

(11)

(12)

da-= (Smk ')—'L(k +ki)' —P'j
X/xa +x ~,+f$Z(q), (14)

where
x= (k„+ki+P) '(k„+ki P), —(15)

and a+, b are real positive functions (called structure
functions) of q' only.

Proof. To prove (13) we note first that in the special
case e&= 1, there is only a single spin state for the lepton.
Furthermore, the corresponding matrix elements (ji,)
satisfy

(k.—ki) &(j&)=0,

The differential cross sections for reactions (8) and
(9) depend only on two independent variables which
may be chosen to be k„and q2. The following theorem
shows that if the Lagrangian has the "point structure"
property for the lepton current as given by (1)—(3),
then independently of the detailed form of J)„ the
differential cross sections for both reactions (8) and
(9) (after summation over the spin directions of the
initial and flnal nucleons) can be expressed in terms of
three real functions which depend only on one variable
gI2

Theorem 1. If v~=1, the differential cross sections for
(8) and (9) can be expressed in the form:

do. = (Sark,2) 'L(k„+ki)' —P'$
XP«++* ~+&)-d(q) (13)

/=spin of the target nucleus (which is always un-
polarized).

which means

(j4)=i(E—m)-'P(j, ). (17)

It is found useful to introduce the following three
functions of k„, k~, and P:

Using (2) and the coordinate system chosen in Sec. II,
the other spatial components of (j) are found to be

and

x= (k,+ki+P) '(k„+ki—P);
y= (k,—ki+P)-'( —k„+ki+P);

6= (4mk q') 'k)[ —(k —ki)'+P')L(k, +ki)' —P'j

III. NEUTRINO REACTIONS WITHOUT MESON
PRODUCTION AND v =1

1. Cross Sections

We consider 6rst the simple reactions,

v+n —+ P+I

(j „j„,j,)=—2[ i sin~8, sin g+ 28), cos(P+28) $. (18)

Next, we analyze the initial and final nucleons in
terms of definite spin states s along the P direction (in
the laboratory system):

s=g(i.e., -', ) or $(i.e., ——',).
For the no-spin-flip case nt —+ pt or n4 —+ pi, the

matrix elements of J, and J„are zero. By using (17),
we observe that only the matrix elements of f(E m) J, —
+iPJ4] contributes to the cross section. For the spin-

(8) flip cases n4 —+ p& and nt —+ p4, the only matrix
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elements that contribute are that of (J +iJ„) and
(J —iJ'„), respectively. Summing over all possible
nucleon spin states, we obtain expression (13) for
reaction (8). The functions a~ and h are related to the
matrix elements of J& by

~+= (E+m) '(2E) I&p~»l J l«0&l'
~-= (E+m) '(2E)

I (p~,P I
J.

I nt, O&
I

',
and

h=(mP') —'E p I(p„PI(E—m)J,

+i»4ln, o&I', (»)
where the states ln„o) and

I p„P) refer to that of a
nucleon with spin s and momenta 0 and P, respectively.
These are all functions of q' only since I' and E depend
only on q~.

To prove (14), we notice that the matrix elements of
jz* are related to that of jz by the operation of CR,
(where C= charge conjugation and R,= reflection with
respect to the y-s plane), which changes v, f, (left-
handed) to v, l+ (right-handed) but leaves their linear
momenta unchanged. Therefore,

into
I
n„o) and

I p„P), respectively. Therefore, we
obtain

Iu+= u+ . (24)

In an identical way, it can be shown that

and
u =u )

(25)

Theorem 1 is, then, proved.
R turks.
(i) By using (6), we obtain at q'=0,

a (q'=0)=a (q'=0) ——,IGNI'

b(q'=0) =
I
Gv I'.

(26)

A= I'),+~),. (27)

(ii) The validity of theorem 1 depends only on the
special form, Eqs. (1)—(3), of the effective Lagrangian
and is independent of any assumptions about Jz such
as time reversal invariance,

I
DII =1 rule, etc.

(iii) It is useful to express Jq as a sum of a vector
part V), and and axial-vector part A)„

and
&j.*&=+&j.&

&jz*)=—(j&,) for XNx. (20)

Under a reflection with respect to the (y-s) plane, a~
Lgiven in (19)$ becomes

a~ = (E+m) '(2E)
I (pg, P

I
V —A,

I nt, 0) I
'.

Applying our previous discussions to reaction (9), the
following expression for the differential cross section
do-„- can be readily derived:

da y= (8mh ') 'L(h +h ()'—J"j
XLxa '+x 'a '+h'jd( ') (21)

where
~+'= (E+m)-'(2E) I&p~,PI J.*lp~, o&l',

8 '=(E+m) '(2E)I(ng, P J,*lpg,O)l',

and

h'=(mP') 'E g l(n„PI (E m)J.*—
s=f, $

+a J4*Ip., o)l'. (22)

It is important to observe that because of (20) the
relative rates for the two spin-flip cases g ~ f and g ~ g
are now given, respectively, by x 'u+' and xu '; while
for ~ reactions they are xu+ and x 'u, respectively.

We then use the Hermiticity condition, Eq. (4),
which relates, e.g. ,

&nt, PI J.*Ip~,O&=&p~, OI J*lnt,P)*, (23)

where the * on the right-hand side means simply the
complex conjugation. A 180' rotation around the x axis
changes the matrix element I&p&,ol J, lng, P&l' into

I (pg, 0
I
J

I nq, —P& ', which can, in turn, be shown to
be identical with &p&,PI J' I«,0&l' by a subsequent
simple Lorentz transformation that leaves x and y
axes unchanged but transforms

I n„P) and
I
p„o&—

Therefore, the difference between a+ and a (con-
sequently, also the difference between da.„and da. „-)

depends only on the interference term between Vz and

2. An Alternative Form

It is also possible to derive theorem 1 by working
directly with the general covariant forms of the matrix
elements of Jq and J)*:
&pl J~ln) = (ilv2)n. 'v4b~(gv+gA75)

+i(n),+p~) (fv+f~V s)

+i(n~ px) (hv—+h~vs) jn (28)
and

&nl J~*lp) = ('W&)N-'v4Lv~(gv*+g~'v. )
+i (p),+n~) (fv* f~"y~)—

+i (p), ng) ( hv*+hg—*y5))u—~, (29)

where nz and pz are, respectively, the four-momenta
of the states n and p; gv, g~, h~ are complex func-
tions which depend only on q'. The Fermi and Gamow-
Teller constants are related to these functions at q'=0:

gv(q'=0) —2mfv(q'=0) =Gv—10 'm '
and

gg (q'= 0)= —Gg—1.2Gv.

If n~
——1, then because of (16), hv and h~ do not

contribute to either reaction (8) or reaction (9). The
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relevant matrix elements depend only on four (complex)
functions gv, gg, fv, and f~ I.n terms of these four
functions, the previously obtained three (real) structure
functions u~, b become

3. Simple Consequences of Theorem 1

In this section, we list some simple consequences of
theorem j..

(3&)

(i) In the forward direction, 0= 0 (consequently,
q'=0). For arbitrary k„

nd
do =d~-=(2w) '[IGvl'+ IG~I']d(q')

b= (E+m) '(2m)[lgv —fv(E+m) I'+
I
f~PI'] (») (;;) At arb;„ary angle g and „b;„„yk

Remarks.

(i) If time reversal invariance holds, then gv, gz,
fv, f~ are all real functions.

(ii) It has been proposed' that for those weak re-
actions that conserve the strangeness quantum number
S among the strongly interacting particles (i.e. , AS=0),
the corresponding change of isotopic spin obeys the
lhIl =1 rule~ which implies that the heavy-particle
currents J), and J),* are components of a single spin
vector':

dov doe
([(k„+k()'+P'7 '[2P(k„+k()]. (38)

do p+do p

(iii) In th.e low-energy limit k„—«0, the maximum
value of q' 4k,'~0. The cross sections do-, and dtT„-

become (to the lowest order in k„)

do „=do p
——(2ir)

—'k„'[l Gv
l
'(I+ cosfl)

+ lG~ l'(3 —cosg)]d(cose). (39)

(iv) In the very high energy region,
(32)Jx*=—[exp(iwI„)] Jan[exp(

—iirI, )7,
lim do.„=lim do.p= (27r) '(a++a +b)dq'. (40)

A; lp~00 Q @~00

(v) If the integral J's" (a++rp +b)dq' exists, then in
the very high energy region,

lim do„= lim dop ——(2z.) '
Py~oo v

—pm
(a++a +b)dq'. (41)

(33)

where exp(iwI„) is the 180' rotation along the y axis
in the isotopic spin space.

If the lhIl =1 rule holds, then gv, g~, fv are real
but fz is pure imaginary.

(iii) If both time reversal invariance and ldIl =1
rule hold, then

and gv, g~, fv are real. In this case, measurements on
cross sections do-„and do-„- are sufficient to determine

gv, gx, and fv:
g =(I/v2)[( -)'*+( +)'7,

(E+m) 'Pgv= (1/%2)[(rp )'*—(a )'*]

(34)

(35)

gv —(E+m) fv= [gm 'b(E+m)]'*. (36)

(iv) If either time reversal invariance or ldll =1
rule holds but not both, then (34) and (35) are still
correct. Measurements on do-„and do-; determines only
gv and g~. To obtain fv and fA, polarization measure-
ments become important. (See Sec. III 5.)

' The
~
nl (

= 1 rule follows if the schizon scheme of reference 5
is correct. However, the validity of

~
DI~ =1 rule has a much wider

basis and should be discussed independently of the existence of
intermediate bosons. For example,

~
LH~ =1 rule also follows if one

assumes J&,= (pGv/v2)gi, ty4y&, (1+pp)iP„, where f„a dp„narc the
(unrenormalized) operators for the nucleons.

r To be specific, the
~
nl~ =1 rule is defined as follows: For the

case dS=O, the heavy particle current operators J), and —J~+
transform under an isotopic spin rotation like the (1=1,I,=tl
and I=1, I,= —1) components of an I= 1 multiplet, where we
use the notation of A. Edmond, Angular JtIIomentumin QNuntgm
Mechanics (Princeton University Press, Princeton, New Jersey,
1957). Notice that in this de6nition not only must Jz and J ~
each individually transform according to I=1, but they must
belong to the same multiplet. In this sense the ~nI~ =1 rule is
stronger than the tnIl =-', rule.

4. Measurement of Form Factors

To measure the form factors it seems desirable, at
least for the present, to assume time reversal invariance
and the

l DIl =1 rule so as not to have too many un-
known functions. Under these assumptions, f~ =0 as
shown in III 2, and substitution of (31) into (13) and
(14) gives

d~.(-l = (4w) '(dq')((2k') 'q'(g~' gv')+ (—g~~gv)'
+[1—(2mk„)

—'qs]'(ggWgv)'

+[2—(2mk.s) 'q'(m+2k„))
&([(4m'+q') fvs 4mfvgv)}, —(42)

where the upper and lower signs refer to p-reaction (8)
and P-reaction (9), respectively. For sometime to come,
because of lack of detailed experience data, these
equations would undoubtedly be still insufficiently
restrictive to determine the three form factors g~, fv,
and gg. It is therefore desirable to introduce further
assumptions.

It has been proposed by Feynman and Gell-Mann'
that the vector part of Jj, satis6es a conservation law
and that it is proportional to the corresponding
isotopic vector part of the electromagnetic current.
Let F0(qs) and Esp(qs) be, respectively, the isotopic

R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).
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vector part s of the charge and magnetic form factors
for the nucleon. %e have'

g v =Gv P'9+ (IJ, p—)&sr]

fv=Gv(2m) '(), l .—)&,v, (43)

where Ilg and F~ are normalized to unity at q'=0;
p„—1.79 and p,„——1.90 are, respectively, the anoma-
lous part of the magnetic moments of proton and
neutron in units of the nuclear Bohr magneton. The
form factors Ii@ and Ii,l~ have been measured" ex-
tensively by the electron scattering experiments.

Using the proportional current hypothesis the only
unknown form factor in (42) is g~. It can be measured
by measuring either do-„or dg. „-. in particular, the
difference,

(do.—do. ;)= (s.mk„) 'q'$1 —(4mk„) 'q']gvgxd(q'), (44)

gives a sensitive determination of gg. LSee (97) and
(99) for the modification of above equations if et/1. ]

Consider an experiment with a neutrino (or anti-
neutrino) beam whose spectrum is I(k„)dk„I.et.
cV(q')dq' be the number of events with a (four-mo-
mentum transfer)' between q' and q'+d(q'). It is
useful to define the moments I„of the incoming
spectrum:

I„=J.(q') —= (4ir)-'(k.)-"I(k.)dk„

where the integration extends from hami+ (2m) 'q'] to
~ and m=0, 1, 2. The number of events for reactions
(8) and (9) at a given q' can be obtained from (42) by
integrating over the incoming spectrum:

P'(q')]. i.-l = llsq'(g~' —gv')+Is(g~~gv)'
+Ps Ii(q'/m)—+:Is(q'/m)'-](f~~gv)'
+L2Ip —Ii (q'/m) —rsIsq']

X $(4m'+q') fv' 4mfvgv], —(45)

where the upper and lower signs are for v and r re-
actions, respectively. By using (43) and (45), g& can
be directly deduced from the experimental results.

S. Longitudinal Polarization

In this section we discuss briefly the longitudinal
polarization of the final nucleon for reactions (8) and

'If the weak interactions are transmitted through an inter-
mediate Boson W than (43) should be changed into

gv =GvPFq+ (py p„)Esr]$1+m rr 2gs5—
and

fv=Gv " F~ 1+mw 'g',
where mdiv is the mass of S'.

' See, e.g., the review article by R. Hofstadter, S. Bumiller
and M. R. Yearian, Rev. Mod. Phys. 30, 482 (1958). For some
of the more recent measurements, see D. N. Olson, H. F. Schopper
and R. R. Wilson, Phys. Rev. Letters 6, 286 (1961);R. Hofstadter,
C. de Vries and R. Herman, Phys. Rev. Letters 6, 290 (1961);
R. Hofstadter and R. Herman, Phys. Rev. Letters 6, 293 (1961).

It is clear that d is a function of q' only. In terms of
gv, fv, etc. , d can be written as

d=(E+m) . '(2mP){[ gv+f—v(E+m)]*fg+cc.
E.

embarks.

(i) In the forward direction 8=0,

(s)„=(s)„=0.

(ii) In the low-energy limit (q' —& 0),

(s).=(s)-=o.

(iii) In the very high energy limit (k, ~ po),

(s),= —(s)„=(a++a +b) '(a+ a+—d)—
(iv) If

~

DI
~

= 1 rule holds (independently of whether
time reversal invariance is true or not),

IV. NEUTRINO REACTIONS WITH MESON
PRODUCTIONS AND vi=1

1. Cross Sections

In Sec. IV, we consider general reactions of the type

v+Ã ~ I'+I (47)

r+iV' —+ I"+I+, (48)

but retaining the approximation vt ——1, where E (or fi/')

represents an unpolarized nucleus and I' (or I") is an
arbitrary complex consisting of any number of strongly
interacting particles. The strangeness quantum number
of I' (or I") may be non-zero. For simplicity, we shall
consider in this paper only those cases in which I' (or
I") is a rioricokererst mixture of states with different
helicities, where the helicity of a particle or a complex
of particles is dered to be the quantum number of its
total angular momentum component along the direction
of its total momentum.

In this more general case the momentum P and the
energy E of the complex I' (or I") are independent
variables. It is convenient to call M, dered in Sec. II,

(9), assuming that the initial nucleon is unpolarized.
By using exactly the same arguments as that in Sec.
III 1 it can be shown readily that the average helicities
(s) of the final p and the final e at a given four-mo-
mentum transfer q' are given, respectively, by

2(s),= (xa++r, 'o, +b) '(xu—+ x '—u +—d)
and

2(s)„= (xa +x 'a jb) '(x 'a ——xa —d), (46)

where (s) is defined to be the s-component spin (s axis
parallel to P) averaged over s=-', and ——', ; a+, a, b are
given by (19) and d is given by

d= (mP') 'Ep(pt, P[ (E m) J,+iP—J4)rit, 0)['
—)(pi, P[(E m) J.—+iPJ4)mi, 0))']
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the effective mass of I' (or I").Apart from the intrinsic
characteristics of F and F', such as the nature and the
number of different particles involved, their isotopic
spin, etc., there are three indeperident variables, say,
k., ki, and 8. (Or, we may choose k., q', and M as the
three independent variables. )

If the "point structure" of the lepton current holds,
then for any arbitrary given F or F' the cross sections
do.,(I'), or do.„-(l"), can be expressed as sums of three
terms each of which has an unknown dependence only
on tao variables which may be chosen to be q' and M.

Theorem Z. If v~=1, the differential cross sections for
(47) and (48) can be written as'

do, (l') = (4irk, ) 'kiL(k, +kg)' —P'7
XLxA++x 'A +B7dkid(cos8) (49)

alid

do.v(I")= (4irk, ) 'kil(k, +ki)' —P'7
X(xA '+x 'A+'+B'7dkid(cos8) (50)

where x is defined in (15), A~, B (or A~', B') are
positive real functions that depend on only q', M, and
other intrinsic characteristics of the complex I' (or I").

Proof We foll.ow the proof of theorem 1 and resolve
I' (or I") and 1V (or X') into states with definite com-
ponents of angular momentum along P direction. These
angular momentum components are denoted by si and
s& respectively. For any given sr, reactions (47) and
(48) are then analyzed into noncoherent transitions in
which s~= si &1 and s~= si. For these transitions only
the matrix elements (sr

~
J*&iJ„~siir

——sr&1) and
(sr

~
(E m) J,+—iPJ4

~
sir = sr) contribute.

To obtain the density of final states one first con-
siders a single definite state of I' (or I") with an effective
mass M. The j'acobian for the transformation from the
variables M, q' to k& and cose is easily computed from

k,—ki =E—m q'= 3II'—m2+2mE—
and

q'= 2k,ki(1.—cos8).
One obtains

and

B'=g LMP'(2g+1)7-'(2E) p(M)

X ((sr ) (E m) J—.*+iPJ4*(ski ——sr) [', (53)

where the sum g extends over the appropriate mixture
si for the final state. For example, if F is polarized with
a definite helicity then there is only one term in the
sum. It is important to note that these structure
functions occur linearly in the cross sections. Thus,
theorem 2 can be applied to any sum of final states F
or F'.

Remarks.

(i) It is easy to see that if I" (or I") consists of only a
single nucleon, then p(M)=8(M —m) and (52), (53)
reduce to (19) and (22), respectively.

(ii) It has been discussed before4 that the validity
of theorem 2 can be tested by performing a capture
experiment with a neutrino (or antineutrino) beam of
a known spectrum I(k.)dk„and measuring for each
event the values of x, P and E. If Jq (x,P,E)dxdPdE is
the number of events, then theorem 2 implies that

I-lk 2MPdE= (al+a2x+aax2) (1 x)—4

where the integration extends over all events with
Axed x, and u~, a2, a3 are numerical constants.

2.
~
LI~ =1 Rule

That the v-reaction (4'7) is completely unrelated to
the v-reaction (48) in the case of ASTRO is obvious. If
AS=0, the rate for a neutrino reaction with meson
production can be related to that of antineutrino re-
action if the j AI

~

= 1 rule holds. This is to be contrasted
with theorem 1 which relates reactions (8) and (9)
through Hermiticity (independent of BI=1 rule).

Theorem 3. If
~
DI~ =1 rule holds, then in (49) and

(50)

2k,kimdkid cos8=Md(q')dM. (51) W,=W,' and a=a', (54)

One introduces the density of states p(M) so that
p (M)dM =number of states I' (or I")having an effective
mass between M and M+dM. Theorem 2 can then be
readily proved by summing over different spin con-
figurations and using the explicit form of j), and jz*
given by (17), (18), and (20). The functions A~, B
and A ~', B' in (49) and (50) are given by

A~= + LMP'(2/+1)7 '(2Eq') p(M)
X ~(sr~ J.~s~=sr~l)[',

B=g LMP'(2/+1)7 '(2E)p(M)
X [(sr ] (E m) J,+iPJ4 ) sx =—sr) ], (52)

A g' ——g [MP2(2y+1) 7-'(2Eq') p(M)
X [(sr[J *[Ar=sr~l)[,

provided that X' and F' are, respectively, the isotopic
symmetrical states of E and F; i.e.,

and
~

1lt') =exp(ill„)
~
iV)

~

r') = exp(ivrIv)
~

I').

do, (I') =do v(I"). (56)

Theorem 3 follows directly by applying (32) to (52)
and (53). The validity of theorems 2 and 3 is inde-
pendent of time reversal invariance. The following
equalities and inequalities are some immediate con-
sequences of the

~
EI

~

=1 rule and theorems 2 and 3:
(i) At 8=0, q'-=0, hence, A+ ——0. Therefore,
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(ii) At arbitrary 8, kg, and k„we have

do. (I')—do „-(I")

d~„(r)+do„-(r')
~ LP2+(k,+k,)2]-gL2P(k, +k,)]. (57)

(iii) In the limit in which k, ~ ~, but q', M (and
also other characteristics of I' and I"') are kept fixed:

&/.+Ij.*l &=+(/.-Ij.l ),

&/.+Ij.*l v&=+«.-I j.l ),
«R+lj~*lv&= —«~ lj~lv& for ~&~, (67)

(/1,+ I j~*l p& = —(/R I ji I v&

Similar to (20) the matrix element of jg,
* is related to

j), by

lim do„(1')= lim do„-(I")
k~co k~oO

V. GENERAL CASE ( vggl)

=2 LMP2(28+1)] '(2Eq') p(M)
x

I &sr I J.I sR =sr' 1& I
'~

B~——Q I MP2(2/+1)) '(2Eq')p(M)
x l(srl2(J, &iJ4) IsR=sr&l, (68)

C = —P LMP'(2g+ I)] '(2Eq') p(M)
XL(srl 2(J,+iJ4) I sg1 =sr&*

X(srl-', (J.—iJ4)
I
s~=sr&+c c ),

and

1. Cross Sections

All the previous theorems can be easily generalized
without the approximation v&=1. If v&/1, the helicity
of / becomes no longer definite. Let do„(l', /z, ) and
do, (I',/R ) be the differential cross sections for reaction
(47) in which the helicity of / is —

2 and +2, respec-
tively. Similarly, let dgr;(I', /R+) and da„-(I',/r+) be that
for reaction (48) in which the helicity of /+ is +2 and
—~, respectively. We now state the generalization of
theorem 2:

Theorem 4. A~'= P LMP2(2gI+1)) '(2Eq') p(M)
x I(sr I

J~*l sgg= sr~1) I'1

(59) Bg' ——Q LMP2(2gi+1)) '(2Eq')p(M)
x I&»I21(J,*~iJ.*)Is~=sr&l'

(60) C'= —Q LMP (2gi+1)) '(2Eq )p(M)
XL(sr I-', (J.*+iJg*)

I
sgr = sr&*

X( l
s'r(J,* -iJ4*)—

I
sag ——sr)+c.c.),

d „(I',/i ) =dkgd(cos8) (1+v )A—
X(xA++2g 'A +yB++y 'B +C)

dgr„(1', /R ) = dkgd(cos8) 2 (1—vg)A

XI xB++x 'B +yA++y 'A —C)

do.r(I",/R+) =dkgd(cos8)-', (1+vi)A
XfxA '+2g 'A+'+yB+'

+y 'B '+C')—(61) where the sum P extends over the appropriate mixture

of sp for the 6nal states I' or F'.
Remarks.

(i) It is clear that

and

do „-(I",/I+) =dkid (cos8)-', (1—vg) 6
XExB+'+*-'B '+yA '+y 'A+' C'), (62)—

The validity of (59)—(62) can now be readily estab-
lished by using the proof of theorem 2. Similar to (52)

= (22rrN) 'I A++A —+B)MdMd(q ) (58) and (53) the functions Az, B~, etc. are related to Jg
and J),*by

where x is de6ned in (15), Ag~0, By~ 0,

and
y = (k„—kg+P)-'( —k,+kg+P) (63) and

(70)

A = (4~k„q')—
'kgl —(k„—kg)'+P2)

XL(k„+kg)2 —P2]

where the functions A, 8, C, A', 8', C' are functions
only of q2 and M.

Proof. If vg/1, then instead of (17) and (18) the
matrix elements of jz for 6nal lepton states 31, and

l& are given by

(/I, I jg, l
g&=L2(1+vg))&L—i sin28, —sin(/+28),

—cos(&+M), i cos-,'8] —(65)
and

q2= LP2 —(k„—k,)'),
y+I (q2)

—1LP~ (E rgg))2

q'= —M' —2rg2+2rggE

Theorem 4 reduces to theorem 2, and

(yB++y 'B-+C)=B

(71)

Identical expressions also hold for A~', B~', and C'.

(ii) If vi=1, then do„(I',/R )=dgr„-(I",/i+)=0. Fur-

thermore, by using

«R
—

I jg I v&=L2(1—vg))&Lcos28, i cos(g/+28), —
i sin (g/+28), —sin128]. (66)

and

(yB,'+y B'+C') =B'. - (72)



2246 T. D. LEE AND C. N. YANG

2.
I
&II =1 Rule

Similar to theorem 3, we have
Theorem 5. If the

~
AI~ =1 rule holds then

these four cross sections several obvious simplifications
occur:

(i) The density of states p(M) is a 8 function

p(M) =5(3E—mr), (81)

da„(F,/zz ) da„(F',/r+—)-
do „(F,lzz )+do p(F', /i+)

~
t
P'+ (k.—k$)'g '[2P(k, —ki)]. (76)

(iii) If we increase k, but keep qz, M and the other
characteristics of F and F' fixed, then we have

lim da„(F,/a ) = lim dap(F', /I+) =0,
kv~ou kg-+co

(77)

C= C',

provided that the states E' and I" are, respectively,
the isotopic spin symmetric states of S and F.

The following equalities and inequalities are some
further immediate consequences of the

~
DI

~

= 1 rule:
(i) At 8=0, y=0, 6=0, but dy '&0. Therefore,

da, (F,/I, )=da;(—F', /Iz+). (74)

However, the cross section do„(F,/iz ) may be quite
different from da„-(F',/z+).

(ii) For all 8 and ki,

da„(F,/z )—do „(F',/a+)-
da„(F,/r, )+da„(F',—/~+)-

where mi is the mass of I'. Therefore, among q' and M
there is only one single variable. By using the trans-
formation

dkid(cos8) = (2mk, kiz) 'Ei3Ed(q')dM

the integral over dM can be easily performed.
(ii) For the reaction that produces Fz+ the function

A+ t defined in (68)j satisfies

A~(Fr, ) =0;
for the reaction that produces Fg+,

(Fg) =0.

Therefore, in general for any given spin ~ particle F
these four cross sections do, (F„l;) depend on eight
functions A~(FI„), 3 (Fzz), B~(FI), B~(Fg), C(FI,),
and C(Fg), each of which, apart from the trivial factor
8(M—mr), depends only on one variable.

(iii) If time-reversal invariance holds for the weak
interactions, then we have

B (F,)B (F,)=-,'EC(F,)l, (84)

where s=L or E. Therefore among these eight functions
only six are independent.

(iv) If vi
——1, then we have for the neutrino reactions

(independent of time reversal invariance),

da„(F„/zz ) =0, (s=L, E)
do„(Fr„/z,

—
)=dkid(cos8)h)x '2 (Fr)+B(FI)j,

lim da„(F,/r, ) = lim da„-(F',/a+) = do.„(I'), (78)
kv~m kazoo da. (Fg, /I,-) =dk„d(cos8)h(xA~(Fiz)+B(F~) j. (85)

where The cross sections do.„(F„/, ) depend, in this case, only

do„(F)= (2zrm) '{$3++2 +Cj+(q') ' on four structure functions.

)~zB +(,),~p+(& )j» ~
In an almost identical way all the above discussions

can be applied to reactions induced by v.

3. I (or I') =Single Spin —,
' Particle

Next, we consider the special case that in reaction
(47) I' is an arbitrary single spin —, particle (e.g. , F may
be 2+). Let da„(F„/,) be the differential cross section
for the reaction

v+zz ~ I',++l.
where s /or s'$=L or R depending on the helicity of
F (or /] being —~ or +2. The corresponding structure
functions for reaction (80) are denoted by A~(F,),
B~(I',) and C(I'.).

There are altogether four different reactions de-
pending on s, s'=L or R In applying theorem 4 to

4. I' (or I') =Single Nucleon

For completeness, we discuss again the special case
that F (or F') is a single nucleon but without the
approximation ~~ ——1. Similar to theorem 1, the
reactions,

and

v+zz-+ p,+l,

v+ p —+ zz, +/, +,

(86)

(87)

are related to each other through the hermiticity of
oC ff. (86) and (87) represent altogether 8 processes
depending on the helicities s, s'=L or K Theorem 4
can be directly applied to each of these reactions.
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Eliminating the trivial factor of b(M —m) in (59)—(62),
we obtain the following theorem for the diR'erentiaI
cross sections for (86) and (87):

Theorem 6.

Theorem 7. Independent of either time reversal in-

variance or the
~
EI~ =1 rule,

a~'(s) =a~(s), (s=L, R)

(E+P)b~'(L) = (E&P)bp(R),
(EWP)b~'(R) = (E+P)b~(L),

c'(R) =c(L),

do, (p„/r, ) = ,'(1-+v()K[xa+(s)+x 'a—
(s)

+yb+(s)+y 'b-(s)+c(s) ld(q'),

d~, (p.,t~-) =-', (1—~,)Z[xb, (s)+x-'b (s)

+ya+(s)+y 'a-(s) —c(s)jd(q'),

do„(v4,4-+) = ,'(1+-v,PC[xa '( )s+ x-' a~'( )s

+yb+'(s)+y 'b '(s)+-c'(s)7d(q')

(93)c'(L) =c(R).

Therefore, the eight processes (86) and (87) depend
at most on eight independent real functions of q'. By

and using (73) and (84), it follows that

(~ ) +) 1 (1+ )R'[ b I( )y —yb I
( ) (i) If time-reversal invariance holds, then among

these eight only six are independent. We have

where b+(s) b-(s) =-'Lc(s) j', (94)

a~(s), a~'(s), etc. , can be expressed explicitly in
terms of the six (complex) functions gy, gg ' ' ' hA

introduced in (28) and (29):
(i) Final nucleon state= pg.

(E~P)b~(R}= (E~P)b, (L)

c(R)=c(L).
and

&= (8~h„'Rpg~) —~[P~—(h„—h,)2][(h +hg)~ —P2j (89) where s=L or R
(ii) If the

~

AI~ = 1 rule holds, then

(95)

a+(R)=~(E+m) '~gvP —g~(m+E)~',
a (R)=0,
bg(R) = ,'(E+m) '(E-aP)

~ g,— fv(m+E)+—hvP

Wgg fgP+hg(E —m) ~', —

c(R)= 4 (E+m) m[gy fy (m+E) —byP-

+g~ f~P h~(E—m)—7[gv f—v(m+E)—
+hyP gg fgP+hg—(E —m) j*+c.c. —

(ii) Final nucleon state= pc.

a+(L) =0
a (L) =;'(E+m) 'I gvP+gg-(m jE)—

~',

b~(L) =-,'(E+m) —'(EaP)
~ gv fy(m+E)ahyP-

+g„+f„PWh,(E m) I', —

and

c(L)=4(E+m) 'm[gv fv(m+E) hvP— —
g~+ f~P+h—~(E m)l[gv fv—(m+E)+—hvP

+gg+ f~P h~(E m) j*+c.c.—(91)—

(iii) Final nucleon state=n. (s=L, R). In this case
the structure functions a+'(s), a '(s), c'(s) can be
obtained from the corresponding functions a+ (s),
a (s), , c(s) by the substitution

Cv ~ Cv*, fA ~ CA*&

V~ V*p A ~ A*)

hv ~ —hv*, hA -+ hA*.

As a result, we have the following theorem:

Thus, among the eight real functions only five are
independent.

(iii) If both time reversal invariance and
~
AI~ =1

rule holds then by combining (94) and (95) there are
only four independent real functions of q' appearing
in the cross sections for the eight processes (86) and
(87).

(iv) If time-reversal invariance holds then gy, g~,
fy, f~, hy, h~ must all be real. If

~
AI~ =1 rule holds,

then gv, ga, fv, hx are real but f~ and hy are both pure
imaginary. Therefore, if both time-reversal invariance
and

~

Dl
~

= 1 rule holds, then gy, g~, fy, hg are real and

f~=hv=0 (96)

do-. (lc—
)= —,

' (1+a()E[xa++x—'a

+yb++y 'b +cid(q'),
do. (4,—) =—', (1—o()E[xb~+x—'b

+ya, +y 'a c)d(q ), -—
do„(4+)= ', (-1+m()X[-xa +x 'a+-

+yb, +y 'b + c]a(q~), -

do „-(lr,+) = —,
' (1—r ()E[xb++x—'b

+ya-+y 'a+ —c1d(q'), (97)

The above properties (i)—(iii) can also be derived by
directly working with the explicit forms (90)—(92).

(v) If time reversal invariance and
~

DI
~

= 1 rule are
both valid, then the differential cross sections for (86)
and (87), after summing over the helicities of the 6nal
nucleons, become
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where Eis 'given by (89) and (vi) If vt ——1, then

a~= rs(E+m) '[gi P+g A (m+E) )',
b =-', (E+m)-'(EaP){[g —f ( +E)]'

+[gA —kg (E—m)]s), (98)
c= (E+m) 'm(—[gv fv—(m+E) j'

—[gA —hA (E—m) jsl.

and

E= (8srk s)—'[(k.+kt)' —Ps)

y= (E+P) 'm)

y '=(E P) 'm—

If we assume further that the conserved current
hypothesis holds, then g& and fv are given explicitly
by (43). The functions g& and k& can then be deter-
mined by using (97) and (98). In particular, the
difference,

(do „do.„)=—Q-—[da, (l, ) d. o e—(l,—+)j,
e=L, R

gives a sensitive determination of gg. We have, similar
to (44) but without the vt ——1 approximation,

(do.„—do. v) = (4Irm'-k„s) —'q'[4mk„—q' —mtsl

~gvgAd(q') (99)

The u+, b, d functions of Sec. III are related to the
present ones by

a„=a~(R),

a =a (1.),

b= Z [yb+(s)+y 'b-(s)+c(s)7,

and

d=[yb+(R)+y 'b (R)+c(R)j
—[yb+(I)+y 'b-(I)+ (L)3 (1«)
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A self-consistent calculation of pionic Z and A decays has been carried out in the pole approximation of
an S matrix approach in order to get information on (a) the angular momentum in which the decay Z+ —~ nir+
takes place, (b) the relative (ZA) parity, (c) the possible existence of other than global symmetric solutions.
On the basis of existing experimental data, the model predicts that Z+ —+ n~+ decay must occur in the s
wave, and, somewhat less definitely, that (ZA) parity is even.

INTRODUCTION

ECENTLY, Beall et a/. have established that the
helicities of the protons in the nonleptonic decays

of Z+ and A' are opposite. ' This result, while conhrming
an important prediction of the global-symmetry hy-
pothesis, contradicts the predictions of several other
models of hyperon decay. In particular, it disagrees
with the bound-pion model of Barshay and Schwartz, '
in which the A decay is taken as the primary decay,
and thus invalidates one of the arguments used by
Nambu and Sakurai in favor of odd Z-A parity. ' We
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have, therefore, considered a simple self-consistent
model in which both these decays are treated as equally
fundamental, with parameters to be determined by
requirements of consistency. We have, then, tried to
seek answers to the following questions: (1) Are there
solutions other than the global-symmetric one that fit
the experimental data' (2) Does odd Z-A parity fit the
data better, or vice versa' (3) Can one predict which
of the two decays —Z+ —+a++ or Z —+ex=goes into
s wave and which into p wave? With regard to the last
question, it has been well known for some time, from
the experimental data on the Z triangle of Gell-Mann
and Rosenfeld, 4 ' that one of these decays must go into
s-wave and the other into p wave, but it has not been
possible so far to say which goes to which.

4 M. Gell-Mann and A. H. Rosenfeld, in Any. Rev. Egclear Sci.
7, 407 (1957).'B. Cork, L. Kerth, W. A. Wenzel, I. W. Cronin, and R. L.
Cool, Phys. Rev. 120, 100 (1960).


