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A method which is an extension of the usual random phase approximation (RPA) is proposed in order
to study the spectra of spherical nuclei. In contrast to the usual RPA method based on the linearized equa-
tions of motion of the one-nucleon excitation operators, in the higher random phase approximation {HRPA)
the many-nucleon excitations are also included. Nuclear states are superpositions of the one- and many-
nucleon excitations (i.e. , particle-hole pairs). We have especially studied the modes consisting of one- and
two-nucleon excitations. In this second RPA, one solves the secular problem obtained from the closed
system of linearized equations of motion for the one particle-hole pair operators ("doubles" ) and the two-

pair operators ("quadruples" ). States of de6nite nuclep, r spin, parity, and isotopic spin are considered. The
method of the second RPA is illustrated in the example of the 6.06-Mev, J =0+, T=O state of 0".Satis-
factory semiquantitative agreement with the experiment is obtained for this case. The second RPA is also
discussed in connection with the "aligned coupling scheme. " The importance of the method for the study
of the vibrational 4+ states is indicated.

1. INTRODUCTION

ECENTLY, the method of random phase approxi-
mation (RPA) has been successfully applied to

the problem of certain types of collective nuclear states.
In fact, the RPA method provides only an improve-
ment of the usual shell-model configuration mixing
calculations. Namely, it allows for the inclusion of
certain correlations in the ground state, i.e., a "diffused"
Fermi surface by the so-called "backward-going
graphs. "This method, also known as the method of the
Sawada modes, can be formulated in terms of the
linearized equations of motion of the single-particle
density matrix (cf., e.g. , Sawicki and Sawicki and
Soda', reference 2 is hereafter referred to as I). This
method was originally applied to the high-density
electron gas, and then, by many workers, to nuclear
problems. In particular, the basic properties of the
giant E1 states with J =1, T= 1, the octupole
vibrational states, J =3, T=-O, and the low-lying
J =2+, T=O vibrational states of even-even nuclei
have been satisfactorily explained with the help of the
RPA method. The fact that the T=O collective states
lie low and the T=1 states lie high in energy relative
to the respective basic single-particle excitations, is
explained by the effective net particle-hole interaction
which is, on the average, attractive in the T=0 states,
and repulsive in the T= 1 states.

The operators of the two-nucleon excitations, i.e.,
the terms quadratic in the off-diagonal components of
the single particle density operator p, as given in Eq.
(4) of I, have rather small contributions to many types
of states as, for example, to the ones mentioned above.
If one considers only a finite number of single-particle
shell-model levels, than there are present many more
such quadratic terms than the linear coupling terms.
However, their net contributions may be quite small,
on the average, for some types of modes. This smallness
is ensured by two effects: (1) the randomness of phases

' J. Sawicki, Nuclear Phys. 23, 285 (1961).' I. Sawicki and T. Soda, Nuclear Phys. 28, 270 (1961).
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with which such terms contribute, and (2) strong
selection rules, especially in spherical nuclei. As an
example to illustrate (2), we observe that for the E1
states with J =1, T= I, the basic one-nucleon
excitations correspond to the average spacing between
two adjacent major shells Acro. On the other hand, by
parity and angular momentum selection rules, the
two-nucleon excitations correspond to basic excitations
of the order of 3k~0. Such large energy denominators
ensure the smallness of the contributions of the double
excitations from a closed shell.

However, there are nuclear states for which two- and
many-nucleon basic excitations are important, or
perhaps even more important, than the one-nucleon
excitations. For example, the J =0+, T=O states in
0" should be described as superpositions of the one-
nucleon excitations (1s '2s), (1p '2p), and the two-
nucleon excitations (1p '2s') (1p '2sld), and (1p '1d')
Here, both types of excitations correspond to the
average double shell spacing, 2Acvo, and thus enter on
the same footing. Another example are the J =4+,
T=O vibrational states, where the two-nucleon basic
excitations seem to be essential, in contrast to some
recent calculations, ' with the usual (linearized) Sawada-
type theory.

In order to study the correlation and "screening"
effects in the ground state of a high density electron
gas, Suhl and Werthamer4 have introduced an extension
of the RPA method called the higher random phase
approximation (HRPA). We shall now formulate this
method for finite systems of fermions, and in order to
study the excited states, in particular, the nuclear
energy spectra.

If we assume only two-body interactions in the
system, the commutator with the Hamiltonian of a
product operator c~ tc& t - c&c~, where c~ destroys one
nucleon in the shell-model state y and c, t creates one
in the state y', contains products with two more

'I.. S. Kisslinger and H. Ogata (private communications).
4 H. Suhl and N. R. Werthamer, Phys. Rev. 122, 359 (1961).
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operators. One of these is a destruction and the other a
creation operator, i.e., we have one extra operator
c tc =—p in the products. Consequently, we obtain
an infinite chain of equations of motion for the product
operators, such that the equation of motion for an Ã
product contains coupling terms with the products of
the X+2 operators, for which we then write the new
equation of motion, ad izzfzzzituzzz. Such a chain of
equations can be broken oG at a certain maximum
assumed number of operators in the products Eo and
linearized so that one obtains a closed soluble system
of equations.

This can be achieved by the method of contractions,
i.e., by extracting from the products up to A D+2
operators all the possible diagonal components p =c tc,
and replacing them by the Fermi sea occupation factors
zz (zz =1 if the state n lies below the Fermi surface,
and =0 if it lies above). All of the uncontractable
Eo+2 products are neglected. This procedure is valid
provided such /0+2 products can give only small
contributions for a given particular type of state.

Let us illustrate the method on the simplest case
of the motion of single annihilation operators. Let us
assume the Hamiltonian

II=IIO+ V= Q E 'c tc

+-', g (u'P'i

Vying)c.

.tcp'cpc. , (1)
ac'pp'

where 80 is the zero-order shell-model Hamiltonian
corresponding to the single-particle energy spectrum
{E0}, and the complete set of eigenfunctions {q '};
V= V(1,2) is the phenomenological two-body inter-
action potential called the "residual" interaction. We
can now write the equations of motion for the "singles, "
i.e., the c„operators:

iA(8/Bt)c. =E„'c„+P (vb'~ V~ ub)ct, tcqc, (2).
abb'

Equation (2) can be also rewritten as

—(E,'+E)c.=-,' P (vb'~ U~ ab)ci, "chic.
abb'

=P P (vb'~ U
~
ab)c, tc,c., (3)

b' a&b

where U= V(12)(1—P») is the antisymmetrized two-
body exchange operator. In the last sum, Eq. (3), the
restriction "a &b" avoids repetitions of the same terms.
We now write the equations of motion for the "triples"

—Ec„tc„c,= (E.'+E. ' E„')c„tc„c„—
+2 Q (iz b

~
U~ izb)(bgpcp, cy cgcpcp

aa'bb'

+ba'vcr cb' c&cacv'+la v'cp

chic&'

c&ca). (4)

The energy E is the same as in Eq. (2) because our

new states are superpositions of our singles and triples.
After performing all the possible contractions in Eqs.
(3) and (4), we get the final closed systems of equations
of motion for singles and the uncontractable triples:

—(E,'+E)c,
—P (va~ U~bc)n. cp

+-', Q (vb'~ U~ ab)ct, tcic., (5)
abb'

all diferent

—(E„'+E„' E„'+E—)c„tc,c„

—P (v'v
~

U
~

azz)[zz„zz„+zz„(1 zz, z—z;)]—c.

+P zz.{(v'a( U( ezz)(zz„—zz„)c,+(izv~ U) azz)

)&(sz„—zz„)c, }+g {(a'i
~

Uiizp)(zz„—zz„)c, tc c„
a&a'

+(v'a'~ U~ afz)(zz„zz„)c tc—,c„

+(v'i
~

U~ aa')-', (1 zz„—zz„)—c„tc.c.}
+ P zz.{—(aa'~ U~aIz)c. 'c.c, +(va~ U~u'a)

a&a'

)(,cp c~~cp~+(v iz
~

U
~

iz iz)cptcpca~}. (6)

A detailed study of the system of Eqs. (5) and (6)
with special application to spherical nuclei is in prepara-
tion by G. Fano and the author.

In Eqs. (5) and (6) we have discarded all the terms
involving the Quctuations of the particle-number
operators about the Fermi sea occupation factors,
p —n, assuming them to be of a higher order.

All the sums in Eqs. (5) and (6) containing the
factor zz, and the diagonal matrix elements (Pa~ U ~no)
are the self-energy terms which should and could be
properly included in the zero-order energies {E'}.In
fact, it is better to define the "residual" interaction
operator V as the actual $ involving the true two-body
potentials minus the sum over the single-particle
interaction potentials to be determined self-consistently
from a Hartree-Fock-type calculation. This could be
done so that the resulting final system of Eqs. (5) and
(6) is as above but contains no diagonal matrix elements
of U. A discussion of the neglected O(p —zz ) terms is
also a part of the self-consistency problem. A study
of the above questions is in preparation by G. Fano
and the author.

2. ONE- AND TWO-NUCLEON EXCITATIONS
AND SECOND RANDOM PHASE

APPROXIMATION

Now, we shall formulate and discuss in detail the
Second RPA, particularly in connection with the
problem of the collective states of spherical nuclei.

The equations of motion for the "doubles, " i.e., for
the operators p,„=c„tc., have been given in Eq. (4) of I.
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The self-energy terms are assumed to be already
self-consistently included in the zero-order energies
(E '},and the fluctuation terms 0 (P

—n ) are omitted.
In practice, we shall not perform any self-consistency
calculation in the present paper. In fact, we are pri-
marily interested in the general properties of the double
excitations and in the formal structure of the Second
RPA. The sum g„„,(vK'I VlsK)p„„j,» also can be
written as

z 2 (-'IUISK)p"."0"=22 (- I UISK)p-P"
KK 8 K K(8

where the last restriction "f(:(s"avoids the occurrence
of the same term twice.

Now, we can write the equations of motion for the un-
contractable quadruples c tcp tcpc„=p„ppp in the form

[~E (tztz v
VV ) EEPvsPv'»'

They can be rewritten as

(F~o—E'„'—E)p„„—(n„—n„) g (vK'I UltsK&p-'
K+K

+ Q ((vK
I

v
I
sK)p„„p,„

KK S
all different

—(sK' vltzK&P„,p„„j. (7)

dynamical nature of the 6.06 state in 0"may be more
complicated.

[51 (PQ 's VV ) 1'jpv, »Pv»

Q ((v p
I
U

I
Kti )[n„n„+n„(1—n„—n„)]p„„

+(p'p
I Ul tzK&[n, n„yn„(1 n„—n„)—]p„„

+(Kv'I Ul tzti')[n„n„+n„(1—n„—n„)]p„„

+(vKI Ultztz')[n»n»+n„(1 n„— n„—)]p„„}
—2 ((-'I Ul PK&(n n.)P—,„P,„+(K'v

I Ult K&

K+K

X(n ' n»)p 'p»'+(VK
I
Ul Ktz'&(n, n„)p;„—p,.

+(K'v'I Ul Kp'&(n vvn')p" p""+l(KK'I Ul pp'&

X(1 n„—n„.—)p„„p„.„.+ ', (v'v-l UIKK')(1 —n„—n„.)

XPs»ps» j+ "proper" self-energy terms. (9)

The "proper" self-energy terms which belong to AE' are

Q ns((KV I
U

I Ks)ps»pvv»v

+(K"
I UI Ks)p„„p,„—(Ks

I UI Ktz)p-p"»

KK 88
(S K

I
Ul SK)(5s»Cs' Cs~ CsC»v Cvevv

(Ksl UI Ktz )Pv»P"sj ~

where

+~s»'C» Cs' Cs' CsCvCv'M s'vC» C»' Cs' Cv&CsCs

+tis'v'C» C»' CvCs' CsCs} v (8)

hE (tztz', vv')=E„+E„E„—E„.—
After all the possible contractions, we obtain the

following system of equations:
Note added zn proof If one includ. ed the threefold

contractions possible in Eq. (8), one would get a con-
stant term in the right-hand side of Eq. (9) equal to
(vv'

I
U

I
tztz')[n„n„(1 —n„—n„,) —n„n„.(1 —n„—n„.)g

(= W(vv'
I
U

I
tip, '), the upper sign for n, =n„= 1,

n„=n„=O, the lower sign for n„=n„=O, n„=n„=1).
Such a constant term of coupling with the ground state
can appear formally but only in the case of J =0+,
T=O states. However, in HRPA one calculates only
the excitation energies relative to the ground state, and
a constant commutes with 8. Thus, the constant gets
formally decoupled from the quadruples in the HRPA
secular matrix. The formal situation is diA'erent when
we make an ordinary shell model calculation with no
backward-going graphs. In a most recent letter [Phys.
Rev. Letters I, 36 (1962)$, N. Vinh Mau and G. E.
Brown report their shell model calculations of the 0+
states in O' . They do not consider the case of a corre-
lated ground state. Their results are generally similar to
those of our Sec. 3; they then criticize in the light of the
most recent experimental data, and suggest that the

In Eqs. (7) and (9) we see the characteristic particle-
hole projection operators in the form of factors (n„—n ),
the particle-particle and hole-hole factors (1—ne —ne ),
and their combinations [nentt +n (1—ne —np )j.

%e see that the formal structure of our chain of
equations is very diferent from that of the Brueckner
theory which deals with the problems of the ground
state. The present HRPA theory deals with the excited
states and determines only the excitation energies
relative to the ground state.

The secular matrix of the closed system of Eqs. (7)
and (9) is Hermitian if we only confine ourselves to the
single and double transitions "up across" the Fermi
surface, i.e., with creations of one and two particle-hole
pairs.

There are also "mixed" double excitations with
destructions and creations of one state above and
another below the Fermi surface. If such terms are
included, the hermiticity of the secular matrix is
destroyed. In the following, we shall not treat such
"mixed" quadruples and the likewise possible hole-hole
and particle-particle doubles. Perhaps, one should at-
tempt to treat those terms as part of the self-consistency
problem of the single particle energy spectrum.

In addition, there are also the single and double
transitions "down across" the Fermi surface, the so-
called backward-going graphs. If these are included,
the secular matrix is non-Hermitian but has the simple
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properties quite analogous to those for the case of the tion M
usual RPA. The eigenvectors can be written as
(8„t~+0)),where ~%0) is the "true" ground state, and (g~".„o—g~;„o—B)A+M(»)

&(~) («)P~~'+ z 2 d(») (« Ipp )P«'PIP'
0!QA ~w~' PAP'

The components c and d satisfy the simple ortho-
normality relations with an indefinite metric

9(.)(«')~(-1*(«')—C(.)(~'~)~(-i*(~'~)]
a&ay&a'

= (1ZV 1Zg) Q fg(IZV)KK )A Jpf(KK )

+ P P ([J'][I"])'W(Jj'„J"j„;jJ)
I~si'S J'J"

all different

X[fJ"(Sv)KK )B(J'J'') JM(SZZ)KK )

+z 2 2 Ld(. ) («',PP')d(-)'(«', PP')
~&~~&a' p&~g&p'

and
fg~ (zzs&KK )B(gisii) gM(KK &vs)]& (14)

d(„)(—n'n, P'P)di, „)*(n'n,P'P)]= t1 „, (10)

where n p is the Fermi level. The completeness relations
are also quite analogous to those given for the usual
RPA, e.g. , by Thouless, ' or in I.

We now proceed to the study of the actual physical
states of spherical nuclei, i.e., we introduce the total
angular momentum, the isotopic spin, the parity, and
the total nuclear spin. For the sake of simplicity, let us
first consider a system of identical nucleons, i.e.,
without the isotopic spin complication, and employ a
simple Wigner force

V=! 2 f'(-', PP')( —) '

L~E'( &" V)VB]B~s—s-&sM(vP, v'P')
= (LJ']LJ"])-:P„{t~„~„+~„.(I &„&—„,)]-

XW(Jj'„J"j„jJ)fz (vK v P')AsM(KP)
+L1Z„ZZ, +ZZ„(1—ZZ„—ZZ„.)]
XW(J'S'J"J'v 'j"J)( )'+ "—fz (v'K, viz)

XA sM (Kzz') (Zz„—1z„+Zz; (1 Zz„—Zz„.)—]
XW(Ji'J"j 'ivJ)( )'+ " '—fz" (KP, v'P')

XA sM (vK) fzz„Zz—„+zz,(1 Zz„—zz) ]-
XW(J'j,J"j.;j„J)f& (Klz vP)A JM(v K) j

+coupling terms with the B operators, (15)

where W( ) is a Racah coefficient, and

XA J'M'( «)( ) A J' —M'(pp ).
Here

gI AQ,
=—g[J'] '(4~) '(Lj-Xj- ]LE]Ljs ]&'

X(j-j-; —kz I
J'O)(j,j,, ; —-', p J'O)., («',pp'),

We omit here the explicit form of the coupling
coefficients between the 8 operators as it is rather
lengthy and complex. Among these coupling terms,
there are terms involving A&s "s 1s( M«PP') withJ"'gJ', J""gJ", in addition to the ones with
BiJ' J"1 JM («)pp ).

One must be careful not to count the same terms
twice for the case (v'= v, Zz'=Zz) in Eq. (15). In fact, in
going over from the original Eqs. (9)—(15), we have
introduced the unrestricted sums over the magnetic
sub states.

The nucleonic charge r and a general spin and isotopic
spin dependent two-body potential U(1,2), as given
by Eq. (8) of I, can now be introduced. Thus, we have
two coupling constants gz with T=O, 1 associated with
the spin-independent part of V(1,2) and two coupling
constants gr' corresponding to the part of V(1,2)
proportional to the operator e& e2. The quantity
f&'"&(«',pp') associated with g& is exactly of the form
of our previous fs(«', PP'), and gz&r& («' PP')
sociated with g~' is de6ned in I.

We obtain the coupled system of equations for the
operators ASM(«', r) and 81& s ASM(pZn', r ', PP', r') quite
analogous to that of Eqs. (14) and (15) with fz(«', PP')

where g is a coupling constant, Lj]= 2j+1, &z («,pp )
is a radial matrix element, and the operator of a basic
single-nucleon excitation is dehned as'

A,M(«')—=Q ( )1«=-(j.j. ; m.m—.—
l
JM)p, (12).

The basic double excitation operators are de6ned as:

A(zz ig ( MP«P) —P (JJ,MM iJM)

XAS M («')Az M" (pp'). (l3)

From Eqs. (7) and (9) we now can obtain the final
coupled system of equations for the A and 8 operators
for nuclear states of the total (integer) spin J, projec-

~ D. J. Thouless, Nuclear Phys. 22, 78 (1961).' The phase convention adopted here, diferent from that of I,
ensures the hermiticity of the secular matrix for the forward-
going graphs (see the coupling terms between the g and II
operators).

(11) fz(«', pp')

—= (—)'""if.( 'pp')+Z (-).—(x]
J)(—)"'"-'-' 'fx(pn'np'))
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replaced by

g AO! yV'y

= ( )—""p(L(f~"'+g~"') («'»p') 5".
+ '(fz-"'+fr'"+gz"'+gz"')(«' pp')5 —3
+Ex( )—'L&3W(i-jpj-jp &J)( )' —'"""
XP(f."+g.")(P ', P')5, ,
+ r (fx (ii —f» (el+ grc

(ii —gx (0))

X (P~',~P')~"-.j) (16)

One can also consider nuclear states of a definite
total isotopic spin T by using the usual projection
method as in I.

The equations simplify if one uses the harmonic
oscillator wave functions and neglects the single
particle spin-orbit coupling in Bs. One can employ the
Talmi method, and still use the j-j coupling scheme.
Here it is convenient to write V(1,2) in the popular
form as a mixture of signer, Bartlett, Majorana, and
Heisenberg forces:

V(1,2) =J(r) (w+bI' +rnI'"+hI'"I' ).
In this case we again obtain the system of Eqs. (14)
and (15), where one must replace fz(«—',PP') by
(S~P o, ,S~' ) (—«',PP'), and where

s."( ',pp')

—= (-)' "' E L)~j(Lj-jLj- PLjpjLjp j)'
nn'EXL)

X ( )'+" "W(l—~j~l j;&J)W(lpj pip jp,' &J)

XW(in/ /pip ,
. JX)(w+ ( )'rn)+—(—)'P+'P' —"

~a ja j&I ~ar '
I
2 J 1

2 (&+(—)'&)

X (nl;NL, )
I rr~P 'A) (n /, NL~)

I

rr P'~")

X &n~llJ(r) lln'~& (1&)
Here

j- j-
'A

2 2

jp jp

~ R. J. Ord-Smith, Phys. Rev. 94, 1227 (1954).
T. A. Brody and M. Moshinsky, Tablas de Parentesis de

Transformaci6n, Monogra6as del Instituto de Fisica, Mexico,
1960 (unpublished) .

is a 12—j symbol in the notation of Ord-Smithv and
(n/, NL, )I.

l n,p,X)—= (nl, NL, )t
l n l,nplp, )i) is a transforma-

tion bracket for the harmonic oscillator wave functions;
such brackets have been extensively tabulated by
Brody and Moshinsky. s (nlllJ(r)lln'l) is a reduced

radial matrix element. All the other symbols have been
defined in I. The quantity Sz'"( «',PP') is identical in
form to S", however, with m interchanged with h, and
m with b.

The eigenvectors obtained from the solution of the
secular problem with the matrix which is the transpose
of the secular matrix of the system of Eqs. (14) and (15).
The components satisfy the orthonormality relations
quite analogous to those of Eq. (10) and the related
completeness relations.

A simplified version of the above equations is
obtained if one neglects the j splittings of (E }
altogether, and uses the L-S coupling scheme. This
simplified case is given in the Appendix.

3. 6.06-MEV STATE IN 0"
The first excited 6.06-Mev state in 0" has the

assignment J =0+, T=0, and decays to ground state
by pair emission. The lifetime 7 p

= 7)(10 sec
implies a rather small value of the EO transition matrix
element. This fact, and the very low energy of the
state pose a well-known problem. The literature on the
subject is rather extensive. Many authors have
attempted to explain the properties of this state by
doing the usual shell-model configuration mixing
calculations' " or by the usual RPA method, i.e., by
the monopole breathing modes of the Sawada type. " "
Xone of these authors could quite succeed in bringing
the energy of the state down to about the experimental
value, and in simultaneously explaining the small EO
matrix element. In 1956, Elliott" pointed out that, in
addition to the basic one nucleon configuration (1s '2s)
and (1p '2p), one should consider the energetically
equivalent basic two-nucleon configurations (1p '2s'),
(1p

—'2s1d), and (1p '1d'). Our second RPA method
appears to be particularly suitable for treating this
problem.

We have performed numerical calculations by
diagonalizing the secular matrix of the simplified
system of equations, as given in the Appendix. Similarly,
as in references 10—13, we have neglected the spin-
orbit coupling in the single particle potential and used
the energies averaged over the splittings. The L5
coupling scheme is employed. The V(1,2) used is with
b= Is=0. Out of all the possible coupling terms between
the B-operators, we have retained only the most
important terms corresponding to the first and fourth
double sum P„„ in Eq. (9), and we have neglected the
exchange parts of the matrix elements in the coupling
between the A and 8 operators. Although these

'L. I. Schiff, Phys. Rev. 98, 1281 (1955); J. K. Perring and
T. H. R. Skyrme, Proc. Phys. Soc. (London) A69, 600 (1956).

'o J. P. Klliott and A. M. Lane, in Hundbuch der I'hysik, edited
by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 39."R. A. Ferrell and W. M. Visscher, Phys. Rev. 102, 450 (1956).

12 R. A. Ferrell, Phys. Rev. 107, 1631 (1957)."$. Fallieros, thesis, University of Maryland, 1959 (un-
published) ~

'4 J. P. Elliott, Phys. Rev. 101, 1212 (1956).
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TABLE I. Diagonal elements of the secular matrix for theJ =0+, T=O states in 0": (a) with only the empirical single-
particle energies', (b) with the "average" particle-hole interaction
energies included.

Configuration (1s 12s) (1p 12p) (1p 22s2) (1p 22s1d') (1p &1d2)

Excitation energy
(Mey) (a)

Excitation energy
(Mev) (b)

46.72

36.72

26.28

16,28

30.90

15.90

34.44

19.44

37.98

22.98

a See reference 18.

approximations seem to be rather rough, they are not
.too unreasonable and should be sufhcient for a semi-
quantitative analysis (cf. Appendix).

If we consider only the forward-going graphs, i.e.,
the single and double transitions "up across" the Fermi
surface, our secular matrix is 7'&(7, and if also the
backward-going graphs are included, it is 14)(14. We
have excluded the possible "mixed" double excitations,
i.e., one "up across" and one "down across. "

The greatest uncertainty in our numerical calcu-
lations is connected with the lack of self-consistency
and the uncertainty in the single-particle excitation
energies E '—E '. These enter into the diagonal
elements of the secular matrix and their magnitude
is of crucial importance for the magnitude of the
eigenvalues, i.e., energies relative to the ground state.

In particular, in our equations we have elements
diagonal in the particle-hole pairs, i.e., corresponding
to the "elastic scattering" of such pairs. Such terms
are clearly of self-energy character, and, in fact, they
are formally of the same type as the omitted "proper"
self-energy terms of Eq. (9). lt appears reasonable to
use in E '—E ' the "empirical" single particle energies
{(E ), ~). However, in addition to the "empirical"
particle-core and hole-core energies, we must include
in each E '—E ' the important particle-hole inter-
action energy. On the other hand, as our calculation
is non-self-consistent, we do not know which part of the
diagonal particle-hole matrix elements is already
included in ((E '),„~). For the sake of a semiquanti-
tative analysis, we have considered two cases: (a) only
pure "empirical" single-particle energies are used in the
diagonal elements of the secular matrix, and (b) some
"average" particle-hole interaction energies are in-
cluded. As the "average" energies, we assumed —10
Mev for the singly-excited configurations, and —15
Mev for the double excitations. These numbers seem
to be taken rather arbitrarily. However, the resulting
diagonal elements of the secular matrix are not very
different from what one obtains from a calculation
where one computes such diagonal elements from the
kinetic energies, and a/l the possible self-energy terms
with our model parameters. A similar calculation was
done by Fallieros" for the case of the breathing modes.
In Table I, we give the numerical values of the diagonal
elements of our secular matrix for the cases (a) and (b)
for the five basic configurations.

TABLE II. Five most important eigenvalues E and the corre-
sponding eigenvectors of the 7X7 secular matrix for the J~=O+,
7=0 modes in 0'6.

E
(Mev) (is '2s) (1p '2p) (1p '2s') (1p '2sid) (1p '1d')

(a) Only empirical energies
60.60 —0.78 0.31
38.89 —0.18 0,12
32.77 —0.18 0.07
22.59 —0.53 —0.73
21.43 —0.19 0.58

in the diagonal elements:
0.01 —0.53—0.15 0.19—0.89 0.32
0.20 0.37
0.38 0.67

0.08—0.94
0,25
0.06
0.18

(b) Particle-hole interaction energies included:
49.31 —0.81 0.33 0.00 —0.48
24.11 —0.16 0,13 —0.17 0.24
17.94 —0.17 0.06 —0.87 0.36
12.36 —0.42 —0.90, 0.04 0.09
7.55 —0,33 0.24 0.46 0.76

0.06—0.93
0,29—0.03
0.20

's R. H. Dalitz, Proc. Roy. Soc. (London) A206, 521 (1951).' S. Devons, G. Goldring, and G. R. Lindsay, Proc. Phys. Soc.
(London) A67, 134 (1954).

The numerical computations were performed for the
simple Serber force with the Gaussian radial shape:
tt =m=0.5, J(r) = —Vse "'~ ', Vs ——51.9 Mev, n= 1.732
X10 " cm; the parameter of the harmonic oscillator
wave functions used y *'=1.68&&10 " cm. This V(1,2)
is very similar to that used by Ferrell and Visscher. "
The secular matrices were diagonalized with the aid of
the IBM 704 computer of the Centro di Calcoli in
Bologna.

The eigenvalues and eigenvectors for the 7)& 7
secular matrix are given in Table II. In Table II we have
omitted the eigensolutions and the components corre-
sponding to the two least important'( J s ) pp(1p1d 1p1d)
operators with J'=2 and 3.

The lowest lying 7.55-Mev state in case (b) is to
be compared with the 6.06-Mev observed level. We see
that, due to the net attractive particle-hole interactions,
the calculated energy of that state is decreased by
8.35 Mev relative to the smallest unperturbed exci-
tation energy (11.89 Mev relative to hE'(1P '2sld)—
the most important component); the corresponding
state in case (a) is shifted by 4.85 Mev relative to the
smallest hE', and 13.01 Mev relative to AE'(ll '2s1d).

Several examples have also been done which were
intermediate between (a) and (b) and it was found that
the properties of the lowest lying, and all the other
states, are always the same. Our lowest lying state is a
coherent superposition of all but one single-pair
components and has a clearly collective character. The
predominance of the two-pair components and the
destructive interference between the two one-nucleon
components, i.e., the out-of-phase vibration of the s
and p shells ensures the smallness of the EO matrix
element (M). The rate of decay of the 6.06-Mev state
by pair emission is given as"" r '=0.97X10"

~
(M) ~'

sec ' The observed rate" (r ') = 1.4&(10" sec—'
implies

~
(M) ~

=3.8)&10 "cm'. For our 7.55-Mev state
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we f)nd
I (M) I

= 1.5&& 10 ' cm'. The corresponding EO
oscillator strength is only a fraction of 1%.This result
is not unreasonable in view of the crudeness of our
calculation.

For T=O states there is always the problem of the
possible admixtures of the spurious modes of the
center-of-mass motion. In the case of excitations by
two major shells, the elimination of all such possible
impurities is a dificult matter even in the case of the
harmonic oscillator model. '~ One such important
spurious mode is the double excitation of the p-wave
motion of the center of mass. The corresponding
single excitation is generated by the operator
C)jr=—(o)ki)))r(ip2s) —(o)~A)M(ipid); the double exci-
tation is given by

S=ug~ (11;M M IOO)—C&mC& m

= ocxLP&)))pp(ip2s 1p2s) 2(5) B()g)QQ(1P2s&1Pid)

+58&yy)pp(1Pid 1Pid)];

cx is a normalization constant. We can now calculate the
overlap integrals of our modes with the SI@p). For
the 7.55-Mev state, this overlap is rather high, almost
28%, and for the second 12.36-Mev state, it is 7%.

The second excited state at 12.36 Mev is the usual
monopole breathing mode and exhausts almost one-half
of the EO strength sum rule P fp = 1.One can attempt
to compare this state with the observed state at 11.25
Mev.

In order to know the effect of the backward-going
graphs on the lowest-lying state, the corresponding
14)&14 matrix was diagonalized. The following five
energies corresponding to the five energies given in
Table II are obtained: E=48.77, 24.09, 17.90, 8.50,
and 6.61 Mev. We see that, due to the correlations in
the ground state, the lowest E is still lowered by about
1 Mev in the direction of a better agreement with the
experiment. A similar effect of the backward-going
graphs has been noted by Gillet and Vinh Mau' for
the 1 y

3 ) and 2+, T=0 states in C" and 0" as calcu-
lated with the usual RPA theory.

4. ALIGNED COUPLING SCHEME

In connection with the effect of the energy gap and
the pairing force in even nuclei, a schematic extreme
coupling scheme has been considered, especially by
Mottelson. " In this so-called aligned coupling scheme
one considers only pairs of single particle states with
paired-off projections of the total angular momentum,
i.e., pairs (vm, v —m) of nucleons of identical charge;

"E.Baranger and Chong %'an Lee, Nuclear Phys. 22, 157
{1961).

'8 The numerical values are averages over the numbers used by
V. Gillet and N. Vinh Mau {to be published); they are taken
mainly from F. Ajzenberg-Selove and T. Lauritsen, Nuclear
Phys. 11, 1 (1959)."B.R. Mottelson, The Macy-Body Problems {Dunod, Paris,
1959).

here v—= (N„lj„),m is the s projection of j„.Due to the
effect of the energy gap, the lowest possible excitations
correspond to lifting such pairs rather than breaking
them.

Let us define the pair operators b„=—c„-c„-, and
b„t=c„—tc„ t Fr.om Eq. (9) we can write the equations
of motion for b„tb„with all the surviving non-self-energy
terms:

(2E o—2E„o—E)b„tb

= —
o P ((gm„g —m„l Ul pm'. m)(1 —2e„)b„t—b„

+(vmv —m,
l
UIKmK m„)(1—2e„)b„tb.). (18)

It is natural to use the following operators:

b~(v) =—P- (j„j.; m, —ml JO)b. ,

b,t(&)—=p (q'„j„;m ml Jo)b„,—

Bs(vtj) =Ps s ~ (J'J";OOI JO)bs t(p)bs" (v).

In the simplified case of no spin-orbit coupling, we
have both the projections of the orbital angular
momentum and of the spin paired-off in the aligned
coupling scheme. If we use the harmonic oscillator wave
functions and a spin-independent V(1,2), the system
of Eq. (18) reduces to the especially simple form:

(2E& 2E„E)bshe (p)bs» (v—)

= —pZ {((«,J'I VI) ),J'))(1—2~.)bs'(~)bs-(v)

+((vv,J"
I Vl«, J'))(1—2n„)bs'(p)bs" (~)), (19)

where, in the notation of Sec. 2 and of I:
((-',~l vl~~', ~))

= P (~l,m„xl~,~',7,)(~"l,XI.,~IP,P,~)
nn'LNL

&&(mill J(r)lie'l)Lw+ (—)'m].

In the case of the J =0+, T=O states in 0", the only
non-self-energy coupling term corresponding to
J'=J"=0 involves ((2s2s, OI VI1d1d,O)) which is a
small number of the order of 1 Mev or so. Conse-
quently, one cannot expect an explanation of the lowness
of the 6.06-Mev state on the basis of this aligned
coupling scheme, unless such lowness already results
from a self-consistent calculation involving all the
self-energy terms.
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APPENDIX. SIMPLIFIED SECOND RANDOM
PHASE APPROXIMATION

If we neglect the single particle spin-orbit coupling,
and average over the j=l+s2 splittings of {E')., we

can conveniently use the 1.-$ coupling scheme. In
order to simplify the equations, we confine ourselves to
a spin-independent potential V(1,2), i.e., we set
b =h =0. Furthermore, of all the coupling terms
between the 8 operators, we retain only the most

important terms corresponding to the first and the
fourth double sums P„„ in Eq. (9). We also neglect the
exchange parts of the V-matrix elements in the coefB-
cients of coupling between the A and 8 operators.

With all the above approximations and with the
use of the harmonic oscillator wave functions, the
equations of the Second RPA for the case T=O, S=O,
and the nuclear spin I., projection M take on the
especially simple form:

(E'„o E„o E—)A zs—z (v)z)

= (n„n„)—P (—) '"+'"'Fz()zv, t((,")Az@q((()(')+2P P ([L'][L"])~W (L'l„L"l„;l,L)[(—) '~+'"Fz .'(sv, t()(')
K+K a~'s L'L"

a11 diferent

XB(z'z")zpz(s)z)lc)( ) ( ) '+ "'Fz, ' ()zs, )()( )B(z~z~ )zjz()a( )vs)], (A1)

(AE" (Islz', v v') E)B(z~ z«)—zsr (viz, v'Iz')

= -', ([L'][L"])'* Q {[n„n„+n„(1—n„—n„)](—) '"+'v'W(L'/„L"/„; /, L)E'z '
(vt(, v'p') A zz(z ()()z)

+[n„n„.+n„(1—n„n„)](——)'"+'&(—)
'+ " W(L'l„L"l„;l, L)Fz '(v't(, v)z)Azz)z()()z')

—[n„n„.+n„(1—n„—n„)]W(L'l„L"l„;l„L)( )'~+'~'( —)'+z" F—z '()()z, v'tz )Az))z(vt()

—[n„n„+n„(1 n„n„)]—W(L—'l„L"l„;l, L) (—)'~+'~'Fz '()()z', v)z)Azz)z(v't()) —P {(n„n„)(—)'"—'"'
K+K

XFz. ()zv, KK')B(L'z )Lv(KK', v Iz')+(n„. n„)( )'"'—'"'Fz —()o(',Iz'v')B(z z;.)zjz(vtz, (o(')), (A2)
where

Fz(Fz') (nn', pp') —= p ( )"p]W—(l l. l()l(), LX)(nl, ÃL, I(I n,p,) )(n'l, JUL, )(I n', p', I()(nlII J(r) IIn'l)U)(U)'),
nn'I, NL))

U) ——4w —m+ (—) '(4' —w), U)' ——4zv+ (—)'4'.

Here the basic operators are:

Azsz((yn')=P (—)' (l l ~ —5$ nz ~ ILM)

xx ~z
(Saa'=0, Taa'=0)

)

g' ~(saa'M, &aa'=0)=z p p $ $ p
PaO'a ~ Ta1a ~

B(L'L")I))z(o(& happ )

(L'L"; M'M"
I
LM)

XA z sz (n()( )A z&~M&I (PP ),

In Eq. (A2), as, previously, in Eq. (9), one must not
count the same terms twice for (v'= v, p'=p).

The omitted coupling terms between the 8 operators
involve three extra Racah coeKcients each, and are

(A3) generally much smaller. Among these there occur
couplings with the B(L, L,""~l,~-operator with L,"'/L',

(A4) LI'" WL
With all our approximations, we have avoided the

double excitation operators involving pairs with 5
and/or T, =1, i.e. , terms with X, ("),X "'), and

, (1,1)

The secular matrix of Eqs. (A1) and (A2) is
Hermitian both for the forward-going and backward-
going graphs taken separately. We exclude the "mixed"

(A5) (up-down across the Fermi surface) double excitations.


