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Wave Equations in Curved Space-Time

S. DATTA MAJUMDAR

Department of Physics, University College of Science, Calcutta, InCia

(Received December 4, 1961)

The known wave equation for the electron in a gravitational field is generalized for all kinds of elementary
particles allowed by the present theories. The usual conditions for the Lorentz invariance of a first order
equation are shown to be sufhcient for the generalization.

1. GEOMETRIC FOUNDATION

'HE problem of formulating Dirac's equation
within the framework of the general theory of

relativity has been solved satisfactorily by a number of
authors. ' ' Brill and Wheeler' have set up radial
equations for a Dirac particle in a metric with spherical
symmetry and have discussed at length the types of
solutions~ obtained in the case of the electron and the
neutrino. The thoroughness with which the problem
has been investigated has left little scope for further
work. The object of the present paper is only to show
that the theory developed for the electron, with suitable
modifications, applies to any elementary particle. The
whole theory is presented here from a slightly diff erent
viewpoint, and the generality of the approach is clearly
brought forth.

In the case of the electron the various treatments
are physically equivalent and lead to the same equation:

8 —F„—ik =0,
Bx"

where the y& satisfy the generalized anticommutation
relations $p&,y"j~ ——2g&". The matrix elements of y&

and F„are functions of coordinates. To understand the
nature of this coordinate dependence we draw at every
point of space-time four directions, or vierbein, which
are mutually orthogonal but otherwise arbitrary. If
these four directions are taken to be the axes of a
Galilean frame of reference, then the curvilinear com-
ponents of an elementary vector will be connected with
its Galilean components by an equation of the type

under vierbein rotation. ' Throughout this paper Greek
indices will be used for world tensors and Latin indices
for vierbein tensors. Thus, g,j will denote the constant
metric tensor of Minkowski space. Kith the help of
g;;, g„„, and their associates, the indices of Xq& may be
raised or lowered. These elementary points have been
discussed many times and we simply note down the
important properties of Xq~.

X&9„"=b„~, P &9,„'=bI, ',

~,"~.a, =g~., &I "~a,= gal,

Although the name is due to Einstein, this vierbein
formalism was developed by Ricci long before the birth
of the general theory of relativity and seems especially
suited for introducing gravitation into the theory of
elementary particles. The mathematical methods em-
ployed here will, however, be borrowed from the illumi-
nating account of these researches given by Levi-
Civita. In the terminology adopted by him, XI,& and
AI,„are the parameters and moments of the orthogonal
congruences of lines generated by the vierbein system.
Let us now examine the effects on these quantities of
an arbitrary rotation of the vierbein. Such a rotation
corresponds to a local Lorentz transformation
dx'*=Li dx From Li we can construct L;~, L'& and
L;j formally by raising or lowering indices with the
help of the Minkowski tensor. For finite transformations

Ji Lt7, $ i LcL i
a j j j ay

and for infinitesimal transformations

I
&
=3 j+rd j, '0=M '+re ' =M '+re ' ' = ro +Cor

(see Brill and Wheeler, ' Eq. (6)$. X&& obviously be-
haves as a contravariant vector with respect to the
index p, under general coordinate transformations and
as a covariant vector with respect to the other index h

' H. Tetrode, Z. Physik 50, 336 (1928).' J. A. Schonten, J. Math. and Phys. 10, 239 (1930—31).
3 V. Vock, Z. Physik 57, 261 (1929).
E. Schrodinger, Sitz. ber. preuss. Akad. Wiss. Physik math.

Kl. 24, 2105 (1932).The author had no opportunity of consulting
this paper the journal not being available.

~ D. R. Brill and J. A. Wheeler, Revs. Modern Phys. 29, 465
(1957).

s O. Klein, Arch. Math. Astron. and Phys. 34, 1 (1947).
'In this connection J. Callaway, Phys. Rev. 112, 290 (1958),

remarks that the radial equations have no power series solution
about r=0.

Also,

In terms of the parameters and moments the Lorentz
transformation is, therefore,

X„"X.Jo"=I "A;.

Next, following the procedure adopted by Levi-Civita'
for deriving Ricci's coefficients of rotation we carry the
vectors X&"by parallel displacement from the point P to

The word "rotation" will be used everywhere in the sense of
Lorentz transformation.

9 T. Levi-Civita, The Absolute Differential Calculus (Blackie
and Son Limited, London, England, 1954), pp. 206, 261—286.
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= hhh+A "p,.Xp~bx,

hk ~hP; e~k ~X (3)

The quantities Phh„——Xhs., „'Ah& are antisymmetrical in
h and k as expected. These are connected with Ricci's
coeKcients of rotation by the relations yhhi phh„h——il'

2. THE WAVE EQUATION IN GENERAL RELATIVITY

Having established the necessary mathematical
formulas, we now proceed to show that the most
general wave equation for elementary particles can be
put into a form covariant under coordinate trans-
formations and invariant under vierbein rotation.
Nothing more is needed for a physical theory. The
general form of the equation is unaffected by the
commutation relations for the y matrices, and from it
Dirac's equation is obtained as a special case by
adopting the relation

C y&,y"]+——2g&".

Whatever may be the special form of the theory a
relativistic wave equation, as it is understood at present,
must satisfy the following general conditions:

(i) It must be a first-order equation of the form

l9 —ikf=0;
Bx

(ii) Under a Lorentz transformation, x"=L',x', P
must transform according to a representation of the
(proper) Lorentz group, Q*=SQ;

(iii) The matrix S must satisfy the relation
5 'p'5= I.' y . These conditions must hold in all cases.
Different theories of elementary particles are obtained
by postulating different commutation relations for the

y matrices which, as stated before, leave the form of
the equation in general relativity unaltered. . The impli-
cations of the conditions (ii) and (iii) are seen more
clearly by considering an infinitesimal Lorentz trans-
formation, for which

1+1~ Shh

Here, 5h~= —5~h are the infinitesimal operators of the
Lorentz group, sometimes also called the nucleus of
the group. They must satisfy Lie's integr ability

a neighboring point P» with coordinate differences 6x".
We thus get a Galilean frame F' at P» which will not,
in general, coincide with the frame Ii* previously set
up at P». By an infinitesimal rotation, however, the two
frames Ii' and F* can be brought into coincidence. If
the parameters and moments pertaining to the frames
Ii' and F* are denoted by a prime and an asterisk,
respectively, then the Lorentz transformation corre-
sponding to this infinitesimal rotation is, by Eq. (2),

L~i Shhj gih~h gih~h (6)

It is to be noted that the approach is perfectly general
and rests only on the three conditions (i), (ii), and

(iii). No particular assumption is made about the form
of 5h~; nor is 5h~ assumed to be irreducible under

proper Lorentz transformations.
In carrying over all these considerations to general

relativity we assume, with the previous authors, that
f behaves as a multicomponent scalar under coordinate
transformations and, therefore, BP/Bx& behaves as a
covariant vector. The contra, cted product p&BQ/ilx"

will, therefore, be a scalar if the y&'s are constructed
from the constant p "s of special relativity according
to the prescription

When the vierbein is given an arbitrary rotation the
y& change to yl'*=I.h9 I"yh. The invariance of the
theory under vierbein rotation then demands that

v"'= Sr "S-'

The necessity of including an extra term in the wave
equation now becomes apparent. Since the rotation
varies arbitrarily from point to point, BS/Bx& will not
vanish and, therefore, 8$/Bx& will not have the correct
transformation properties. The extra term r„/-
should be such that the whole quantity Bp/Bx& r„/-
transforms like P under vierbein rotation. This quantity
may legitimately be called the covariant derivative of

P and denoted by the convenient symbol f,„.
To derive an expression for P,.„we assume that after

parallel displacement from P to P» the components of

P in the frame Ii' remain unaltered. The passage to the
frame F* by an infinitesimal Lorentz transformation
will then change p into p*= (1+-',cvhhShh)p. Inserting
the value of cvhh from Eq. (3) we have

',p...sh"Sx-y =r.y-Sx-

as the equation of parallelism for P. Therefore,

Bf
2pi h.S"V=-

Ox"
(10)

and the generalized wave equation reads

yihP, „ikf=0—
Once the covariant derivative of P has been found

out the main difficulty is over, and. the concept can be
immediately generalized, with the help of the known
results of tensor calculus, to the case of a mathematical

COnditiOnSq

P'hh Sijj—ghiShi+ghiShj ghiShi ghiShi

a relation of cardinal importance in all discussions on
the Lorentz group. Since the six quantities cohA, are
arbitrary we have, from condition (iii),
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object which transforms as a tensor under coordinate
transformations and according to a representation of
the Lorentz group under vierbein rotation. It, „ itself
is a mixed quantity'o of this type, and its covariant
derivative will be

8 p

{1~&+)4'
Bx

(12)

Multiplying this by X„' we have

gN~k gik~h —$~r SM$

The addition of the last term gives II,„„the necessary
tensor character.

It remains only to show that p& transforms according
to Eq. (8), which implies that

This formula is perfectly general and is independent
of the nature and number of the three-index symbols
F„~„,. Erasing the row-column indices we obtain

t9Fp BF~—Lr.,r,j pox-S'xs
-Bx Bx

as the increment of f after the cyclic displacement.
The same increment can also be calculated by carrying
the Galilean frame at P by parallel displacement round
II. Replacing P„ in Eq. (16) by X~,& and the I'„~„, by
ChristoGel's symbols we have

DXg"= {pu o'P)X "bx~5 x~

The Lorentz transformation from this frame to the
original frame at P is given by

(ups= —(pv, nP)Xg"P p "5x 5'x~

and this is identical with Eq. (6). Next, taking the
value of era& from Eq. (3) we get the important r'elation

F 'r"7=rI.V"lrlx +{0p)V~

BFp 8F~

Bx 8xt'
—P',&s)= ——,'(pv, nP)X~,9, "S"s. (17)

Thus, we see that the entire theory of elementary
particles, as it stands today, fits nicely into the scheme
of general relativity. We have definite rules for trans-
lating every item of the theory into the language of
general relativity. For instance, the generalized com-
mutation relations are obtained by using Eq. (7).

Although there can be no doubt that f,.„, as defined

by Eq. (10), has the correct transformation properties,
we subject it to an interesting test obtaining, thereby,
the value of an expression arising in the calculation of
the divergence of the energy momentum tensor. Let us
carry P by parallel displacernent round a parallelogram
0 formed by the elementary vectors bx& and 5'x& drawn
from a point P. By inserting the row and column
indices, the equation of parallelism (9) can be written as

Sy„=r„~„,y.cx = (r„~„.)„

The correctness of this result can be verified directly
by using the relation (5). The matrix on the left-hand
side operating on P gives also the difference of the second
covariant derivatives of P. This difference vanishes in
Rat space-time.

We add a few remarks about the possibility of con-
structing a charge current vector and an energy mo-
mentum tensor from the wave equation (11). For the
construction of these physically important quantities
it is essential that there should exist a matrix g such
that p'*= p&'p ' is the Hermitian conjugate of
Without loss of generality p can be taken to be
Hermitian. If the Hermitian conjugate P* is replaced
by pt =p*ri, then the expressions for the charge-current
and the energy-momentum assume the usual forms
only if ghk+ ~ghk~ —1

3. SIMPLIFICATION IN AN IMPORTANT
SPECIAL CASEBF

I

(x"—x,") P,bxs (15).+ I sirEviks+
Bx

By Stokes theorem the line integral of this Pfaffian
round 0 will be equal to

FPI ~g ~F~I«
+I'w I'-i —I'-i. I'm ~

Bx Bx
DP„=

Xf,bx 8'x~. (16)

In the case of Dirac and Duffin-Kemmer equations
the relation between S""and y' is S"~=cLy",y~$, where
c is a constant c-number. Whenever S"~ has this special
form the elaborate procedure of constructing covariant
derivatives becomes unnecessary and the generalized
wave equation can be derived" very simply as follows.

The only thing required for the derivation is that
BSlBx& arising after the rotation of the vierbein system
should be canceled by some term coming from F„.

' In the case of X&,I', another mixed quantity, the particular
representation S"~ is the infinitesimal Lorentz transformation
itself. In the case of a product of several quantities S~~ will be a
direct product.

"This is how the author verified the known result for the
electron. The suggestive form (18) was then tested and found to
be valid in the general case.
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BS/Bxp can be cast into the form

l9S BCOA, Ic Bco
~L~h ~k] y„), k~L~a ~P]

Bx~ Bx" Bx"

$(~hp k) &h g k ]g SnP

=A(Xhp. p'hh )S~p (where 6 denotes change after a
Lorentz transformation)

=D(l~hp. , phh )SS pS '.

This shows that

I'4=-', X"P,.phh 5 P= —,'Phk45"'.

Evidently, one can add to the wave equation terms of
the type

P +&4V"+C4.V"7"+Dp.pV"7"74+&4.p.747 "7''r'
+ . .]4

where, A, 8„, etc. are world tensors. In the case of
Dirac's equation the series terminates at the quartic
term and the tensors Cp Dp, p Ep p may be taken to
be antisymmetrical in all the indices. But, such addi-
tional terms, whatever may be their significance, may
require additional terms in the current. "

4. NON-UNIQUENESS OF THE
COVARIANT DERIVATIVE

In Riemannian geometry, Levi-Civitas notion of
parallelism has a well-defined meaning. If a long
narrow strip is cut out from a curved surface and placed
without kinks on a plane then the Levi-Civita parallel
become parallel in the ordinary sense. Any modification
of the definition of parallelism in Riemannian space
would, therefore, be quite artificial. But, in the case of
of a multicomponent wave-function parallelism has
no clear physical meaning, and we are at liberty to
change the definition as we wish. Such modifications
lead to additional terms in the wave equation which
are to a large extent arbitrary. In carrying a vector
from P to a neighboring point P~ let us give it an extra
rotation depending linearly on the coordinate differ-
ences. A convenient expression for this rotation can
be obtained by using the tensor character of rotation
matrices. Let

AI"'=L" A"

be a vector correspondence in the curvilinear coordinate
system. From the invariance of the scalar product of
two arbitrary vectors, it follows, as in the case of Rat
space, that

L,L I'=b„I"=LI' L„V
0=ki4,+ki, 4 = +koCpO„M44 "+ki "4.

These relations must hold if the vector correspondence
is to be a Lorentz transformation. An infinitesimal
Lorentz transformation can, therefore, be written as

(u4„= g((p4X„rp„X4)—(»)
"W. Pauli, Revs. Modern Phys. 13, 203 (1941).

in terms of two arbitrary world vectors &p&, p&. A vector
perpendicular to both q» and y& is left unaltered by
this transformation. Since the scalar product of two
vectors also remains unaltered, Eq. (19) defines a true
Lorentz transformation in the plane of p&, x&. The
simplest expression of this type linear in 8xI' is

co"„=rp"6x„—y „Ox".

Combined with the Levi-Civita displacement this
rotation gives rise to a kind of screw motion of the
vectors Xg~. The Lorentz transformation from the
resulting Galilean frame E' at P~ to the vierbein frame
F*originally set up at P& will contain an extra term

L
—Xh Xkp+lik„hhp]pp8x~,

and the modified covariant derivative will be

L2phk4 X lhpikgp]5
Bx"

It is perhaps desirable to demonstrate clearly that
this unconventional term does satisfy the requirement
of vierbein invariance. Let this term be denoted by
qShkg. Then vierbein invariance requires that

(g+Ag) ShkS P'5hk —AgShk+ i ~ . ,qLShk Sip]'
should vanish. Here, 2 denotes the change resulting
from an infinitesimal Lorentz transformation co;;. By
the formulas given in f1

AqShk=(o; yPP &Xkp —Xp'Xk„]5'k.

With the help of the relation (5) it is easily shown that
—',~;,qt Sh, kS&'7 has the same value but the opposite
sign. Thus, the requirement is fulfilled.

In the case of the electron. Shk=hi(yh, yk], and the
additional term in the wave equation takes the familiar
form ', ypppf. The ele—ctromagnetic potentials are thus
introduced by modifying the definition of covariant
differentiation. The usual procedure for introducing
them is to define I'„by Eq. (14) and then to show that
the solution is determined only up to an additive
multiple of the unit matrix. Both the methods utilize
an arbitrariness in the formulation of the problem and
are purely formal.

The above example certainly does not exhaust all
possibilities. Other choices of the extra rotation cv&„

lead to other kinds of terms in the covariant derivative.
For instance, if"

~4.= (&4.,—F.4,)5Xp,

then the additional term in the covariant derivative is
Fpphh XkpShkip. Whatever —may be the significance of

such terms, we have at least succeeded in showing that
the theory admits of a generalization.

'3This appears to be the most general form of co„&. The pre-
vious form or„I'=@I'Bx„—p„bxl" is obtained by putting F„„~=p„g„~.


