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We have found a number of triplet-even potentials that fit the deuteron data, and yield scattering lengths
falling within the rather large range of uncertainty of this quantity. The potentials behave at a large distance
such as the one-pion exchange potential as required by meson theory. Potentials which fit the deuteron data
and obey this asymptotic requirement can make a fairly unique prediction for the deuteron D-state proba-
bility if the triplet scattering length is accurately known. The phase shifts for our potentials have been
calculated at 95, 210, and 310 Mev, and they fall within the range presently allowed by phase-shift analysis
of the n-p data. The deuteron electromagnetic form factor was computed for some of the potentials, and the
scalar nucleon form factor F~"+Fp and neutron form factor F1" deduced from elastic electron-deuteron
scattering data in the momentum transfer range q&~3 f . This deduction depends, to a high degree of accu-
racy, only on the well-established one-pion exchange potential tail of the potential, and not on the inner
region. We find that Fp is zero, or very small and negative.

I. INTRODUCTION system. The traditional limits considered to be appro-
priate have been 4'%(pD&10% It is, therefore, of
interest to know whether information about PD can be
obtained from potentia1s that fit the known low-energy
properties of the fs-p system and behave asymptotically
like the OPEP.

It was the purpose of the work described in this
paper (a) to construct triplet-even potentials that are
asymptotic to the OPEP and are modified in the inner
region with ranges corresponding to the exchange of
more than one pion in such a way that a bound state
with the deuteron properties is obtained together with

a phase shift at zero energy consistent with the known

triplet scattering length; and (b) from these potentials
to compute the D-state probability, the deuteron effec-

tive range, the shape-dependent parameter, scattering
phase shifts for higher energies, and the deuteron elec-

tromagnetic form factor.
In principle the deuteron form factor, which can be

measured by elastic electron-deuteron scattering, yields
information about the triplet-even force. This source of
information on the e-p force has not been exploited in

much detail. ' One expects the deuteron form factor to
depend on the details of the inner region of its wave
function for larger momentum transfer. Ke therefore
illustrate how this form factor is affected by different
assumptions for the inner region of the triplet-even
potential. However, the deuteron form factor depends
also on the charge parts of the neutron and proton form
factors, and very weakly on the magnetic-moment parts
of the neutron and proton form factors (except for large
scattering angle). Therefore, at large momentum transfer
we cannot obtain unambiguous information about the
inner region of the potential unless we know the nucleon
form factors, and conversely. Concerning the nucleon
form factors, Hofstadter and co-workers have recently
extended their measurements of the proton forln factor
to larger momentum transfer and deduced the neutron

' ' 'NLIKE the situation for the p-p system, the experi-
mental data on the n psys-tem are still not sufTi-

cient to specify the internucleon force in a more or less
unique manner. However in the n-p system a .triplet-
even bound state exists whose properties serve as con-
straints on the force. In addition all meson theoretic
derivations of nuclear potentials are in agreement on
one further constraint: At large distance the nucleon
potential must behave like the one-pion exchange
potential (OPEP). Concerning the inner region, many
different forms based on meson theory have been
derived' but very little has been done to calculate the
corresponding properties of the two-nucleon system. '
The analysis of I-p data has been mostly done in terms
of phenomenological potentials such as those con-
structed by Signell and Marshak, ' by Gammel and
Thaler, 4 and recently by Hamada. ' However neither the
Signell-Marshak nor the Gammel-Thaler potential fits
the deuteron data while the latter in addition does not
satisfy the OPEP constraint. On the other hand
Hamada has been fairly successful in reproducing the
deuteron properties and the n-p scatte, ring data with
potentials which do have OPEP tails. Hamada's
potentials all give D-state probabilities for the deuteron
larger than 7.5% The D-state admixture is relevant
to the magnetic moment, hyperfine structure, photo-
disintegration and the electromagnetic form factor of
the deuteron. However it cannot be determined from
experimental data yet due to unknown meson contribu-
tions to the electromagnetic interaction of the e-p
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form factor from their proton results and from the
inelastic electron-deuteron scattering data. We have
used these results for illustrative purposes in our deu-
teron form factors. However, for small momentum
transfer the latter quantity depends almost solely on the
tail of the potential, which is well established and can
therefore be used to deduce the scalar nucleon form
factor Ft"+Iit". From the known value of Ii p we can
thus find the neutron-charge form factor F~". Our results
for Ii j" disagree with those of reference 8.

The method used to compute the deuteron properties
corresponding to a given potential is the same as that of
Hamada' and is briefly outlined in Sec. II. Section III
contains the assumption about the form of the potential
in the inner region, the empirical low-energy data, and
a list of the forces that fit these data. In Sec. IV we give
the calculated triplet-even phase shifts for the higher
energies and compare them with recently published
phase shifts obtained from an analysis of m pscattering-
data. ' "The results for the deuteron form factor appear
in Sec. V, together with a deduction of the neutron
charge form factor.

II. SOLUTION OF THE DEUTERON PROBLEM

We assume that the deuteron can be described by a
potential which contains a central, a tensor, and a spin-
orbit part, i.e. ,

V(r) = Vc(r)+Vr(r)sts+Vrs(r)S L. .

I.et the S and D radial wave functions of the deuteron
(multiplied by r) be u(r) and w (r). For a potential of the
form (1) they are the solutions of the coupled equations

d'u (r)/dr' = L Uc (r)+ct'$u (r)+2%2Ur (r) te (r),
d'w (r)/dr'

=$6/r'+Uc(r) —2Ur(r) —3ULs(r)+n'ate(r) (2)
+2@2 Ur (r)u(r),

where e'O'= Me, e is the binding energy of the deuteron,
M is the nucleon mass, and U (r) =3f/O'V (r).

From meson theory we know the form of the potential
at large r, but the inner region cannot be derived unam-
biguously at present. Accordingly we regard this region
as subject to phenomenological treatment. Finally we
ensure that the solution of the differential equations (2)
has the deuteron binding energy as an eigenvalue by
making an appropriate choice for the radius of the re-
pulsive hard core.

A method for solving this problem has been described
and applied recently by Hamada. ' For completeness we
outline it briefly here again.

R. Hofstadter, C. de Vries, and R. Herman, Phys. Rev.
Letters 6, 290 (1961);D. N. Olson, H. F. Schopper, and R. R.
Wilson, ibid 286 (1961); R. M. Lit. taner, H. F. Schopper, and
R. R. Wilson, Qid. ?, 141 (1961}.' M. H. Hull, K. E.Lassila, H. M. Ruppel, F. A. McDonald, and
G. Hreit, Phys. Rev. 122, 1606 (1961).

» M. H. MacGregor, Phys. Rev. 123, 2154 (1961).

It is apparent that Eq. (2) has two sets of linearly
independent solutions. As such we could choose (ut, wt)
and (u&,ws) with the asymptotic requirement that the
first solution has the behavior of an S function and the
second behaves like a D function:

(
utq (e ~")

wi &0)
u) 0

res j Ee ~"t 1+3/ur+3/(nr)sj

(3)

Starting with this behavior at a sufficiently large r, we
integrate (2) inward to get the two solutions for
arbitrary r. Then u(r) and tv(r) are obtained as a linear
combination of these two solutions:

f u(r) 1 u&(r) us(r) )
+n

Ere(r) (1+rP) & wt(r) ws(r) I
(4)

The requirement that u and w in (4) vanish at the core
radius r, gives an equation for r, which is solved by an
interpolation procedure. The asymptotic D/S ratio tl is
then determined from

ut(r, )

Q2 fc

The various static deuteron properties are obtained from
solution (4) by simple integrations. Formulas for the
deuteron effective range p( —e, —e), the quadrupole
moment Q, and pD are given in the literature. " We
adopt the usual relative phase of u and x used in
reference 11.

f2 e 8

V(OPE) = p,
—(~t ~s)
4m g

1 / 3 3)
(vt ' 0's)+St&l 1+-+—~, (6)

3

where )1=1/p is the pion Compton wavelength, x=pr,
and S~~ is the tensor operator.

To the OPEP we add terms with ranges of 1/2p and
1/3p to account for the intermediate states of two and
three pions. The complete ansatz for the central, spin-
orbit and tensor parts of the triplet-even potential,

"L.Hulthen and M. Sugawara, in Handbuch der I'hysik edited
by S. Flugge (Springer-Verlag, Berlin, 1957},Vol. XXXIX,p. 69,
Kq. (25.12); p. 70, Kq. (26.5); p. 86, Kq. (30.25).

III. TRIPLET-EVEN POTENTIALS

As emphasized earlier by many authors, the tail of
the nucleon-nucleon potential is well known to be the
one-pion exchange potential (OPEP):
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including the OPEP is TABLE I. Potentials without a spin-orbit force. (Parameters not
mentioned in the table are zero. )

Vo(r)= —p—
~

1+xi
a2 a3 a4

ai+ + +, (7a)
g g2 ga

(7b)
f' e )' b2 bs b4

V»(r)= —p— I
b+ + +x)

No.

1
2
3
4
5
6
7

a1 C1

0.0 0.0
1.0 3.0
8.0 —0.4
0.5 —0.15
1.0 —0.1
1.0 0.4

10.0 —3.0

C2

0.0
0.0—1.2—0.45—0.3
1.2
0.0

c3 C4

0.0 0.0—4.8 0.8—1.2 0.0—0.45 0.0—0.3 0.0
1.2 0.0
0.0 0.0

0.0
0.0
0.0
0.0—0.2—0.8
0.0

0.0
0.0
0.0
0.0—0.6—2.4
0.0

0.0
0.0
0.0
0.0—0.6—2.4
0.0

(I)

0.4815
0.2466
0.4747
0.4425
0.3632
0.3924
0.5369

( 3 3 ) e c2 cs c4
X i1+-+—i+ c,+ + +

x xsi x x x' x'

s 2

+ di+ + + . (7c)
g g g2 g'

Aside from the OPEP part, the dependence of Vc(r),
Vr(r), and VLs(r) on x is completely arbitrary, and is
suggested by perturbational-meson-theoretical calcula-
tions. For the spin-orbit force we have chosen 1/2p as
the range, since there is no contribution to V1,8 from the
OPEP in the static approximation.

Cziffra and Moravcsik have attempted to determine
the coupling constant f /422rfrom neutron-proton
scattering data. "However, we choose the value f /422r
=0.08, in accordance with an analysis of pion-nucleon
scattering. "For the pion Compton wavelength we take
the value 1/p= 1.415 f.

We made an extensive search for potentials of the
class represented by Eq. (7) by varying the coefficients
a;, b;, c,, d; such that the quadrupole moment Q and
scattering length a~, would be near the empirical values.
A recently reported value'4 for Q is Q= (2.82+0.01)
X10 " cm'. Values for a~ given in the literature are
a4 ——(5.415&0.012) f ' (from Hulthen and Sugawara")
and a,= (5.39&0 03) f ' (from Gammel") On the basis
of a new measurement of the coherent scattering
length '2 we calculated a4 ——(5.44&0.02) f '

Potentials that fit these data are listed in the tables,
those without a spin-orbit term in Table I, and two
potentials with a spin-orbit term in Table II. The last
column in each of those tables contains the hard-core
radius chosen so that the potential has a bound state
with the eigenvalue e=2.226 Mev (42=0.2317 f '). For
the potentials listed in Tables I and II we have calcu-

42 P. Czilira and M. J. Moravcsik, Phys. Rev. 116, 226 (1959)."T. D. Spearman, Nuovo cimento 15, 147 (1960); Nuclear
Phys. 16, 402 (1960);G. Ilreit, M. H. Hull, K. Lassila, and K. D.
Pyatt, Phys. Rev. Letters 4, 79 (1960).

"G.P. Auffray, Phys. Rev. Letters 6, 120 (1961)."L.Hulthen and M. Sugawara, reference 11, p. 51[(footnote)."J.L. Gammel, Fast Eeltrol Physics, edited by J. B. Marion
and J. L. Fowler (Interscience Publishers, Inc. , New York), VoL
IV, part II.

' L. Passel, W. Dickinson, W. Bartolini, and O. Halpern,
Lawrence Radiation Laboratory Report UCRL-6320 (un-
published) I

lated the following additional deuteron properties: the
asymptotic ratio of the D to 5 function, called p,. the
D-state probability pD, the deuteron eRective range
p( —e, —e); the normalization constant X2, which is
related to p by

Ã2=2o./L1 —np( —e, —«)$,

Lwhere Ã2J'(242+w2)dr=17; and the shape-dependent
parameter I'& derived from a&, p, and e by

I',= +-,'np —1 i.
n'p' rra4

(9)

TABr.E II. Potentials with a spin-orbit force; (Parameters not
mentioned in the table are zero. )

No. a1 a4 b3 b4 C1 c2 c3 c4 {f)

8 0.0 3.0
9 3.0 0.0

0.0 2.0—2.0 0.0
5.0—0.4

—5.0 —1.0 0.0 0.5007—1.2 —1.2 0.0 0.4329

The OPEP gives a quadrupole moment Q=2.879
&(10 " cm' and scattering length a~=5.378 f ', which
are not far from the experimental values, and the
D-state probability is 7.4'Pq. By modifying the inner
region according to our ansatz, we sought to obtain
simultaneously the correct Q and a&. First we want to
note that modifications of the potential at short range
Lr(~ (2p) '] cannot be expected to cause large changes
from the OPEP values of Q, a4, and pD because the
deuteron, being a loosely bound structure, feels the
inner region very little. Its radius already exceeds the
OPEP range (i.e. , P,=O)! It just happens to be one of
the quirks of nature that the force that binds the deu-
teron does so in such a way as not to reveal itself too
intimately through the properties of that structure.
Nonetheless, because of the paucity of ri pscatterin-g
data, we are left with the task of gleaning from the
deuteron what information we can about the triplet-
even force.

As Table III shows, it is possible to modify the OPEP
in a number of ways to obtain agreement with Q and a4.
However, it was not possible to fit these two data with a
potential that yields a pD much lower than the value
that OPEP gives. This can be understood as follows:
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TABLE III. Low-energy properties of the potentials 1—9.

Q
(X10" a~

No. cm') (1 ')

2.879 5.376
2 2.821 t( 5.368
3 2.817, 5.456
4 2.822, 5.364
5 2.802 ' '5.366
6 2.812 5.384
7 2.814 5.477
8 2.818 ', 5.413
9 2.829 5.373

0.02714
0.02693
0.02595
0.02677
0.02663
0.02676
0.02564
0.02654
0.02670

PD p Q2

(%) (f ') (f ')

7.415 1.717 0.7694 0.028
6.281 1.709 0.7671 0.032
5.970 1.812 0.7986 0.013
7.103 1.703 0.7655 0.031
6.710 1.705 0.7661 0.032
5.957 1.726 0.7723 0.026
6.029 1.836 0.8065 0.009
5.622 1.7602 0.7826 0.018
7.425 1.715 0.7690 0.031

Because of the large radius of the deuteron, the shape
of the D function is almost independent of the inner
region of the potential. However, its magnitude is
proportional to g (and hence pz to q'). Now, to 6t both

Q and a&, it is necessary that a more or less unique value
of q obtains, as we now show. Since the quadrupole
moment is weighted by r', we can calculate it approxi-
mately from the asymptotic part of the wave functions,
Eq (3):

10(1+vP)Q
QQ02t' &-

V21V'
wg'r'dr. (10)

From Eq. (10) it follows that q is given in terms of Q,
iV', and integrals that are asymptotically independent
of the force. Since our earlier remark implies P&=0, E'
is determined by the scattering length a& from Eqs. (8)
and (9).

Thus it is approximately true that potential. s with
OPEP tails which give the correct low-energy properties
will all yield about the same D-state probability for the
deuteron.

Nevertheless we constructed potentials with a D-state
probability somewhat lower than 7% which are ac-
ceptable because they reproduce the zero-energy scatter-
ing with a scattering length consistent with the rather
large range of experimental values mentioned earlier.
The results shown in Table III suggest that a larger a&

would lead to a smaller pD, consistent with the discus-
sion above in connection with Eq. (10).From this point
of view a knowledge of the correct value of a~ is very
important.

It is noteworthy that the recently published value for
the quadrupole moment, " which is higher than had
previously been thought, results in a larger q and there-
fore higher pD.

Concerning the D-state probability, the final con-
clusion of our investigation is that a triplet-even
potential that has the correct asymptotic behavior and
yields the deuteron binding energy and quadrupole
moment. will permit an almost unique prediction for p&
if the triplet scattering length a& is accurately known.

The potential No. 6 has a special property compared
to the others. At a very small radius (r 0.75 f) the

D-state function has a node. The D function will

develop a node even though this corresponds to a greater
kinetic energy and might be expected at first to be an
excited state, whenever the tensor force has a sufficiently
strong "repulsive" singularity. For, in this event as can
be seen by examining the wave equation (2), the
repulsion can be turned into attraction by a change in
sign of the D function, thus increasing the potential
energy. Even the presence of the node at small r, how-
ever, does not appreciably change the function at
larger r, in the sense that the low-energy properties (see
Table III) are within the range of variation exhibited by
the properties of the other potentials.

The effect of adding a spin-orbit force of negative
and positive sign can be seen from Table III. The
negative spin-orbit potential, which appears as a
repulsion in the wave equation (2), decreases, whereas
the opposite sign increases pD.

TABLE IV. Phase shifts for triplet-even state.

NO. 801

1 0.8074
2 0.8355
3 0.7451
4 0.8258
5 0.8287
6 0.8158
7 0.7235
8 0.7649
9 0.8315

1 0.3579
2 0.4237
3 0.2886
4 0 3897
5 0.3988
6 0.4076
7 0 2597
8 0.2953
9 0.4153

-0.2410—0.2341—0,2165—0.2335—0.2304—0.2316—0.2110—0.2378—0.2226

-0.4576—0.4258—0,3928—0,4378—0.4274—0,4106—0,3910—0.4386—0.4041

B=95
0.04373
0.01476
0.05797
0.03537
0.03001
0.01501
0.07633
0.02288
0.04747

Z =210
0.06384—0.01283
0.1119
0.04815
0.03302—0.04897
0.1674
0.01125
0.08872

Mev (lab)
0.06040
0.06341
0.07606
0.06033
0.06139
0.06376
0.07950
0.07947
0.05879

Mev (lab)
0.1269
0.1313
0.1708
0.1244
0.1271
0,1383
0.1819
0.2595
0.1092

843

—0.06748—0.06842-0.05699—0.06659—0.06607—0.06727—0.05323—0.06125—0.06610

—0.1335—0.1357—0.1064—0.1305—0.1293—0.1340—0.0974—0.1055—0.1314

0.6843 0.3629
0.6771 0.3548
0.5937 0.3817
0.6809 0.3506
0.6756 0.3482
0.6720 0.3658
0.5678 0.3908
0.5952 0.3524
0.6883 0.3632

0.5726 0.7173
0.5657 0.6345
0.4673 0.7218
0.5710 0.6780
0.5648 0.6566
0,5560 0,6723
0.4406 0.7624
0.3538 0.6243
0.6157 0.7163

1 0.1037
2 0 2021
3 0.03847
4 0.1450
5 0.1596
6 0.2275
7 0.00937
8 0,02711
9 0.1928

—0.5989—0.5357—0.5031—0.5683—0.5493—0.4910—0.5163—0.5602—0.5142

B=310
0.08947-0.03307
0.1826
0.06821
0.04304—0.1614
0.2750
0.00953
0.1.436

Mev (lab)
0.1696
0.1685
0.2287
0.1639
0.1670
0.1853
0.2454
0.4883
0, 1307

—0.1752—0.1763—0.1350—0.1699—0.1679—0.1761—0.1235—0.1279—0.1724

0.5029
0.4966
0.4008
0.5025
0.4961
0.4844
0.3805
0.1993
0.5828

0.8803
0.7410
0.8539
0.8329
0.7947
0.7799
0.9042
O. 7209
0.8854

IV. n-P SCATTERING PHASE SHIFTS

There exist phase-shift analyses of m pscat-tering
data by two groups. Hull et at.' have analyzed the data
up to 300 Mev, while MacGregor" has analyzed the
95-Mev data. Both groups used the phase shifts for the
isotopic spin T= 1 states found from earlier analysis of
p-p scattering. In the e-p analysis by Hull et al. , several
phase-shift solutions were obtained, while MacGregor
found only one solution at 95 Mev. However the experi-
mental data are not sufficiently abundant to assure that
even other solutions do not exist. Thus there does not
exist a set of phase shifts for the T=O state that is in
any sense as "unique" as for the T= 1 state. Neverthe-
less it is worth while to discover which of our potentials
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give phase shifts similar to those obtained from the
analyses mentioned above.

Accordingly we have calculated the phase shifts
3qJ, (X=-J&1) and coupling parameter eq at 95, 210,
and 310 Mev for the 7=1, 2, and 3 states. The phase
shifts for the coupled states are obtained according to
the Blatt-Biedenharn definition. "The results are listed
in Table IV.

We now discuss some of the general properties of these
phase shifts. The shifts for the larger angular momenta
('D, ,'D, ,'Gs) are rather independent of the form of the
inner region of the potential even for 300 Mev. Of
course the 'S& phase shift depends very much on the
details of the potential in this region and is affected
most strongly by the diferent values of the hard-core
radius r, . A large r, corresponds to a small 'S~ phase
shift. The coupling parameter in the state with J= 1 is
rather small, and is an increasing or decreasing function
of energy depending on the details of the potentials. The
spin-orbit force of negative sign (potential No. 8) causes
the 'D2 phase to increase less with energy than the
others, as can be understood by an examination of the
differential equation (2).

The phase shifts for J=3 are in general small except
for potential No. 8, which has a larger 'D3 phase at
310 Mev. The coupling parameter ea is positive and very
large in the Blatt-Biedenharn definition.

How all the phase shifts are affected by the details of
the inner region of the potential can be seen by a
comparison with the phase obtained for the OPEP
(No. 1) modified by a suitable hard core.

In Figs. 1, 2, and 3 we have plotted the range in which
our phase shifts fall, together with the phases obtained
by an analysis of the experimental data by Hull et ul. '
and MacGregor. "The phase of Hull et a/. were read
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FIG. 2. The coupling parameter e1 and the uncoupled phase &2/,

computed from the potentials listed in Table I, are illustrated by
indicating with a vertical bar the range in which they fall at three
energies. The centers of these ranges are joined by a smooth curve.
Two phase-shift solutions of the analysis of the data by Hull et al.
are shown (referred to in their notation as YLAN 1 and YLAN 3),
together with MacGregor's 95-Mev results.
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from their graphs at laboratory-system energies of 100,
200, and 300 Mev and converted into Blatt-Biedenharn
phases. We have illustrated the only two solutions that
resemble the phases calculated from our potentials.
(These two solutions are denoted by YLAN1 and
YLAN3 in reference 9.) The phases 801 521 er ass and

843 are in quite good agreement with the data analysis.
However, the phase shift 8» rises too steeply with
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~s J. M. Blatt and L. C. Biedenharn, Phys. Rev. 86, 399 (1952).

Fza. 1.The coupled phase shifts Bo1 and 821, computed from the
potentials listed in Table I, are illustrated by indicating with a
vertical bar the range in which they fall at three energies. The
centers of these ranges are joined by a smooth curve. Two phase-
shift solutions of the analysis of the data by Hull et al. are shown
(referred to in their notation as YLAN 1 and YLAN 3), together
with MacGregor's 95-Mev results.
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FIG. 3. The coupled phase shifts 823, 843, and coupling parameter
e3, computed from the potentials listed in Table I, are illustrated
by indicating with a vertical bar the range in which they fall at
three energies. The centers of these ranges are joined by a smooth
curve. Two phase-shift solutions of the analysis of the data by
Hull et al. are shown E',referred to in their notation as YLAN 1 and
YLAN 3), together with MacGregor's 95-Mev results.
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TABLE V. Triplet-even phase shifts (in radians) for energies near 90 Mev (lab). These are phs, se shifts corresponding to potentials
published by other authors. SM refers to reference 3, GT to reference 4 and H to reference 5. The phase-shift solution of MacGregor,
reference 10, is also shown.

Author

SM
GT
GT
H
H
H
M

E
(Mev)

100
90

300
90

200
300

95

0.602
0.6455—0.244
0.817
0.415
0.177
0.721

—0.293—0.230—0.537—0.211—0.399—0.528—0.224

0.059
0.0995
0.598
0.08
0.128
0.192
0.206

0.11
0.067

0.064
0.131
0.178
0.086

—0.056—0.048

—0.058—0.115—0.148—0.065

0.537
0.609

0.77
0.726
0.690
0.705

0.337
0.3265
0.389
0.22
0.364
0.432
0.257

increasing energy. In particular the rather large value
of 82~ for E=310 Mev which we obtained for all eight
potentials may have the result that the angular distribu-
tion for r4 pscatte-ring calculated from these phase shifts
is in disagreement with the experimental data. This is
suggested from Gammel and Thaler's analysis of e-P
scattering data in terms of potentials. In this analysis
the triplet-even potential was decreased in its value to
make possible a fit to the 300-Mev data. Also Hamada
introduced a quadratic spin-orbit force to reduce 822 for
300 Mev. In Table V we have exhibited these phase
shifts reported in references 3, 4, 5 and 10.

V. ELECTRON-DEUTERON ELASTIC SCATTERING

The elastic scattering of electrons from deuterons can
in principle yield information about the charge and
magnetic moment distribution in the deuteron and the
nucleon electromagnetic form factors. It is, therefore, a
process that is relevant to a study of the triplet-even
force. The inelastic (deuteron-breakup) scattering how-
ever depends on the nuclear force in all states of the
two-nucleon system, and therefore we reserve for a later
work the study of this process.

The experimental data have been analyzed briefly by
previous authors' ' with a view to gaining information
about the triplet-even force through the deuteron charge
distribution. Unfortunately only a small fraction of the
deuteron volume lies within the effective range of the
nucleon force, as already noted. ' Thus, in the small-
momentum-transfer region (q ~&3 f ') we can expect that
the elastic scattering is rather insensitive to the details
of the inner region of the nuclear force. Therefore there
is need for extending the existent measurements to
higher momentum transfer in order to probe the inner
region and thus possibly distinguish between the various
potentials which are otherwise in agreement with the
low-energy data. On the other hand we shall show that
for small momentum transfer the deuteron form factor
depends essentially only on the OPEP tail which is well
established, and use this fact to obtain the sum of the
proton and neutron charge form factor (Fir+Fr") from
measurements of the elastic scattering.

The theory has been developed by Jankuss in the first
Born approximation, which should be adequate because
of the small deuteron charge. The deuteron is described

nonrelativistically but of course the electron is treated
as a relativistic particle. His result can be written in
the following modified manner, which would follow if
nucleon form factors were introduced into the nucleon
current operators:

do (do )
dn lani,

'

where

(do.
l tr e' )' cos'(0/2) ( 2Zp

I
1+»n'(t)/»

I (»)
EdQ) p (2Epl sin4(e/2) k Mgc'

is the diGerential cross section for elastic scattering of
an electron of energy Ep from a point particle having no
magnetic moment. The factor G', called the deuteron
form factor, enters because of the finite extension of the
deuteron and its internal constituents, the nucleons. It
takes the form

G'=Gp'+Gss+L2 tan'(8/2)+17G. ~', (13a)
where

Gp(g) =1(q') (I'+w') jp(qr/2)dr
0

(13b)

Gs(q) = 1(g') 2w(u —8 '*w) js(qr/2)dr
0

(13c)

is contributed by the quadrupole deformation, and

kg
G-.(V) = (s)' {L(f.(V')+f -(e'))(~'+w')

2Mc p

—s(f .(e')+f -(C') —l1(C'))w'3 jp(Vr/2)

+2 '*E(f.(V')+f -(C'))w(~+2 'w)

+3&(8 l1(g )w'jjs(gr/2))dr (13d)

is the magnetic moment contribution. In the above
formula Mq is the deuteron mass, 3f is the nucleon mass
and q is the four-momentum transfer. Actually in the
nonrelativistic treatment of the deuteron the three-
momentum transfer appears in the argument of the
spherical Bessel functions in Eqs. (13). But considera-

arises from the spherical part of the charge distribution,
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FIG. 4. The spherical, quadrupole, and magnetic moment parts

of the deuteron electromagnetic form factor calculated from
potential No. 2 (Table I) are shown. The nucleon form factors of
Hofstadter and Herman have been used (reference 21).

tions on the basis of perturbation theory suggest that in
a relativistic theory this three-momentum is replaced by
the four-momentum.

For structureless nucleons the functions 1(q'), p~(q'),
and fr~(q') take, respectively, the value unity and the
values of the nucleon magnetic moments p„and p~.
Otherwise they are

1(q') =~r"(q')+~t" (q').,(q) =~"(q)+(.,-1)~"(q),
I -(q') =Fr (q')+f -Fs"(q'),

where F~&, F2&, F&", F2" are the nucleon form factors,
defined as usus, 1."One notices that the elastic electron-
deuteron cross section depends only on the sum of the
proton and neutron form factors, characteristic of a
state with isotopic spin T=O.

Quite reliable measurements of the proton form
factors are available. '0 However, the neutron form
factors cannot be obtained directly, and are in practice
extracted from the electron-deuteron inelastic scattering
cross section. So far no complete calculation including
the D-state admixture and all the 6nal-state interactions
has been carried out for this process.

We have computed the deuteron form factor G'
corresponding to most of the potentials listed in Tables
I and II. The three parts of G' are illustrated in Figs. 4
and 5 for two of our potentials. For purposes of illustra-
tion we have used the nucleon form factors given by
Hofstadter and Herman. "The magnetic moment term,
G „', is almost everywhere smaller by two orders of
magnitude than the other terms. Therefore, except for

"See, for example, the review article by R. Hofstadter, Ann.
Rev. Nuclear Sci. 7, 231 (1957).

~F. Bumiller, M. Croissiaux, E. Dally, and R. Hofstadter,
Phys. Rev. 124, 1623 (1961)."R. Hofstadter and R. Herman, Phys. Rev. Letters 6, 293
(1961).Eqs. (9) throulfhout (12) were used for the form factors.

IO+
0 I 2 3 4 5 6 7 8

q tf
FIG. 5. The spherical, quadrupole, and magnetic moment parts

of the deuteron electromagnetic form factors calculated from
potential No. 3 (Table I) are shown. The nucleon form factors of
Hofstadter and Herman have been used (reference 21).

very-large-angle scattering, G,g' contributes only in
the third 6gure of G'. Our calculations of the deuteron
form factor G' are summarized in Fig. 6 by showing the
boundaries between which all form factors correspond-
ing to our potentials fall (except that form factors for
No. 5 and No. 7 have not been calculated). It is par-
ticularly noteworthy that these bounds lie close together
for small momentum transfer. The break in the slope
that occurs around q=3.5 f ' corresponds to the point
where the quadrupole term begins to dominate O'. We
can see from Figs. 4 and 5 that the spherical term will
again commence to dominate at '/& q&9 f ', and there
will be another break in the slope of G'. However, the
locatiori of this break is much more dependent on the
details of the force at small distance than the location of
the first break. Indeed, already at q=7 f ', the un-

I05 I I I I I 'I I

0 I 2 3 4 5 6 7 8
( f I )

FIG. 6. The two curves represent the upper and lower bounds on
the deuteron electromagnetic form factor as calculated from the
potentials in Table I (excluding Nos. 5 and 7, which have not been
calculated). For purposes of illustration we have used a constant
scattering angle 0=90'. The numbers on the curves correspond to
the potential numbers in Table I. The nucleon form factors "of
Hofstadter and Herman have been used (reference 21).
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FIG. 7. The sum of the spherical and quadrupole parts of the
deuteron form factor for point nucleons $1(q') =1j, is illustrated
in the momentum-transfer region in which lie the current experi-
mental results on elastic electron-deuteron scattering. The two
curves correspond to the upper and lower values of this sum that
are given by the potentials listed in Table I (except that Nos. 5
and I have not been calculated). The upper curve corresponds to
potential No. 2 and the lower to Xo. 3.

"J.I.Friedman, H. W. Kendall, and P. A. M. Gram, Phys. Rev.
120, 992 (1960).

certainty in G' due to our incomplete knowledge of the
zz-p force at small distance can be as large as a factor of
3. In particular the potential No. 6 which gives rise to a
node in the D function, as discussed in Sec. III, gives
a G' which lies below all the others by a factor of 2 at
q= 7 f '. The region q) 7 f ' is therefore appropriate for
studying the inner region of the potential.

Using our calculations of the deuteron form factors,
we can extract the sum of the neutron and proton charge
form factors Fr "+Frr for q(3 f ' from the experimental
data on elastic electron-deuteron scattering, " in a
manner that involves practically no theoretical un-

certainty arising from our incomplete knowledge of the
zz-p force. This is because, in the range of q for which we

have experimental measurements of G', the integrals
that enter the calculation depend almost solely on that
part of the zz-p force which is well established, that is,
the OPEP tail. This can be seen explicitly in Fig. 7,
where uPPer and lower bounds of Gss+Gss are exhibited.

The extraction of the scalar charge form factor,
Fr"+Fr&, is accomplished through use of the equation

G s —(F n+F v)s(G syG )
+ P tan&(e/2)+ 17G .,&. (15)

On the left side we insert the experimental quantity
(do'/dQ) &/(der/dQ) p. On the right Gss and Gs'- are ob-
tained from Eqs. (13b and c) with 1(q') ~ 1. The mag-
netic term does not contain Ft"+Ftr as a multiplicative
factor, and moreover contains the magnetic parts of the
nucleon form factors $Eq. (13d)7. However, as can be

"0.1-

"0.2-
r I Z ) & I t I ) I I I I

0
t f-')

FIG. 8. The sum of the charge parts of the nucleon form factors
PP+Frv which is deduced from Eq. (15) is shown. At 9=11 '
about 20%, and at q=3 f ' about 50%, oi the spread is due to
our incomplete knowledge of the triplet-even force. The rest is
experimental error in the elastic scattering experiment. The proton
charge form factor FP is obtained from reference 20 by drawing
a smooth curve through the experimental results. There is an
error on this curve of about &0.03.The neutron charge form factor
is obtained by subtracting the smoothed proton data from the
points for F1~+F1 . The error on the proton form factor should be
added to those already shown on F&" to get the total uncertainty.

seen from Figs. 4 and 5, this term affects only the third
figure of O'. It is reasonable to assume that the already
published values of the nucleon form factors will allow
us to compute G „to at least one significant figure.
Therefore in G,~ we insert the nucleon form factors of
reference 21.

Our results for Fr"+Frr are shown in Fig. 8. The
upper bound is obtained by using the maximum experi-
mental value of G,„v' and the minimum value of Gs'+Gss
obtained from theory, and similarly for the lower bound.

YVe have subtracted a smooth curve drawn through
recent experimental measurements" of Ii i& to obtain the
neutron charge form factor Iii". These results are illus-
trated in Fig. 8, and have been tabulated earlier. "As
can be seen from this figure, it is consistent with the
experimental data to say that the neutron-charge form
factor Fi" is zero, at least up to momentum transfer
q=3 f '. However, most of the points suggest that li i"
may have a very small negative value in this region.
These results are in disagreement with those of reference
8 where small positive values are reported, obtained
from an analysis of the inelastic electron-deuteron
scattering data. The data have been reanalyzed by
Durand'4 who obtained values of Ii j" generally smaller
than those reported in reference 8, and possibly negative
in sign.

"N. K. Glendenning and G. Kramer, Phys. Rev. Letters 7, 471
(1961).

s~ L. Durand III, Phys. Rev. Letters 6, 631 (1961).See footnote
15 of this reference. The theory on which Durand's calculation is
based is given in more detail in his later work; Phys. Rev. 123,
1393 (1961).
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TABLE VI. The four integrals that enter the calculation of the deuteron electromagnetic form factor for some of the potentials of Table I.
Each quantity is arbitrarily truncated after the fifth 6gure and is followed by the exponent to the base 10.

fu'jp t'u'jp J 'N)p

0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
4.0000

0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000
5.0000
5.5000
6.0000
6.5000
7.0000
7.5000
8.0000

0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000
5.0000
5.5000
6.0000
6.5000
7.0000
7.5000
8.0000

0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000
5.0000
5.5000
6.0000

7.9453-01
5.569g-01
3.6076-01
2.2497-01
1.3512-01
7.6529-02
3.8736-02
1.4770-02

8.0624-01
5.6936-01
3.7363-01
2.3808-01
1.4820-01
8.9347-02
5.1075-02
2.6439-02
1.0844-02
1.247g-03—4.3898-03—7.4366-03—8.8138-03—9.1415-03—8.8350-03—8.1706-03

8.0435-01
5.5885-01
3.5686-01
2.1803-01
1.2714-01
6.8761-02
3.1894-02
9.1906-03—4.2191-03

—1.1568-02—1.5018-02—1.6014-02—1.5523-02—1.4187-02—1.2430-02—1.0523-02

7.9823-01
5.6163-01
3.6602-01
2.3043-01
1.4045-01
8.1521-02
4.3258-02
1.8749-02
3.4153-03—5.'?977-03

—1.0941-02—1.3406-02

Potential No. 1

7.0119-02
6.0193-02
4.8109-02
3.6383-02
2.6199-02
1.7921-02
1.1491-02
6.6764-03

Potential No. 2

5.9029-02
4.9823-02
3.8790-02
2.8315-02
1.9471-02
1.2527-02
7.3571-03
3.6794-03
1.1835-03—4.2067-04—1.3728-03—1.8648-03—2.0440-03—2.0200-03—1.8724-03—1.6572-03

Potential No. 3

5.6096-02
4.7319-02
3.6818-02
2.6863-02
1.8462-02
1.1862-02
6.9391-03
3.4267-03
1.0326-03—5.1311-04—1.4355-03—1.9147-03—2.0895-03—2.0640-03—1.9147-03—1.6960-03

Potential No. 4

6.7169-02
5.7672-02
4.6135-02
3.4968-02
2.5294-02
1.7444-02
1.1351-02
6.7870-03
3.4743-03
1.1506-03—4.1332-04—1.4068-03

7.8766-03
2.2664-02
3.4480-02
4.0997-02
4.3052-02
4.2043-02
3.9168-02
3.5300-02

7.6826-03
2.2005-02
3.3251-02
3.9194-02
4.0738-02
3.9325-02
3.6177-02
3.2174-02
2.7897-02
2.3701-02
1.9794-02
1.6279-02
1.3197-02
1.0546-02
8.3030-03
6.4298-03

7.6440-03
2.1844-02
3.2905-02
3.8645-02
4.0000-02
3.8428-02
3.5155-02
3.1056-02
2.6706-02
2.2458-02
1.8516-02
1.4982-02
1.1894-02
9.2519-03
7.0288-03
5.1883-03

7.7092-03
2.2167-02
3.3698-02
4.0042-02
4.2034-02
4.1052-02
3.8272-02
3.4543-02
3.0431-02
2.6296-02
2.2354-02
1.8724-02

1.5756-03
5.1242-03
8.8252-O3
1.1683-02
1.3422-02
1.4129-02
1.4022-02
1.3338-02

1.4724-03
4.7455-03
8.0652-03
1.0500-02
1.1827-02
1.2171-02
1.1778-02
1.0897-02
9.7401-03
8.4626-03
7.1767-03
5.9545-03
4.g3g5-03
3.8498-03
2.9950-03
2.2713-03

1.4055-03
4.5235-03
7.6770-03
9.9841-03
1.1239-02
1.1567-02
1.1201-02
1.0376-02
9.2884-03
8.0838-03
6.8667-03
5.7046-03
4.6381-03
3.6880-03
2.8620-03
2.1585-03

1.5094-03
4.9019-03
8.4264-03
1.1133-02
1.2768-02
1.3421-02
1.3307-02
1.2655-02
1.1660-02
1.0478-02
9.2226-03
7.9705-03

6.5000
7.0000
7.5000
8.0000

0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000
5.0000
5.5000
6.0000
6.5000
7.0000
7.5000
8.0000

0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000
5.0000
5.5000
6.0000
6.5000
7.0000
7.5000
8.0000

0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000
5.0000
5.5000
6.0000
6.5000
7.0000
7.5000
8.0000

8.0861-01
5.7013-01
3.7309-01
2.3667-01
1.4628-01
8.7167-02
4.8829-02
2.4261-02
8.8267-03—5.5656-04—5.9533-03

—8.7535-03—9.8943-03—1.0006-02—9.5136-03—8.6937-03

8.1020-01
5.6855-01
3.6890-01
2.3070-01
1.3919-01
7.9454-02
4.0841-02
1.6268-02
1.0401-03—7.9702-03

—1.2863-02
—1.5058-02—1.5521-02
—1.4907-02—1.3662-02
—1.2086-02

7.9455-01
5.572g-01
3.6139-01
2.2594-01
1.3641-01
7.8084-02
4.0485-02
1.6632-02
1.9030-03—6.7812-03—1.1482-02—1.3593-02—1.4055-02—1.3504-02

—1.2370-02—1.0940-02

5.584g-02
4.6804-02
3.6010-02
2.5832-02
1.7330-02
1.0762-02
5.9908-03
2.7225-03
6.3134-04—5.8370-04

—1.1767-03—1.3508-03
—1.2615-03—1.0237-03
—7.1927-04—4.0405-04

Potential No 8

5.2586-02
4.3785-02
3.3339-02
2.3559-02
1.5451-02
9.2328-03
4.7432-03
1.6794-03—2.8202-04—1.4317-03—2.0088-03—2.1998-03—2.1443-03

—1.9436-03—1.6685-03
—1.3671-03

Potential No. 9
7.0352-02
6.0763-02
4.9076-02
3.7707-02
2.7789-02
1.9665-02
1.3282-02
8.4232-03
4.8221-03
2.2246-03
4.0808-04—8.12'?4-04

—1.5868-03—2.0316-03—2.23g5-03—2.2776-03

7.6481-03
2.1864-02
3.2934-02
3.8634-02
3.9874-02
3.8106-02
3.4567-02
3.0152-02
2.5462-02
2.0873-02
1.6607-02
1.2782-02
9.4466-03
6.6044-03
4.2337-03
2.2970-03

7.6488-03
2.1839-02
3.2845-02
3.8481-02
3.9698-02
3.7975-02
3.4560-02
3.0341-02
2.5903-02
2.1601-02
i.7637-02
1.4109-02
1.1050-02
8.4527-03
6.2874-03
4.5123-03

7.7304-03
2.2235-02
3.3819-02
4.0217-02
4.2266-02
4.1343-02
3.8620-02
3.4944-02
3.0879-02
2.6784-02
2.2872-02
1.9263-02
1.6013-02
1.3139-02
1.0636-02
8.4813-03

Potential No. 4 (contr'nued)

—1.4139-02 —1.9813-03 1.5463-02
—1.3784-02 —2.2552-03 1.2589-02
—1.2783-02 —2.3195-03 1.0094-02
—1.1431-02 —2.2430-03 7.9562-03

Potential No. 6

6.7743-03
5.6657-03
4.6619-03
3.I 699-03

1.4492-03
4.6604-03
7.8921-03
1.0221-02
1.1430-02
1.1649-02
1.1127-02
1.0122-02
g.8521-03
7.4811-03
6.1271-03
4.5666-03
3.7446-03
2.7829-03
1.9867-03
1.3503-03

1.4144-03
4.5327-03
7.6400-03
9.8429-03
1.0947-02
1.1099-02
1.0556-02
9.5733-03
g.3582-03
7.0663-03
5.8023-03
4.6318-03
3.5902-03
2.6925-03
1.9396-03
1.3238-03

1.5218-03
4.9509-03
8.5348-03
1.1320-02
1.3045-02
1.3795-02
1.3776-02
1.3213-02
1.2296-02
1.1177-02
9.9670-03
8.7438-03
7.5597-03
6.4474-03
5.4260-03
4.5044-03

There is some uncertainty introduced into our results
by unknown relativistic and meson-current effects.
However we feel that these eRects will be small in the
region of low momentum transfer considered here."
"R. Slankenbecler, thesis, Stanford University, 1958, has

studied relativistic corrections, using a simplified model of the
deuteron (two bosons, one of which is charged, bound by a sepa-
rable potential). In this model the corrections can give rise to a
25 to 30% reduction in the cross section at g= 3 f ' which would

To facilitate the analysis of future measurements of
elastic electron-deuteron scattering we give in Table VI

mean that the scalar charge form factor would be larger by as
much as 15%. Whether the corrections would be as large, in a
realistic model is not clear. However, suppose that this is the
correction that obtains at q=3 f '. Then if we applied a correction
that is 15/z at q =3 f r and goes linearly to zero as q ~ 0, the limits
we place on Fi" would lie one above and one below the zero value
for all values of q listed in our table except at q= 2.2 f ', where both
limits are positive.
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the four types of integrals that enter 6', calculated from
some of our potentials, for momentum transfer up to
q=8f '.

iVote added irt proof. We are indebted to Dr. H. P.
Noyes for informing us that the triplet scattering length
is now known much more accurately than indicated by
the sources we quoted. Based on a very careful study of
the experimental data, R. Wilson in a book on nucleon-
nucleon scattering PInterscience Publishers, Inc. , New
York (to be published) j reports a value of the n-P cross
section at a few ev of 20.400~0.060 barns and a co-
herent scattering length of —3.744~0.010 f. Therefore
the triplet and singlet scattering lengths are: a&

——5.4043

&0.0122 f and a, = —23.7009&0.0332 f. Hence poten-
tial No. 8 is the only one which now fits the experi-
mental data.

The deuteron binding energy is also known more
accurately now and the weighted mean of the experi-
mental values is 2224.68&0.196 kev.
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Gamma Rays Resulting from Lithium Bombardments of Lithium*
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Lithium beams of mass 6 and 7 were used to bombard thick targets of Li'F and Li F. Reactions leading

to Li, Bev, Be'0 B'0 BI' B'2 {" C'2 and {"'3were identi6ed from direct observation of gamma rays, residual

target radiation, and the presence of neutrons.

I. EXPERIMENTAL APPARATUS

HICK targets of Li'I' and Li'I were bombarded

by 2.5—2.75-Mev Li' and Li beams obtained
from the State University of Iovra Van de GraaG ac-

celerator. The ion source is of the hot 61ament type and
is similar to one described by Norbeck' and Allison and
Littlejohn. ' Gamma rays from these reactions were
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Fzc. 1. High-energy spectra. Most peaks contain more than
10' counts per point. Ordinates are arbitrary and different for
each of the three curves.
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Fzo. 2. Low-energy spectra. Most peaks contain more than 10'
counts per point. Ordinates are arbitrary and different for each
of the three curves.


