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In the nonrelativistic case of the Schrodinger equation, com-
posite particles correspond to Regge poles in scattering amplitudes
{poles in the complex plane of angular momentum). It has been
suggested that the same may be true in relativistic theory. In that
case, the scattering amplitude in which such a particle is exchanged
behaves at high energies like s~~'& Lsinvo (t) 7 ', where s is the energy
variable and t the momentum transfer variable. When t=t~, the
mass squared of the particle, then n equals an integer n related to
the spin of the particle. In contrast, we may consider the case of
a field theory in which the exchanged particle is treated as ele-
mentary and we examine each order of perturbation theory. When
N & 1, we can usually not renormalize successfully; when e & 1 and
the theory is renormalizable, then the high-energy behavior is
typically s"(t—tn) 'd (t). Thus an experimental distinction is
possible between the two situations. That is particularly interest-

ing in view of the conjecture of Blankenbecler and Goldberger that
the nucleon may be composite and that of Chew and Frautschi
that all strongly interacting particles may be composite dynamical
combinations of one another. We suggest a set of rules for finding
the high-energy behavior of scattering cross sections according to
the Regge pole hypothesis and apply them to m--7I, m-Ã, and N-37
scattering. We show how these cross sections differ from those
expected when there are "elementary" nucleons and mesons
treated in renormalized perturbation theory. For the case of 37-37
scattering, we analyze some preliminary experimental data and
find indications that an "elementary" neutral vector meson is
probably not present. Various reactions are proposed to test the
"elementary" or "composite" nature of other baryons and mesons.
Higher energies may be needed than are available at present.

I. INTRODUCTION

' 'N conventional Lagrangian field theory, particles of
~ ~ spin higher than one give rise to difficulties.

If we treat a particle as "elementary, " by analogy
with the electron and photon in quantum electro-
dynamics, we assign it a Geld and consider a Lagrangian
in which there is a free-field term for the particle and
also coupling terms to other fields. We expand in a
perturbation series, renormalizing masses and coupling
strengths, and look at the behavior of each order.
When the spin of the particle is higher than one (and, in
some cases, when it equals one) the resulting theory is
unrenormalizable or divergent in each order. ' The
divergences are connected, loosely speaking, with a
singular behavior at high energies of scattering ampli-
tudes in which the particle of high spin is exchanged.

Now objects of high spin obviously exist in nature,
and therefore from the point of view of renormalizable
field theory they have to be regarded as "composite. "
Somehow, when a composite particle of high spin is
exchanged, the singular behavior of the scattering
amplitudes is avoided. Regge, ' investigating the non-
relativistic Schrodinger equation, has found what is no
doubt the mechanism by which composite states of
high spin make themselves respectable. This mechanism

*Work supported in part by the Alfred P. Sloan Foundation
and the U. S. Atomic Energy Commission. The research was
begun under the auspices of the High-Energy Physics Study
Group (HEPS) at the Lawrence Radiation Laboratory of the
University of California at Berkeley in the summer of 1961, All
the authors were at that time members of HEPS.

~ For the case of the graviton, having mass zero and spin 2 and
obeying Einstein's nonlinear equation that satisfies the gauge
invariance of general relativity, the question of renormalizability
has not been settled.' T. Regge, Nuovo cimento 14, 951 (1959); 18, 947 (1960).
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can apply just as well to states of spin 0, -'„or 1, and one
is led naturally to the conjecture' that all dynamical
bound and resonant states follow the Regge type of
behavior.

For spins 0 and —'„however, and sometimes for spin
1 as well, we have the alternative possibility of consider-
ing a bound or resonant state as coming from an
"elementary" particle in the sense described above.
In many cases, one can exhibit, in every order of the
resulting renormalizable field theory, the high-energy
behavior of amplitudes in which the "elementary"
particle is exchanged. This perturbation theory behavior
is very different from that of the Regge case. We shall
use the words "elementary" and "composite" to de-
scribe the two situations, even though the applicability
of these words depends on perturbation theory in one
case and on conjecture in the other.

Recently, Chew and Frautschi' have suggested that all
strongly interacting particles' may exhibit the Regge
behavior that we believe to be typical of composite
states. In a sense, then, all baryons and mesons would
be bound states of one another. It is made plausible
that under this hypothesis all the mass ratios and

'S. Mandelstam has suggested and emphasized repeatedly
since 1960 that the Regge behavior would permit a simple de-
scription of dynamical states (private discussions). Similar re-
marks have been made by R. Blankenbecler and M. L. Goldberger
and by K. Wilson.

G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961).See also reference 14.

5 It is also possible that the other particles are composite in
this sense. The most fascinating possibilities are those involving
the electron, muon, and photon. Quantum electrodynamics
would still be correct at low energies and momenta, but would be
gradually cut off at high momentum transfers by the Regge
mechanism without violating causality.
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coupling constants of the strongly interacting particles
could, in principle, be calculated.

We are concerned here with the possibility of testing
directly by experiment the hypothesis that the various
baryons and mesons obey the Regge conditions. It is
often possible to compare the predictions of the
"elementary" and "composite" pictures of particular
baryons and mesons for the high energy behavior of
scattering amplitudes in which they are exchanged.
If s and t are the energy and momentum transfer
variables, then the two predictions are essentially a
form s &" in the composite case and s" in the elementary
case, where e is a fixed integer depending on the spin
of the exchanged particle, while n(t) is variable and
smaller than e in the physical region for the scattering.

Let us consider these statements in more detail.
Stable particles appear as poles in S-matrix elements at
real values of energy or momentum transfer variables.
Correspondingly, unstable particles (or resonances)
give poles on unphysical sheets of the S matrix at
complex values of the same variables. Consider a two-
particle scattering process o+b —+ c+d, for which the
energy variable is s (center-of-mass energy squared),
and the corresponding crossed reaction a+c —+b+d,
for which the energy variable is ].We may speak of the
s reaction and the t reaction, respectively. In the
physical region for the s reaction, s &s&i,„,i„id&0 andt(t, „where 3, —+ 0 as s —+ ~, while in the physical
region for the t reaction we have t&t&b„,I„i~&0 and
s (s, where s, —+ 0 as t ~ ~. The cosine x~ of the
scattering angle in the t reaction is linearly related to
the energy variable of the s reaction. In particular, if
qi and pi are the center-of-mass momenta of a+c and
b+d, respectively, then for large s we have

x,=—s(2q,pi)
—'.

Suppose, for simplicity, that a, b, c, and d are spinless
and that a particle of spin / gives a pole in the 3 variable.
In the invariant amplitude T(s,t), the residue of the
pole is then evidently a number times P&(x&):

T(s,i) = )CPi(xt)/t tit]+other —terms. (1.2)

Thus, in the s reaction, the contribution to the scatter-
ing amplitude of the pole (occurring at an ulphysical
value of the momentum transfer variable t) has the
energy dependence s' at large s.

As we indicated earlier, it is possible in many cases
to show, for the reeormalisabtt'e theories of elementary
particles of spin & 1, that in each order of perturbation
theory the high energy behavior characteristic of the
pole term persists for all values of t. (See Sec. VI for
details. )

For fixed physical (i.e., negative) values of the
momentum transfer I, in the s reaction, if this energy
dependence of the pole contribution is not cancelled
by other terms, then any value of / greater than 1 gives

us a rate of energy variation of T(s,t) at large s that is
embarrassing for the following reasons:

(1) The experimental situation seems to be that the
most singular behavior for T(s,t) (or its analog for the
case of particles with spin) is exhibited by the imaginary
part of elastic scattering amplitudes for 3=0 and that
the variation in that case is exactly or approximately
linear with s, corresponding (with the use of the optical
theorem) to constant or approximately constant total
cross section.

(2) Froissart, ' using the Mandelstam representation,
has shown (for the case of spinless particles a, b, c, d)
that the invariant amplitude cannot grow faster than
s ln's for large s and fixed t.

The situation described by Regge avoids these
diN. culties. He treated the nonrelativistic Schrodinger
equation for one particle in a potential that is a super-
position of Yukawa potentials. Let t be the energy
variable and x&=cose&. One may examine the behavior
of the scattering amplitude for large x&, even though
this limit is not connected with high energy in a crossed
reaction, since there is no nonrelativistic crossing
relation. Regge has found that in this simple case there
is a beautiful mechanism that reduces the singularity
of the behavior of the scattering amplitude at large
cos8b as t decreases and becomes negative. If there are
resonances or bound states, the scattering amplitude
at large x~ is dominated by a sum of terms of the form'

P (t) o(/)s
P-(i)(—xi), „- .

sins.n(t) ' " sins-n(1)
(1.3)

where each term represents, in general, a family of
resonances and/or bound states of tiarioble angular
ntonteniuns. We have used the asymptotic form (1.1) of
x& and the fact that P (y) ~ y~ at large y.

We shall discuss (1.3) further in the next section but
for the moment let us just note the relationship to the
simple resonance formula (1.2). For values of 1 below
threshold is (that is, below zero kinetic energy in the
Schrodinger problem), Regge's n is real and increasing
with t. A bound state of angular momentum l occurs
at a value tir (ts if n(iver) = I, since near tR we have

(1 4)

which just corresponds to (1.2).
At the bound state, then, we have the same situation

as always, with the scattering amplitude varying like
s' at large s. However, as t decreases from tg, so does
n(i), and the dependence on s at large s keeps getting
less singular.

s M. Froissart, Phys. Rev. 123, 1053 (1961).Froissart's proof
does not apply to the exchange of massless particles like the
graviton.

'Below threshold, each term may actually be proportional to
(—1}~P' (x~} or some other function that is asymptotically the
same as P„(—a, ).
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In the relativistic problem, if Regge's mechanism
operates, it can give precisely the desired sects. By
the time we reach negative values of t and enter the
physical region for the crossed reaction, 0. can have
decreased to a value & 1 so that we have an acceptable
high energy behavior in the s reaction even though the
spin of the resonance at t= tg is greater than one.

Moreover, even for spin 0 (and similarly for spin i~

and spin 1), where the asymptotic law s' for fixed l leads
to no trouble, the still less singular Regge situation is
an alternative possibility. These two situations are
just the ones we described earlier under the names
"elementary" and "composite, "respectively. Evidently
they can be distinguished by experiments. In the
physical region, the "elementary" picture makes the pole
contributions persist at high energies with the same
energy dependence as at the pole; this is in the spirit
of the "peripheral model" of high-energy scattering. The
"composite" picture, in contrast, makes the peripheral
terms much weaker at high energies. The Regge descrip-
tion also makes important predictions for diffraction

scattering.
In Sec. II, we discuss the Regge mechanism in detail

and make specific conjectures as to how it enters the
relativistic problem. We present these conjectures as a
set of rules for calculating the high-energy behavior of

scattering amplitudes.
In Sec. III, we illustrate the use of the rules by

treating ~-z scattering; the problem of diffraction
scattering arises here, as elsewhere, and we discuss it.

In Sec. IV, we apply the rules to ~-Ã scattering and
show how the nature of the nucleon pole can be tested
by experiment.

In Sec. V, we treat X-X scattering and analyze some
experimental data, which seem consistent with the
"composite" hypothesis for mesons and, in particular,
seem to be dificult to reconcile with the existence of
an "elementary" neutral vector meson.

In Sec. VI, we treat the "elementary particle"
situation that is contrasted with the Regge pole
hypothesis; we base our discussion on the 6eld theory
perturbation expansion and explore the connection
with the "peripheral model. " Finally, we list tests of
the Regge property of various baryons and mesons,
including strange particles.

II. REGGE POLES

We have mentioned the problem of extending the
scattering amplitude for the nonrelativistic Schrodinger
equation to large values of x&=cos9&. Regge solved this
problem by the mathematical method of Watson and
Sommerfeld, involving complex angular momenta. Let
us describe the method briefly.

The usual phase shift expansion,

where A(l, t) is proportional to sinai expibi, does not
converge for large x~. To obtain an expression that does
converge, one considers the solution of the radial
Schrodinger equation for arbitrary complex l, obtaining
an analytic continuation of A(l, t). The phase shift
expansion can now be rewritten in the form of a contour
integral,

T(x,,t) = dl
27ri

X (2l+1)Pi(—x,)A(t, t)n (sin~i) ', (2.2)

over a contour just surrounding the positive real l axis.
The residues from the poles of ~(sin~i) ' give back the
terms of the sum (2.1).

For a superposition of Yukawa potentials, Regge
shows that one may distort the contour in (2.2) to the
vertical line from t= —i~—i~ to t= ——,'+i~ without
encountering any singularities other than simple poles
of A(l, t), when t is above threshold to Thes.e "Regge
poles" occur at complex values of /, called n (t), at
which the Schrodinger equation (for energy variable
=t) has solutions corresponding formally to resonant
states with zero width. The position n„(t) in the
complex / plane of a given Regge pole (the itth one)
varies continuously with t. We use here only values of
o.„to the right of the vertical line at Re/= —~.

For each t) to, we distort the contour, pick up the
Regge poles, and obtain in place of (2.2) the expression

g+ $00

dl

&& (2l+1)Pi(—x,)A(l, t)s (sinai) '

+P P„(t)P.„(—x,) (sin~n ) ', (2.3)

which represents the scattering amplitude for all
values of x& and allows us to extract the asymptotic
form that we want at large x~. Note the Regge pole
contributions have the form (1.2); if they are present
they dominate the line integral . in (2.3), which is
bounded by a constant times x& ' at large x&.

For energies below threshold the specific representa-
tion (2.3) is not quite correct, but A(l, t) continues to
have simple poles at positions n„(t) in the complex t
plane; these positions are now on the real axis and
represent formally the angular momenta of bound
states at value t of the energy variables. The osymptotic
behavior of T(xi,t) for large xi is presumably still
dominated by the Regge terms:

T(x,t) = g p„(t)P „(—x ) (sin7rn„) —'. (2.4)
xg +oo a

T(x„t)=Q (21+1)Pi(x )A (l,t),
L=O

(2 1)
To get a bound state more and more below threshold,

we need more and more attraction. For real / between—~i and 0, t(l+1) is negative and'gives a "centrifugal
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attraction" that is greatest at /= ——,', where
E(I+1)A'/2mr' just balances the kinetic energy (h/2r)'
&& (1/2m) coming from the uncertainty principle. Thus
if the potential gives attraction at small distances, a
bound state should be possible at 3= —

~ for some value
of I, below threshold. As t increases, we need less
"centrifugal attraction" to supplement the attractive
potential, and so each n„(I) should emerge' from the
vertical line at /= ——', for some value of t below threshoM
and move to the right along the real L axis as t increases.
At threshold, n„ is continuous, although it has a cusp.

For t, above threshold, n„(t) represents the angular
momentum of a resonance of zero width and so must
be complex. We shall see that o.„ in fact acquires a
positive imaginary part above threshold. When Imn„
is small, then Reo.„represents approximately the
angular momentum of a resonance of positive width.

Genuine physical bound states and resonances are
now very easy to discuss. As a given n„(I) increases
from ——', along the real / axis while I increases (below
threshold) it may reach zero; there is a genuine bound
s state at this value of t, say tg. The contribution of
this Regge term to the asymptotic scattering amplitude
(2.4) near t=tg is just

p„(ta) &o(~~)

~n'(tg) t tg— (2.5)

as in (1.3). If n„attains higher integral values below
threshold, these correspond to bound p states, d states,
etc. , all belonging to a single family with a given
number of radial nodes in the wave function.

Above threshold, if Reo.„continues to increase and
rises through integral values while Imn is still small,
then there are resonances in the family. Say Rem„rises
through o: =l at t=t~ above threshold with Ren„'(4)
=a&, and say Iz=Imn„ is small there. Nearby, the
contribution of the Regge term to the scattering
amplitude (2.3) is approximately

p (t~)
(2.6)

which is just what we expect.
Before we pass on to the relativistic problem, we

must consider a slight generalization of the non-
relativistic case, namely the addition of an exchange
potential to the direct potential in the Schrodinger
equation. The potentials for the radial Schrodinger
equation are then different for states of even and odd
angular momentum. Each of the two mathematical
problems can be treated a la Regge and continued to
arbitrary /. However, when the solution of the even-
wave Schrodinger equation has a bound or resonant

' By using other representations of the scattering amplitude, it
may be possible to follow the poles and the corresponding e's into
the region to the left of Rel= —2. M. Froissart, M. Goldberger,
and S. Mandelstam (private communication}.

state at odd integral /, or vice versa, we must not
expect this to lead to a pole in 3 in the physical scatter-
ing amplitude T(x„t). We show in the Appendix that
the necessary cancellation comes about as follows: with
exchange scattering, each asymptotic Regge term takes
on the form

P„(t)(sinatra. ) '-', LP.„(—x,)+P „(x,)], (2.7)

instead of (2.4). The Regge terms corresponding to
physical states of even f, take the + sign in (2.7); we
shall refer to these terms as having positive signature.
Likewise, the terms corresponding to physical states
of odd / have negative signature. If the exchange
scattering disappears, then two Regge terms of opposite
signature coalesce, giving back the form of (2.3).

We now suppose that for the relativistic problem
the behavior of the invariant scattering amplitude
T(x~,I) is likewise dominated by terms like (2.6). For
the general case of the 3 reaction a+P, ~ 5+0 (and the
corresponding s reaction a+A ~ c+d), with arbitrary
spins for the particles involved, we conjecture the
following rules for ending the form of a given Regge
term:

(1) Consider a complete set of linearly independent
invariant scattering amplitudes A ~(s,t) free of kinematic
singularities and zeros in s and t. For example, in x-x
scattering there are three of these, for the three isotopic
spin states; in m-lent scattering there are four, since
there are two values of the isotopic spin and also the
possibility of spin Qip or no spin Aip.

(2) For the t reaction, take any set of values of the
conserved quantum numbers except j, the total angular
momentum. Then, as a function of j, construct the
contribution to the amplitudes A, of a hypothetical
exchanged particle with these quantum numbers; the
"particle" is introduced for mathematical convenience
only and may occur at any value M' of t. For each A;,
this contribution will be a sum of terms containing
I.egendre functions of x, (or derivatives thereof) with
indices depending on j. At large s, each such function
of x& is asymptotic to a power of s, where the exponent
varies with j like j+const. Thus the contribution to
A; takes the form

c;s'& "~&/(t M')—
asymptotically in s; there may, of course, be constraints
on the c;.

(3) Write j=n for integral spin in the t reaction or
j=n+ —,'for half-integral spin and continue to complex
o.. Then each Regge term has, asymptotically in s, a
dependence on s such as described in rule (2), with n

depending on I, and with L(1&e ' )/2 sinai]c, (t)
appearing as an over-all factor in place of c,(t—M') '.
The reason for choosing this form is clear from (2.6)
and (1.1). (See also the discussion in the Appendix. )
Each Regge term is associated with a definite set of
conserved quantum numbers in the t reaction (except j)
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and with a definite signature, which may be &1 for
any set of these quantum numbers. ' We see that when
the signature is positive (negative), there is no pole for
odd (even) integral n

A Regge term having the same o. will then appear in
each reaction in which this set of quantum numbers
can occur; that is analogous to the fact that a given
resonance occurs in many reactions. The coefficients,
generalizations of P in (2.6), will of course vary from
one process to another. We always exhibit explcitly
the factor

1~~
—t, ~a(t)

7

2 sinn n(t)

which is independent of the particular process in which
the quantum numbers are exchanged.

It is attractive to suppose, as in the nonrelativistic
potential problem, that each o.(f) eventually becomes
negative as t decreases. There are, however, some cases
in which this assumption raises difficult questions. For
example, there are many known systems, such as
nuclei, for which the ground state spin is greater than 2.
Take the case of spin 2. The corresponding Regge
term must have positive signature and o.=2 at the
energy of the ground state. As t decreases further, n
will have to pass through zero if it is to attain a negative
value. That would put us in the absurd position of
having a state of spin zero below the ground state,
unless a/i coeflicients c(t) for this Regge term vanish at
the point where 0, is zero.

From the point of view of nonrelativistic quantum
mechanics, it is presumably the Pauli principle that
prevents the existence of the spin zero state, given the
nuclear dynamics responsible for the ground state of
spin two. That would suggest that perhaps it is possible
to continue the Regge pole down to a point where
o;=0, but the c's vanish because the corresponding
wave function vanishes after antisymmetrization.

We shall consider, in our discussion of diffraction
scattering, a Regge n (called np) for a state of positive
signature such that o;~=1 at t=0. If O.J is to reach
negative values, it must pass through zero at a negative
value of t, giving a physical state of negative mass
squared; again, we can be saved if all the c's vanish at
the same point.

Whether or not the o.'s become negative, they are
presumably &1 in the physical region t(0 for the s
reaction, even though Froissart's proof may not apply
when there are anomalous thresholds such as exist in
nuclei, and there are no known experimental limitations
in the case when a heavy nucleus is exchanged. There
are, however, nuclei in which the ground state spin is
3, for example. Hence the n's must pass through 1 at, a
value of t above zero but below that of the spin 3
ground state, but since no spin 1 state exists, the c's

' The signature has sometimes been confused with parity in the
literature. Even when parity is not conserved, the poles are still
absent at every other integral value of o, because of the signature,

should in this case all vanish at the place where o, =1.
This indicates it is not absurd to expect that the c's
may vanish in other situations when n's pass through
zero.

Let us now apply our rules (1), (2), and (3) to some
particular scattering problems.

(—2, —1, 1)s
1—exp L

—i~0. (t))
c(t),

2 sin~n(t)
(3.2)

where we might use the more explicit notation n~(t)
and c „(t).To avoid having variable dimensions for
the quantity c, it is useful to put

c(f) =4m '(2m ') ~~&"b(t). (3.3)

Near t=m~', we have information about o. and b.
We may, if we like, define m„' to be the value of t for
which Rex, =1.Setting

ep
——Reap'(m ')

I„=Imn, (m, '),
(3 4)

and treating the imaginary part as small, then in the
neighborhood of m, ' the expression (3.2) gives us
approximately

( 1)2b(mp')
(—2, —1, 1)s (3.5)

vrep t mp'+iI pep
'—

to be compared with the contribution to x-x scattering
of the exchange of a single virtual, slightly unstable p
particle in field theory or dispersion theory:

(—2, —1, 1)P,(x,)[—2y...'(m, '—4m ')]

(—1)
X

t mp'+i 1'pm p (3.—6)

( )
'- (—2, —1, 1)gy 's

III. PION-PION SCATTERING

For m-x scattering, the independent amplitudes of
rule (1) can be taken to be the three isotopic spin
amplitudes Tr(s, t) with I=O, 1, 2 for the reaction in
which s is the total energy squared.

A prominent feature of the scattering process is the
I=1, I=1 resonance at about 750 Mev, called p. Let
us start by considering, for the purposes of rule (2),
the quantum numbers in the t reaction of this state:
I= 1,P= —1, G=+1.Suppose the p meson is a physical
manifestation of a Regge term with these quantum
numbers and signature —1. The exchange of a particle
with I= 1, P= —1, G=+1, spin j (j =1, 3, 5, etc.) and
mass M, contributes to (T',T', T') a term

(—2, —1, 1)P,(x()C/(t —M') (3.1)

and rule (3) gives us for the Regge term for large x~ the
form
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t)(2)2,')/2r e,=4y...',
Ipse '=Fpm'.

(3 8)

Using (3.7) and (3.8) we obtain a result that comes
just from the assumption of the pure decay p ~ 2x .

b(2)2,2)

(m '—4m 2)&2)t
—'

(3 9)

If the charge exchange amplitudes for x-m scattering
are dominated by the Regge term containing the p
meson for large s, then a charge exchange cross section
will be, for example,

Where y„2/42r iS an effeCtiVe COupling COnStant Of p tO

~ and m. If we make the approximation that p-~ 2m. is
the dominant decay mode of p, then the width F, is
givenio by

I'„2)2,= -', (y, 2/42r) (m, 2—42)2,2) &m, ', (3.7)

so that the experimental value of yp 2/42r is around
unity. Evidently in (3.5) and (3.6) we make the
identifications (for small F,)

transfers. Froissart has shown that no 0; may be greater
than one' for t~&0; to assure the Pomeranchuk state-
ment, then, we must assume no other e, associated with
a different set of quantum numbers, equals one for
t&0.

The form in which this Pomeranchuk Regge term
will appear at high energies in the m.-x problem is, by
rule (3),

Near t= 0, we have (rp(t) = 1, while other (2's from other
Regge terms such as that associated with the p meson
which was discussed before, are presumably less than 1.
The entire 2r-2r amplitude is then dominated by (3.12);
hence, as t ~ 0 we find the amplitude becomes pure
1maglnary and

T'(s, 0) '- —(1,1,1)isb) (0). (3.14)

(1,1,1)(s/2222 ') P("

1+expL —22r(2p (t)j
X 4~.'f ~..(t) (3..12)

2 sintr(2) (t)

where

doI 0 do~ 2 )2np(t) —2

„.-»...(t)l
dt ' " '

&2m2j

tt] ~ ipnp(t) ) —2

~...(t)= f...(t)l
162ri ( sintr(2p(t) ) t

(3.10)
The optical theorem for m-vr scattering states that

ImT'(s, 0) - —so.2
r

$~00 (3.15)

where (Tzl is the asymptotic total 2r-tr cross section in
the isotopic spin I channel. Therefore

and we have restored some of the subscript indices for b.
In the physical region for the s reaction n(t) is no

doubt &1.This is quite different from the situation for
an elementary p in the lowest order of perturbation
theory; however, it seems unlikely that the p could be
elementary in any case, since the perturbation expan-
sion of an elementary J= 1, I= 1 particle is not re-
normalizable. Later, for example, in Sec. V where we
discuss Ã-T scattering, such distinctions will take on
more importance, since in S-X scattering the exchange
of a J=1, I=O particle, which can be renormalized, is
possible.

We have already indicated that the Regge approach
can provide an explanation of the experimental result
that total cross sections become constant at high
energies if we assume the existence of a particular o.,
called a), with even signature and such that (2~(0) = 1.
Let us associate O.I with the set of quantum numbers
describing the vacuum. Then its existence also guaran-
tees the validity of the Pomeranchuk theorems, which
state that particle and antiparticle total cross sections
become equal at high energies, and that all two-body
inelastic cross sections vanish, provided the n~ Regge
term dominates the amplitude for small momentum

' M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
(196i).

a-r'= f) (0). (3.16)

The differential cross section for m-m scattering at high
energies which results from (3.13) may be written

(3.17)

if we de6ne

)1+&—(ttnp(t)
~

2

I'P-(t) = &P-(t) I

16~ & sin~n~(t) 3
(3.18)

These equations are valid for all t for which the
"Pomeranchuk" Regge term dominates; therefore,
they should certainly be valid for small t. For larger
negative t however, there is in principle nothing to stop
a different 0; from being bigger than a~. If this happens,
the form (3.17) is still valid, but with a different F (t)
and the newly dominant n replacing 0&.

The "Pomeranchuk" Regge term can be exchanged
in all elastic scattering amplitudes, since it goes with
the quantum numbers of the vacuum. Therefore, all
elastic differential cross sections will, for sufficiently
large energies, and for momentum transfers at which
n& dominates all other 0,'s, have the energy dependence
of (3.17) with the same exponent (2) (t). The coeff(cient
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Fr (f) in (3.17) will, of course, not be the same for
different processes. "

For small t, we may write nr (f) = 1+fnp'(0), in which
case (3.17) becomes

do~
-+ Fi (t) expt —2

~

t
~

rrp'(0) ln(s/2m, ')] .(3.19)
dt

energy behavior that was true of the x-x problem. We
must therefore discuss these two limits separately.

In accordance with rule (1) we may choose the
amplitudes describing the m-E process to be A+ and 8+
where the invariant amplitude is written

For very large energies, the most rapid variation with
t will come from the exponential, so there will be an
exponential diffraction peak with a width that decreases
logarithmically with increasing energy.

IV. PION-NUCLEON SCATTERING

The discussion in this case is much the same as for
the m-z problem in the forward direction at high
energies; the only real difference arises from the nucleon
spin. However, in the x-X case, because of the non-
identity of the particles, we no longer have the
symmetry between the forward and backward high

Here o', o- and g', q are the final and initial charges and
4-momenta of the pions.

First, we shall concentrate on the high energy forward
limit s —+ ~, 3 fixed, where s is the total c.m. energy
squared for x-E scattering, and t is the total c.m.
energy squared for the process s.+a ~ 1V+Q. As in
the x-x problem, the p meson will appear in the t re-
action, as will the Pomeranchuk term. The quantum
numbers of the p meson are I=1, P= —1, 6=+1, so
using rule (2) of Sec. II and the known form of the
partial wave expansion for the s.+rr ~%+Xprocess, "
we may write the form of the relevant meson pole
term:

g(1)p, (g )+m (+2 4m 2)i(~2 4mN2)
—ig(2)g p.&(g )

A(—)—
t—M'

B&-&=C&'&p,'(x,)/(& —M').
(4.2)

There is no contribution to A(+) or 8(+) since these
amplitudes correspond to a pure I=O state in the t
reaction. The cosine of the scattering angle in the t
reaction is

x,=—(s m~' —m.s+—-,'t)/2q, P„
where for this problem we have

q&2 sf m 2
p&2

—rf mN2

Asymptotically, we still have (1.1).
At large s, P;(x&) goes like s' and x&P; (x,) like js',

while P/(x, ) goes like js' '. Applying rule (3) and
taking out some factors for convenience, we have for
the asymptotic Regge term the form:

s iwnp(t) s )-np(o

2 sinrrn, (t) 2m m~ J

X2m Lb print'" (/) —crt(f)b pir~"'(t)]+
(4.3)

&
—imap(i) s )Apio 1

2 sin~n, (/) 2m.m~/

X2~,(&)b psIir"'+.

The appearance of two unknown functions of t,
b, "'(t) and b, "&(/), reflects the fact that there are two
possible states of the E %system in-the t reaction, for
example 'S~ and 'D~, and without a complete solution
to the dynamics of the process, there is an unknown
mixing parameter between these two.

The n, here is, of course, the same n, as we found in
the x-7r problem. The position and width of the p
meson are expressed in terms of this n. The functions
bp(" and bp on the other hand, are characteristic of
the particular process in question. As in the m-x prob-
lem, these functions when evaluated at m, ' may be
related to the coupling constants pp and pp» and
the "anomalous moment" p,~~ of the p meson coupling
to pions and nucleons. Specifically, we find

b."'(m')/«p = ».»v p-, 4.4
b, "'(m,')/s e, =2y,rising, 4msrp, ,srriy, —

At large s and for t(0, so that we are in the physical
region for the s reaction, this Regge term contributes
to the no-spin-Aip and spin-Qip scattering amplitudes
as follows:

For simplicity, we shall usually drop the x and Ã
subscripts on $(1) and $(2)

~

"Note the presence of the factor t/2m ' in the quantity raised
to the power 2'(t) —2 is purely arbitrary. In m-/ and 37-37
scattering, we shall use 2m m~ and 2'', which are equally
arbitrary. In general, any constant raised to the power 2np(t) —2
can be absorbed into F(il.

1 1 s 'i%alp ( s Rp

2m (b, ~"—nb, "')
16rr 2 sin~n, ~2m msr

(4 3)

"W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960).
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The no-spin-fhp amplitude f is defined, for large s, by

5$~ s
f+= — 2++ 8+ !,

42rsI 201)V

and the spin-Qip amplitude by

f+= ( 2++—s'*8+).
16m

(4.6)

The asymptotic charge exchange x-S cross section
is thus

Hence, the differential cross section is

do+ 1

dQ 16m'

s ' sin28
~~+ ~~ +

f

~.-s-:~'I'!. (4.7)
2m~ 16 )

As t —+ 0, we have np(0) = 1 and therefore

f (+& -+ (s'*/82r) ibp(') (0)+ (4.12)

Imf(+) = (si/8m)try &+&, (4.13)

to relate bp(')(0) to the asymptotic total 2r-LV cross sec-
tion. Thus, we find

(i) (0) =err(+) (4.14)

At any t&0 for which the "Pomeranchuk" Regge
term dominates the entire amplitude, we may write

da(+& S l2ap(t) —2

=F.~P(t)
di 2m.m )

(4.15)

where we define

Assuming as always that the "Pomeranchuk" Regge
term dominates, we may then use the optical theorem,
which states for large s that

where we have

s l2 p2n

Pp-~(I),
&2t&t.tu~)

(4 8)
P ~p(g) =

f
f)p(r)

f

2
f

&ttp(i) —&rtttp(2)
f

2

16m 4m~'

1
P ~ (])= !

&tt(r)
f

2
f

$ (r) —&rg (2)
f

2

16m 4m~'

g
—'Wl(lp 2

sine o.,
(4.9)

In the t reaction without charge exchange we expect
to find the "Pomeranchuk" Regge term. The form
which this term takes is, according to our rules,

1+e irrap 2—
(4.16)

sine n~

I.et us now turn to a discussion of backward high-
energy Regge terms. These will be Regge terms
associated with the m reaction, where I is the crossed
momentum transfer. The u reaction is then also x-Ã
scattering. The partial wave expansion for this process
is well known, " and in accordance with rule (2) we
consider the hypothetical pole terms

I+e-irrap(t)
~ s lap(t)

g(+)
2 Slntr&rp (1) E282rrtÃ~)

&t W+2&2)v W—tttN
&=Cl P;~'(x )+ P; I'(x ) !(u—M')

& Z+2ltsr Z—2rta

(4.17)

P~ (x„)—
E ssgf

I +e i trap(t) ( s l np(t) 1— —

2 sins np(t) (22&2 t)2)v J for states with j= I+-2', and

X2tlrrgrrrrP1VN (1) &)tp(~)f&rrrrpp&N (I)]+ ' ' '
t t' 1

(4.10) g Cf
k 8+2&2)v

X2~P(&)f..Pm (2)(1),
much as in (4.3).

At high energies in the physical region for the s
reaction, this Regge term contributes to the no-Qip and
Qip amplitudes as follows:

2tt~ f1+e ' p ( s
f&+&

42rsI E 2 sin2rtrp (22&2.2&2)vl

X2e bp")+ . .

1 tp1+e—'- l s
f(+) ~

162r k 2 sinlrnp t) 22&2 2&2)v)

X 22&2 (f&P( ) c&f)P )+ ' ' '

)rW+2tt&v W—
t&2)&r

A=C! P; (x„)+ P;=+ (x„) !(u—M') ',
k P+m~ E m~—

(4.18)
1 1

J3=Cf P; (x )
& 8+its)v E—m)v

P;+.,'(x ) !(u —M') —',

for states with j= l——,'.
In this reaction, a single C suffices to describe each

pole term since there is no mixing between states
possible as long as parity is conserved. For the moment,
we are ignoring isotopic spin. The notation in (4.17)

"S. C. Frautschi and J, D, &aleckar Phys. Rev. 120, 1486
(1960).
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and (4.18) is the following:

—(s—m)v' —m s+2E o).)/2q. '
u/4 '—(m—)v'+m ')+ (mrr' m'—) '/4u

(u+m)v' —m ')/2uj

(u —mr('+m ')/2ul,

Eu+ o)u =u'.

(4.19)

s reaction is easily seen to be, for large s and 6xed I,

1 (1+e 'un)( s
f+ -+ a—

! !! ! b(u) (8' —2m)v)+
8x k 2 sinn. (r l &2m mar)

(4.23)
s* (1+e '

(r s
! b(u)+" . .

16x 5 2 sinir(r (2m m)v)

Applying rule (3) to a Regge family with positive
signature and negative parity or negative signature
and positive parity (counting the intrinsic nucleon

parity as +1 and that of the pion as —1),we use (4.17)
and obtain for the high-energy contribution to A and
8 something of the form

(1~e—1un(u)]P S n(u)

(W„+m~)b(u)
2 sin%&(u) (2mr1(mu

L1~e 111a(u—)'] f s 1 n(u)

b(u)+
2 sin7rn(u) (2m)vm f

+ (4 20)

()] ) ()
A~

2 sins. (r (u) 2m)vm. )
(W„m)v)b(u)—+

(4.21)
$1~e (1un)]u—( S ) (nu)

—8 —+ b(u)+
2 sinrrn(u) (2m)vm )

There are a number of stable and unstable states in
the m-X process which we may associate with Regge
terms of this sort, namely the nucleon itself and the
various ~-S resonances: the 33 resonance, the pre-
sumed d;, I=—,' resonance at 1520 Mev, and the
presumed f~, I=-,' resonance at 1680 Mev.

If the nucleon is due to a Regge term, " this term
must be of the form (4.21) with even signature and
n(m)v') =0. Furthermore, the nucleon has I=-,', so the
Regge term must appear with coeKcient (1, —1) in the

((+),(—)) amplitudes. Let us take b(u) to have the
sign given by (4.21) for the (+) amplitude. It is easy
to compare this Regge term near u=m~' with the
usual nucleon pole and relate b(m)v') to the usual
pion-nucleon coupling constant:

b (mrr') /rr e = g)vtv. ', (4.22)

where we define =en'( m))vSince u . mrr' is =below

threshold in the I reaction o. is real there. The contribu-
tion of this Regge term to the high energy no-spin-flip
and spin-flip amplitudes in the physical region" for the

4R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126,
766 (1962)."Backward scattering in the g reaction corresponds to a
maximum value of u that decreases from u= (m1v —m, )' at thresh-

Correspondingly, for a Regge family with positive
signature and positive parity or negative signature and
negative parity, we use (4.18) and find

mssI'ss ——Iss/ess, (4.24)

where ess ——Ren'(mss'), Iss ——Imn(mN'). We can evaluate
the coeKcients 6 at resonance by using unitarity and
the condition of a single dominant decay mode
(33) —& X+rr. We obtain a relation analogous to (3.9)

old to N=O at in6nite s, R. Blankenbeder, L. Cook, and M. L.
Goldberger have pointed out to us that between this maximum
value of I and N=o the quantity ~x,

~
is less than unity. But

asymptotic expansions such as (4.23) are valid in the limit of large s
for fixed I and we can take such a limit only for negative I; in
that case

~
x,

~

becomes large at high energies.
"M. Gell-Mann and F. Zachariasen, Phys. Rev. 123, 106S

(1961).

Note that we expect n in (4.23) to be less than zero for
u in the physical region for the s reaction, while if the
nucleon is elementary it can be shown in each order of
perturbation theory" that the form (4.23) is correct but
with exponent=0 for all N. If the nucleon Regge term
were to dominate in the limit, then we would have an
immediate method for testing whether the nucleon is
"elementary. " In general, however, we cannot be sure
that this particular Regge term will dominate, because
there is no reason to believe that the Regge o.'s associ-
ated with the various ~-iV resonances are smaller than
the nucleon n in the physical region. Of course, if a/l

these Regge n's are considerably less than zero in the
physical region, then the difference from the "elemen-
tary" case will still be obvious. In any case, the variation
of the n's with 3 can still distinguish the Regge
situation.

Of the higher resonances, we might expect that the

f;, I= rs resonance is associated with the same n as the
nucleon, "since the quantum numbers of the two states
are the same. Thus we should have not only n(m)vs) =0
but also Re(r(m) )=2. This requires a rate of change
of a of about n'=1(Bev) ', which, as we shall see in
Sec. V, is of the same order of magnitude as the slope
which seems to be experimentally indicated for the
Pomeranchuk np.

There should then be two additional n's, associated
with the Pf, I=ss and the d;, I=rs resonances. We
shall close this section by indicating the form of the
Regge term associated with the 33 resonance. We use
(4.20) with odd signature and (r(msss) =1. The form

(4.20) must appear in the f(+),(—)] amplitudes with
coeKcients (2,1). The width of the 33 resonance is
given for small I', by
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for p —+ 2x, namely

~Iss 1 g„'(L! +m~)

m m~
(4.25)

It should be remarked that for this Regge term one
cannot say that we must have 0. ~~0 in the physical
region, but only n &1 on the basis of assuming decreas-
ing o.'s. Nevertheless, we may hope that for suKciently
large negative m this n will go negative as well.

V. NUCLEON-NUCLEON SCATTERING:
EXPERIMENTAL DATA

From the preceding analysis of the m-m and m-S
cases, we can easily see the general features of the S-S
problem without going through the details.

The scattering amplitude without isotopic spin ex-
change (I=O in the t reaction) contains the Pomeran-
chuk term and dominates the amplitude in which I= 1
is exchanged; the latter can be studied conveniently
only in backward rr-p scattering, unless "elementary"
mesons contribute.

Consider the nonexchange amplitude for fixed /&0
and large s. Suppose only Regge terms contribute.
Because of the dominance of np (at least near 3=0) the
main phenomenon is the diffraction peak and the cross
section has the form

do/dk —+ F&Np(. t) (s/2m+')'~p&" ' (5.1)

where F(t) is relatively slowly varying. " The cor-
responding scattering amplitude goes like s"I'".

Now suppose there is an elementary neutral vector
meson with I=O, which might be identified with the
observed co'. In field theory we may couple it to a
conserved vector current and construct a renormalizable
perturbation series; in each order, the diagrams cor-
responding to the exchange of an ~' with a dressed
propagator and a dressed vertex at each end give a
contribution to the scattering amplitude that persists
at large s with the form

(5.2)

where g(t) includes the effect of the vertex function at
each end and the modification of the propagator by
interactions. We see that the amplitude has a real part
going like s' at high energies with the exponent unity
independent of t. This behavior is in sharp contrast
with that of a "Pomeranchuk" Regge term, which is
pure imaginary in the forward direction and goes like
s ") with n decreasing from unity away from the
forward direction.

If we describe the co' (or other vector meson) as a
member of a Regge family with parameter n„(f), then
the term contributed to the T-S amplitude by the
exchange of this family goes like s ~&" at high energies.
But Rem„equals unity only at 3=m„' and as t decreases
to zero (to reach the physical region for the s reaction)

kr 80'

(sr)f) (ss)f)=(sr/ss)'f &" "
dt Ch

(5.3)

where I, (t) is the dominant power at momentum transfer

t, whether that is a Regge o. (t) or the fixed angular
momentum of an "elementary" meson (1 for a vector
and 0 for a scalar or pseudoscalar meson). It would be
desirable to have higher energies than are at present

"See, for example, B. Cork, W. A. Wenzel, and C. W. Causey,
Jr., Phys. Rev. 107, 859 (1957), and G. A. Smith, H. Courant,
E. C. Fowler, H. Kraybill, J. Sandweiss, and H. Taft, ibid.
128, 2160 (1961).These authors find extrapolated forward cross
sections consistent with a pure imaginary forward amplitude
between 2 and 6 Bev. W. M. Preston, R. Watson, and J. C.
Street, ibid 118, 579 (1960.), Gnd some evidence for a real part.

o.„ falls well below unity, so that in the region of the
diffraction peak the exchange of the ~ family is over-
shadowed by the Pomeranchuk amplitude.

There are various experimental ways to test for an
oP acting as an elementary particle does in perturbation
theory. The thoroughness with which these tests must
be carried out depends on the effective strength of the
oP coupling to nucleons.

First, one can compare the high-energy forward
scattering cross section (eliminating the Coulomb eRect
for p-p collisions) with that calculated from the optical
theorem for the imaginary part of the amplitude alone. '
A real part of the forward amplitude with the same
linear behavior in s as the imaginary part would come
from the exchange of an "elementary" vector meson.
In fact, that is just the behavior we expect for the
exchange of a photon, treating it as elementary.

Second, one may search for a persistent real part of
the nuclear forward scattering amplitude by looking
for interference with the Coulomb amplitude, especially
in nucleon-nucleus collisions.

Third, one may examine the form of the diffraction
peak for a fixed high energy. In field theory, there is
no known reason for the function g(f) in (5.2) to fall
off very rapidly (e.g. , exponentially) as f decreases
from zero. If we look at the cross section and see a
diffraction peak like that given by (5.1), which for
small t is do/dt=F(t) exp[ —2~f~n~'(0) ln(s/2'')), we
can set a rough limit on the strength with which a
term decreasing approximately like (m„s—t') s could
be present.

A fourth slightly different approach to the data,
which can in principle test for "elementary" mesons of
either spin zero or spin one (and of either isotopic spin),
is the following. For each fixed momentum transfer t,
we examine the s dependence of the cross section at
large s and try to And the dominant power law. This
method improves rapidly with energy at high momen-

tum transfers. At two sufficiently high energies s& and
s2 we should have
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available, ' but a preliminary analysis has been made
of the existing data.

For the first two methods discussed above, we do
not have good enough data available. The experiment
of Cocconi et al." permits some application of the
third and fourth m.ethods. The diffraction peak seems
to be quite clearly exponential in shape. It is evident
that (5.3) gives a direct measure of L (1). At small

~
t

~

the errors in the experimental cross sections at different
energies overlap, so L(t) cannot yet be accurately
determined in this range. For larger ~1t, however, in
the range 1—3 Bev', the cross sections at different
energies are clearly separated, and yield roughly
L( 1Bev—') =0 L( 2.7 B—ev') =—0 7+0.3. Supposing
that L(t) is in fact ni (t) in this range, we have a crude
estimate of the rate at which ni (t) changes. If this
rate of change is maintained for positive t, we may
expect ni* to pass through 2 at abouts (1 Bev)'. There
would then be a spin two object with a mass around one
Bev, and I=0, F=+1,6=+1 's

The data also seem to indicate that e~ has passed
through zero near t= —1 Bev'. Because of the even
signature of the n~ terms, that means there is a ghost
of mass squared around —1 Bev'. As we have remarked
before, the difhculty may be overcome by the vanishing
of all the b's coupling the "Pomeranchuk" Regge term
to any particle at this point.

An alternative possibility would be to separate the
I=O, J=O state in the t channel and determine it by
the E/D method in such a way that the ghost does not
appear. Still another possibility is that o.I—+0 as t—+—~.
In either of these cases, however, we would have to
ignore the slight indication from experiment that the
leading n passes through zero near t= —1 Bev'.

Using the above estimate for ni (t), or L(t), one may
calculate from the data the variation with t of the co-
eflicient F&~r (t) in Eq. (5.1). We find F(1) decreases
only by a factor of 3 between t =0 and t = —2.7 Bev';
that is almost nothing compared to the decrease of
do/dk due to the factor (s/2miv')'~', which is of the
order 10'.

This encourages the hope that most of the exponential
behavior in t for small t comes from the coef6cient
(s/2miv')' ' and little from the F(t). If we make that
assumption, putting"

do/dt =F(0) exp| —2 ~1~ ni '(0) 1n(s/2m'')) (5.4)

for small t, we find tri'(0) 1n(s/2m'') =3.75 from the
data 0&—t&1 Bev' 30 Bev'&s&40 Bev' Thus we

' This is especially true of the application of the method to
particles other than nucleons, since the range of presently available
energies is then even lower.

"G.Cocconi, A. X. Diddens, E. Lillethun, G. Manning, A. E.
Taylor, T. G. Walker, and A. M. Wetherell, Phys. Rev. Letters
7, 450 (1961);we wish to thank Dr. Cocconi, Dr. Wetherell, and
Dr. Taylor for illuminating discussions of this work. A theoretical
discussion of inelastic Ã-37 scattering is given by S. Drell and
Z. Hiida, ibr'd 7, 199 (1961). ."C. Lovelace (to be published).

get ni '(0) 1.3 Bev ', which is roughly consistent with
our earlier estimates.

The above discussion has all been for noncharge-
exchange scattering. It is evident, however, that similar
statements may be made for charge exchange scattering.
The differences will be the absence of the "Pomeran-
chuk" Regge term and of other Regge terms correspond-
ing to I=O exchange. There remain terms for the
exchange of l= 1 vector or pseudoscalar mesons, such
as p or m. If we define forward scattering to be the
case where the proton is undefl. ected in angle, then
p+ and x+ Regge terms will show up in the backward
charge exchange scattering at high energies.

It is important to remark that the "Pomeranchuk"
Regge term occurs in the scattering whenever a state
with the quantum numbers (other than j) of the vacuum
can be exchanged, even in spin-fiip and genuinely
inelastic processes. For example, we can see from (4.11)
and (4.16) that in spin-flip ir-iV scattering without
isotopic spin-Rip, the contribution to the high energy
cross section is of the form

(5.5)

do/Ck =F(t) (s/2mivs)'"~ t'&—' (5.7)

to the asymptotic cross section. Since t is less than
zero in the physical region, tri (1) is less than unity and
2nr(1) —2 is less than zero. Thus inelastic scattering
is reduced (at high energy in the forward direction)
compared to elastic scattering.

In reaction (5.6), the 33 isobar can never be reached
in the exchange of the Pomeranchuk channel, since the
latter has I=O. The second and third resonances can,

"When a reaction involves particles that are unstable or have
anomalous thresholds, certain complications may arise in the
complex angular momentum plane. See B. M. Udgaonkar and
M. Gell-Mann, Phys. Rev. I.etters 8, 346 (1962).

but with F(t) ~ 1 near 1—=0, since the angular distribu-
tion contains a factor sin'0, . In Ã-S scattering also,
there is a contribution of the "Pomeranchuk" Regge
term to spin-flip scattering, but that is not yet of great
experimental interest.

A phenomenon that has been studied experimentally"
is inelastic diffraction scattering of protons on protons.
Consider, for example, a reaction

(5.6)

where 2V* is an unstable nucleon isobar. In such a
reaction, the maximum value of t in the physical region
is not zero, but a negative quantity t, . For large s,
we have

=—m '(m *'—m ')'/s'.

Now whenever iV~ is such that the "Pomeranchuk"
Regge family can be exchanged, we have for (5.6) the
contribution"



22&5EGGE POLO

THES�EUS

0NCES OF HCoySEQ+E

theory

from

q) up(p i))r (p p)$»o(p)F»e(p&p~

p (p)+m 4'(p)
( ) (6.4)=Qf (pf)+»

p2»z»~2
that we have

Vy RE@GE poLES

d at some lengt
esis.

have discusse
R e pol.e hyppthescattering amp litudes « t

situationf the contrastingHpwever, our
t prough; we shall n g

trea, tment p
ow o intohas not so far been very t oroug

etail.
in x-S scatter-

it in more e
a e,

d in Sec. . caaring
Plp
COll

Ma

lz(u )du g~~~

—PS 2I —I I—5$N
(6.&)

gÃztr w
2 1

t we considere

2
m

e o f ole and single integra

p ng
n esd lstam representation in

ddltlpns to th6, ($')ds'

bl o bo d d
ld ot o

s s

of th p 'o,

tth 1

(s' —s) (t' —t)

o ly con]ectu e

s ' ' rather than s' ascon ri g g
in 6.2). Moreover, at suKcient y a

e eh ' o o g, so(61
u — '— contrl u io a

r that the
(. )pesis

P
1 e

em hasize ln r
easurlIlg

ole terms an

such as 6.
T ere a

tions. To t e ex 1

singe i

s

Re ge poles, t is p

Using the fact t a
roaches infinity, we

pp o g
a es such as zneasuring off-sbackward anglesscattering at a

metrics.
A the pomt m

tip nally

6.1) van» ethe terms ln

b h q liyo

le integral term in I:sing e

describes a
the bare mass

1 Q

for examp e,
s are not equa.

gNN~

S—
a, ton) when t ep ysian ro o

'
n t epry, one can conver

shoo» 'Q 1x

n renorma lze
re uantitles o

ularities such asg'a be extra terms I,. u an2 There m y

"S.Mandelstam, Phys. Rev.

giViV ~
2

u —BIN 7rS—SSN

1 bz(u')du' 1

Q —Q x

2
gNN~8+—

Bzs+(s', t') ds'dt'

Bza+ (u', t') dt'du'

7r' - (t' —t) (u' —u)

ptptic fprm 6.2)In the x-r 6eld
„10It is the contribution

a,Ilde reached. If y '
e the exchange

) f the sum pf all cro
1 line between

however,
d & then they req '

re- to 8 +

td of bare nuc eon

ectively of ~ an
&

ular momentum&
h there is a stretc o

d th. e absorption p "

respec 1

of at lea, st 1 a
'

ction. As a cons q
the emlssipn of t e

be written in terms o

the forward direc o
d resonance t e e

Th s, it Inay e wn

spectively, zn

(t)]~ for the secon
initial one

&

agator S» c

J'(&,
t 1]' for t e ' . t eak renorm

cleon vertex oP

ti contajns a act r
h third resonance n

alized nuc eon o
era

a„d Lzz&(t)]'Lzz&(), «r»tic dkffractzo"
renormalized Pzon

the matrix elemen

hile the (hara
a( h ( ase as

1 t m comes frpln
nction (s/2m»r )

th ratio of the lo

p+»»t»r
(p~) (6 3)

rs 7) For sm» " '
„ld he roughly co

1
. =ztf(pq)y»

t nt while the ratio p;
tely like t'. Al]. the

-
d anal nucleon «ur

s
~

sh«ld go aPPro»m
ns of CPcconi

initial. an
f

elastic one s o
th the observation

h where p; an pf
~

h intermediate nu

results a«co;mental work is n
d momenta»,

nd (p,—p) = p

nsjsten. t wi
f z9 hut further exp . . t he properly teste '

ntum, with p =u '
es zn a simzlar w y

interpretation we

The complete expressioRY" pARTICLES
the matrix e1eme

ANgD «ELEME&TA



2216 FRAUTSCH I, GELL —MANN, AND ZACHARIASEN

normalized propagators and vertices for large values of
their arguments. Thus it was proposed that comparison
of quantities like x(m) for large I in various reactions
involving different baryons and mesons would provide
a test of broken symmetries in strong interactions by
means of measurements of 5-matrix elements for strong
processes. Again, if all baryons and mesons are just
Regge poles, this possibility disappears and one must
reconsider the whole question of the meaning of
broken symmetry. "The same kind of argument applies
even to familiar cases like isotopic spin conservation.

The most important aspect of high energy limits like
(6.2), characteristic of many processes in renormalized
perturbation theory, is their connection with the
"peripheral model" of high energy collisions. '~ To
discuss "peripheralism, " let us choose another example,
namely the charge exchange amplitude P(s, t) in N N-
scattering associated with the invariant
where the upper indices refer to the two nucleons. In
the perturbation expansion of renormalized m-S field
theory, we have, much as in (6.2), the result

()
(6.6)

g&&
2 1 b& t dt~

P(st): +-
S—+oo, t fiXed t ~ 2

= g&~.'(V, (t)]'DI c(t). (6.7)

where the right-hand side may once again be inter-
preted as the product of a propagator and two vertex
functions. This time we have the pion propagator
hpo(t) and the vertex yqV, (t) for emission of an off-shell

pion between two free nucleon lines:

asymptotic form

AN(v )Vere(t)] AEcra(f) q (6.8)

analogous to (6.7). We saw in Sec. V that this asympto-
tic form is very different from what is produced by
Regge poles alone.

There are other amplitudes (such as A+ in n. N-
scattering) which obey the Mandelstam representation
with subtractions, even in renormalized perturbation
theory. For those cases, we cannot make any clear cut
statement about the asymptotic behavior for large s.
Moreover, if we consider field theory apart from the
perturbation expansion, or merely allow for the possi-
bility that the sum of the series acts differently from
each individual term, then we do not know how many
subtractions there are in the Mandelstam representa-
tion even for 8+ in x-S scattering or I' or 'U in S-S
scattering. If additional subtractions are necessary,
then many new kinds of asymptotic behavior are
possible, including the type characteristic of Regge
poles. After all, the Regge pole hypothesis is only a
special case of the situation with subtractions. Thus if
the experiments show that the nucleon, pion, etc. , are
all members of Regge families, then we sti)1 cannot
rigorously exclude a field theory that treats these
particles as "elementary" in a broad sense. However,
if the nonsingular character of the amplitudes according
to the Regge hypothesis really permits the calculation
of all coupling constants and mass ratios, then there is
not much point in calling the particles "elementary. "

In conclusion, let us list a number of reactions in
which the Regge pole hypothesis can be tested for
various baryons and mesons.

Now the peripheral model emphasizes the dominance
at high energies of this exchange of one off-shell pion.
(Moreover, the same kind of term is assumed to
dominate many other reactions. ) But the situation is
quite different if the pion belongs to a Regge family;
in that case, we have an asymptotic amplitude pro-
portional to s "&/sin~n(/), which agrees with (6.7) only
at t=m ', where e=o. In the physical region for T-Ã
scattering (t&0), n is negative and the amplitude falls
to zero at high energies instead of remaining constant.
Of course, at moderate energies ( 1 Bev) or even
substantially higher if

~
t

~

is kept small, the contribution
of the one-pion pole is still expected to play an
important role in the physical region.

Similar considerations apply to the amplitude
'U(s, t), in 1V-1V scattering without isotopic spin ex-
change, that multiplies the invariant y &" y ('&. Re-
normalized perturbation theory for a neutral vector
meson such as co', or else "peripheralism, " suggests an

I'=A 2'

~+N —+ 1V+m. ,

y+N ~ N+n-,

vr+N —+ N+a), etc.,
~+N —+ Y+E,
E+N +1V+E, —

y+N —+ Y+E', etc. ,

N+1V —+ N+N (charge exchange),

y+1V —+ m+N,

m+1V ~p+N
E+1V—+ E*+N, etc. ,

m+N —& E*+Y,
y+N~E+Y, etc.,

1V+N ~ N+N,
m. +N —+ p+N,
y+N ~ vr'+/V, etc.

'4 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
'5 G. Salzman, Proceedings of the 1060 AnnnaL InternationaL

Conference on IIzgh- J.:nergy Physics at Rochester {Interscience
Publishers, Inc. , New York, l960); S. Drell, Revs. Modern Phys.
33, 458 (19611,
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T(q, x) = T~(q,x)+T (q,x). (A1)

Now if Vd(r) is the direct potential and V, (r) the ex-

change potential, then the eRective potential for the
even partial waves is V~= Vq+V. , while that for the
odd partial waves is Uo= V~—U.. Now suppose we
solve the Schrodinger equation for all partial waves
with the potential U~, obtaining the scattering ampli-
tude T~(q,x); likewise, with Vp, we obtain the
amplitude Tp(q, x). Then we have

T+(q,x) = sr$Tz(q, x)+TE(q, —x)],
T (q,x)=st Tp(q, x) Tp(q, —x)—]. (A2)

Now each amplitude T~ and To has its own Regge
pole terms, and these appear symmetrized or anti-
symmetrized in T(q,x). Hence we have (2.7).

We may look at the same nonrelativistic problem in
another way, which is more relevant to the relativistic
theory. The scattering amplitude may be assumed to
have certain analyticity properties, as a function of
the energy and the momentum transfer, which are
summarized by the statement that it satisfies the
Mandelstam representation. These analyticity proper-
ties, together with the assumption that the amplitude
also satisfies the usual unitarity condition, allow the
construction of an integral equation for the amplitude,
in which the potential itself appears as an inhomo-
geneous term. For potentials which are superpositions
of Yukawa potentials, it has been shown' that the
unitarity condition and the analyticity properties
completely define the scattering amplitude, at least
when the Mandelstam representation has no subtrac-
tions. This assumption is, presumably, just the state-
ment that there are no bound states or resonances. If
bound states or resonances do exist, they appear
through Regge terms and the Mandelstam representa-
tion will require subtractions. Nevertheless, it is
plausible to assume that the unitarity condition and
the analyticity properties still completely determine
the problem.

The unitarity condition for the scattering amplitude

' R. Blankenbecler, M. Goldberger, N. N. Khuri, and S.
Treiinan, Ann. Phys. (New York} 10, 62 (1960}.

APPENDIX

We should like to discuss the eRect of an exchange
potential in the Schrodinger equation on the form of
the Regge terms, and in particular to justify Eq. (2.7).

A trivial justification is the following: consider the
scattering amplitude T(q, x), where q is the momentum
and x is the cosine of the scattering angle, and write it
as the sum of an even part and an odd part in x:

The normalization here is defined so that

T(q, x) =Pl(2t+1)Pi(x) (sin5 ei'"/q) . (A4)

We now write T(q,x) as in (Ai), as a sum of even and
odd parts in x.Using the facts that Pi(—x) = (—1)'Pi(x)
and

(HALI~(-1)'])'= sL1~(-1)'7,

it is easy to see that the unitarity condition is true
separately for T+ and T, so that we have

ImT~(q, x)

g
1 1

dxi dxs P(21+1)Pi(x)Pi(xi)Pi(x, )
—1 —1

&& T~(q,xi)*T~(q,xs). (A5)

Since the analyticity properties of T+ are essentially
the same as those of T itself, there are, as a result, two
separate scattering problems which differ only in the
potential term. First suppose only a direct potential
exists. It is a function of 2q'(1 —x)—6' and we will
write it Vq(LV). Then the two potentials for T+ and T
are

(A6)

where 5'=2q'(1+x). If the Regge terms are found for
the T+ and T amplitudes in this case, the same n's
and P's must occur in each. For T+, we find the Regge
terms in the form

and for T,
(P/simrn)s)P (—x)+P (x)],

(P/sin7rn)-' ,LP.(—x) —P (x)],

(A7)

(A8)

with the same n and P, so that in T=T~+T the
Regge terms are simply

(P/sinmn)P (—x). (A9)

If, however, an exchange potential is introduced as
well, the situation changes. An exchange potential is a
function of Z', and we may call it V, (Z'). The two
effective potentials for the T+ and T amplitudes now
become

v, =-',
& LV.(A )+v, (P)]~LV,(A')+ v, (~ )7)

=-', (LV (LV)&U, (LV)]&LU (Z')&V, (Z')]). (A10)

Now the V+ are no longer of the form (A6), in tha, t the
potential corresponding to Vs(h') in (A6) is no longer
the same in V+ as it is in U . Therefore, we can no
longer expect the Regge n's and P's appearing in (A7}

T(q, x) may be written

ImT(q, x)

g
1 11

dxi dxs g(21+1)Pi(x)Pi(xi)Pi(xs)

XT(q,xi)*T(q,xs). (A3)
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to be the same as those in (AS), and as a result, the
Regge terms in T will now be of the form

P+ pP.,(—x)+P.„(x)~

sing+ 2 i
P P. (—x)—P (x)~+ —!, (A11)

sion 2 i

Now P is essentially the residue of the 1th partial wave

amplitude at a pole l=e in the complex angular
momentum plane; we may therefore expect that as a
function of q, P behaves like (2q')" near each threshold.
It will be convenient to factor this dependence out of

P, and furthermore to write (—s) as s"e ' ". Thus, the

Regge terms may be written

instead of a,s in (A9).
In the relativistic problem, if we discuss spinless

particles and make the strip approximation, the
mathematics is essentially identical with that we have
gone through above. Without the strip approximation,
in terms of a "generalized potential, "27 the equations
still look very similar and it is reasonable to expect
that the results obtained here remain valid. We shall
therefore assume that in the general case the form
(A11) is correct a,t large x.

We will be interested in high energies in the crossed
channel. If s is the square of the total c.m. energy in
the crossed channel, and q is the initial and final c.m.
momentum in the original channel (we take equal
masses for convenience), then large s means x= —s/2q'.
The Regge terms in this limit then become

P 1 Lsa( —s) j
(A12)

(2q') sinn+ 2

s7 G. F. Chew attd S. C. Frautschi, Phys. Rev. 124, 264 (196&).

(A13)

as in rule (3) of Sec. II.
The choice of phase, (—s)"=s e ' ~ rather than

s e+', is the one suggested by the analyticity of the
scattering amplitude in the upper half of the complex
I plane; note that the direct potential in the t channel
is associated with the cut in N. Of course, we could
have absorbed a factor &e ' into b and gotten
(1&e+'~~)/2 instead of (1&e '"")/2 in (A13). So our
choice of phase rejects a belief that b as defined in

(A13) has simple properties. In fact, we conjecture that
it is real in a region extending down from threshold.

Xofe added ie proof We ha. ve been able to prove,
assuming the Mandelstam representation, that n(t) and
b(t) are real analytic functions with only right-hand
cuts. See also A. O. Barut and D. E. Zwanziger (to be
published).


