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Electron Energy Distribution in Slightly Ionized. Air under the Influence of
Electric and Magnetic Fields

N. P. CARLETON* AND L. R. MEGILL
Boglder Laboratories, Natiorsal Btsreass of Starsdards, Boulder, Colorado

(Received December 26, 1961)

We obtain numerically computed solutions to the Boltzmann equation giving the electron energy distri-
bution in weakly ionized air under the following assumptions: (1) that there are present a static magnetic
Geld and an electric Geld of constant direction (perpendicular to the magnetic Geld) and a constant rms
value; (2) that the gas is homogeneous and the Gelds uniform in space; (3) that the degree of ionization is
weak enough so that electron-electron and electron-ion collisions are negligible; (4) that the Gelds are such
that the average electron energy is much larger than the thermal energy of the gas molecules, and that the
heating of the gas by the electrons is negligible; (5) that processes of creation and removal of free electrons
are negligible; and (6) that electrons may lose energy in elastic collisions and may also excite rotational,
vibrational, and electronic degrees of freedom. To describe these energy-loss processes we use experimental
cross sections. We take the constituents of the air to be¹,Og, and 0, the later being included for upper
atmosphere applications. We give distribution functions for a number of limiting cases and compare our
solutions to others which may be obtained by less extensive calculations. We demonstrate that while the
ratio of electric Geld to pressure is a good scaling factor for dc excitation this is not the case if either the
excitation frequency or the gyro frequency is large compared to the collision frequency.

1. INTRODUCTION

UPPOSE that in a weakly ionized gas an electric field
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is established whose orientation and rms value are
constant in time. If this field is weak, then it is possible
that a quasi-steady state may result in which the gas
temperature T, is hardly increased, but in which the
average electron energy is much greater than kT, . In
such a state the electrons are transferring energy to the
translational and internal degrees of freedom of the
molecules, but this energy is small enough to be
removed easily by conduction and radiation from the
region where the field exists.

We have become interested in situations of this sort
through considering what may happen in the ionosphere
when electric fields are applied. Such fields may occur
naturally, as when the neutral gas moves across the
geomagnetic held, or may be artificially produced, as
by radio-frequency probing beams. The actual energy
distribution of electrons which may result from the
existence of such fields is not easy to predict because
the electrons excite rotational, vibrational, and elec-
tronic degrees of freedom. Nevertheless, it is very
interesting to know the exact form of this distribution
in order to predict accurately certain properties. For
instance, one would particularly like to know the
average number of electrons in the high energy tail of
the distribution above the threshold of electronic
excitation. This would make possible the prediction of
conditions under which excitation by electron impact
might be significant in the production of the airglow,
and of conditions under which radio-frequency beams
might excite an artificial airglow. Also, the collision

frequency of electrons in air depends strongly upon
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their energy. Hence, a prediction of average collision
frequencies in the ionosphere, which is very important
for studies of wave propagation, can hardly be made
unless the electron energy distribution is known.

Moved by these considerations, we have constructed
a form of the Boltzmann equation in which we make
certain fairly general assumptions and approximations
which include the problems of interest to us. In doing
this, we are fortunately ablt; to draw upon the work of
several authors' ' who have attacked similar problems.
Our work adds to theirs chieRy in that we consider the
presence of a molecular gas with rotational and vibra-
tional degrees of freedom and in that we consider the
discrete effects of several electron energy levels. The
solution of our equation, incorporating known experi-
mental data on electron collisions with nitrogen and
oxygen, must be made numerically, but the use of a
large computer has enabled us to obtain numerical
approximations to the electron energy distribution for
a wide range of parameters. In the present paper we

give our analysis of the Boltzmann equation and discuss
some typical properties of our numerical solutions.
We leave to a separate paper detailed discussion of our
solutions and of their application to our geophysical
problems.

2. PARTICULAR EXPRESSION OF THE
BOLTZMANN EQUATION

The general expression for the rate of change at a
point v of the distribution function f(v, t) of our electron

'P. M. Morse, W. P. Allis, and E. S. Lamar, Phys. Rev. 48,
412 (1935).

s S. Chapman and T. G. Cowling, bIatheraatioa/ Theory of
Eonlniform Gases (Cambridge University Press, New York,
1953), 2nd edition, Chap. 18.

' T. Holstein, Phys. Rev. 70, 367 (1946).
4 C. S. Wu, California Institute of Technology Technical

Report No. 32—14, 1960 (unpublished).
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gas is

Bf(»t)/R= —(e/m)(K+v&&B) V„J(v,t)
+ (Bf(v,t)/Bt)„» (1)

where K is the electric field, v the velocity, and 8 the
magnetic field; e and m represent the charge and mass
of the electron, respectively. Here we have assumed
that we have a homogeneous gas subject to spatially
uniform electric and magnetic fields, so that the distri-
bution function is independent of the spatial coordi-
nates. We shall eventually be interested in quasi-steady
conditions, in which we set Bf/At=0, or in which it is
meaningful to set equal to zero the average of Bf/Bt
over many cycles of a time-dependent electric field.
For the present we shall keep all terms, however, so as
not to lose generality.

Let us now discuss the last term of Eq. (1), which is
the rate of change of the distribution function due to
collisions made by electrons. We shall restrict ourselves
to dealing with a weakly ionized gas, such that electron-
electron and electron-ion collisions may be neglected.
Furthermore, we shall assume that the electric field is
large enough that the average energy of the electrons
is much greater than kT, . Under these conditions we

may consider the neutral molecules to be essentially
stationary, even though they absorb a small amount of
translational kinetic energy from the electrons.

We consider four types of collision; (1) elastic
collisions, (2) collisions exciting rotation, (3) collisions
exciting vibration, and (4) collisions exciting electronic
energy levels. We thereby neglect all processes which
create or remove free electrons within the region of
interest. For the ionosphere this means first of all that
we deal with nighttime conditions only, so that there
is no photoelectric production. Then in the ionospheric
E region (95 to 120 km altitude) there is an equilibrium
between downward diffusion of electrons and recornbi-
nation plus attachment of electrons to electronegative
molecules. The lifetime of an electron in the I& region
is very long, however, compared to any other character-
istic time, so that these processes represent negligible
sources and sinks. Neglect of attachment means, in
general, that we restrict ourselves to regions of low
enough pressure so that three-body attachment by
reactions such as

=AN@
v,; Bv~.

f'(v", t) q' (~"4)
Bv

f(v, t)q;, (vi))—Ai', (4)

where the index i refers to the particle type and the
index j to the process involved in the collision.

Equation (4) completes the analytical expression for
Bf/Bt, but the differential equation obtained by setting
Bf/Bt=0 is completely intractable, since the distri-
bution function depends on the direction as well as the
magnitude of the velocity. One could proceed rigorously
with a solution by expanding the function in spherical
harmonics. We have chosen instead, following other
authors, ' 4 to make an approximation to the function
which is of first order in the field quantities K and S.
If we restrict ourselves to the case in which K is perpen-
dicular to 8, then as Wu has shown, 4 the most general
such approximation may be written

reach energies high enough to ionize. If we consider
pure N2, the limitations concerning negative ions do
not enter. In the general case, we can extend our region
of validity by considering these effects as small pertur-
bations.

For each specific process that we do consider, there
will be a certain energy loss per collision and a certain
cross section. We shall express the cross section in
terms of the differential cross section q(p, P) for scat-
tering an electron through an angle P with the appro-
priate energy loss, which we in turn express as a relation
between the magnitude of the electron velocity before
and after collision (v' and p, respectively) and the
scattering angle P: n'= p'(v, P). Thus we can write that
collisions of a given type will depopulate the velocity
space in the neighborhood of a point v at a rate

Nvf(v, —t) f„q(p,P)dco', where N is the number density
of the neutral particles with which the collision is made.
The space about this same point is also being populated
by scattering of electrons whose velocities v' have
magnitudes given by e'=v(v, P). Holstein' has given a
careful derivation of this term, showing that the net
value of the rate of change of population about v is

(~f(»t)/»)-»

Op+e+M —+ Op +M f(v, t) =fo(~,t)+(v K)f (p, t)+I v (&XK)jfp(~, t). (5)
2

is negligible. ' Also, we must restrict ourselves to electron
energies less than 4 ev, so that dissociative attachment,

Op+e ~0+0, (3)

is impossible. ' We also must assume that the concen-
tration of negative ions is small enough so that detach-
rnent by electron impact is a negligible source of new
electrons. Finally, we assume that our electrons never

~L. M. Chanin, A. V. Phelps, and M. A. Biondi, Phys. Rev.
Letters 2, 344 (1959).

The functions fp, fi, and f& depend only upon the
magnitude of v (and upon t) and we assume that the
second and third terms of the expansion are much
smaller than the term fp(p, t) The physical m. eaning of
this expansion is straightforward: the functions fi and
f2 provide bulges on the distribution in the directions
parallel to the electric 6eld and to the Hall drift,
respectively. The assumption that fp(p, t) is greater than
the other terms corresponds to the experimental fact
that the drift velocities of electrons in fields of the
magnitude which we consider are very small compared
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to the average velocities. We might note in passing
that in normalizing the function f(v, t), only the term
fo(v, t) contributes, while in computing the conductivity
parallel to E or the Hall conductivity, only the terms
involving fi(v, t) or f2(v, t), respectively, enter.

When we substitute this expression for f(v, t) into
all but the collision term in Eq. (1), we get

(8f(v t) i 8=—(fo(v, t)+(v E)f,(v, t)
Bt l„ii Bt

e v E afo(v-, t)
+(v L&XE1)f2(v,t)}+-

sz v Bv

&f( t) 8f2(v, t)-
+v E +v LEXEME +E'fi(v, t)

Bv dv

+E'(vX&)f ( t) —B'(v'E)f ("t) .

The substitution of the same expression into the
collision terms will permit the integration indicated in
Eq. (4) and hence remove the problems of the depend-
ence of f(v, t) upon the direction of v. It still gives us,
however, a differential equation which depends upon
the values of the functions fo f] and fm at two points,
v and v'. To see how we may deal with this problem,
let us now stop to consider in detail each type of
collision which may occur.

3. CGLLISIGN PRGCESSES

Elastic Gollisions

In an elastic collision, the conservation of kinetic
energy and of momentum provides that b,g/u= 2(nz/M)
X(1—cosf) is a good approximation to the fractional
energy loss which an electron suffers in a collision (44 is
the electron energy, m/M the ratio of electronic and
molecular masses). Now, since 644/n =26v/v =2 (v' —v)/
v, we have that v'=vt 1+(nz/M)(1 —cosP)] and that
Bv'/Bv=v'/v Becaus. e v' differs so little in magnitude
from v, we can here expand about the value v the
functions of v' which appear in our collision expression
and discard the terms of order higher than one in
(v' —v). If we denote by q, (v,P) the differential cross
section for elastic scattering, then we have for the
collision term involving fo(v, t) and q, (v,f)

Bv
cVv fo(v', t) (v'/v)' q, (v', P) —fo(v, t)q, (v,P) d(v'

co' Bv

The terms in fi and f2 are more complicated, since
they lack the spherical symmetry of fo I.n writing
these terms let us establish a spherical coordinate
system whose polar angle 0 is measured from the
direction of E and whose azimuthal angle tt is measured
from the direction of BXE. Thus, if (v,8,&) are the
coordinates of v, we have: v E=vZcos8 and v (BXE)
=vBE sin8 cosP. The term involving fi(v, t) and q, (vga)
for one constituent now becomes

1A'Efi(v, t) (cos8'—cos8)q, (v,g)des'+1Vv 'E(m/M)

a
X—v'fi(v, t) cos8'(1 —cosP)q, (v,f)da&' . (8)

Bv

In these integrals cos9 is a constant, since the vector
v is fixed; cos8', however, depends upon the angle P
between v and v' and also upon 8. Holstein' has shown
that cos8'=cos8 cosP+sin8 sing cosy, where y is an
azimuthal angle measured around the polar direction
of the vector v, from an arbitrary origin. When this
expression is substituted into our integrals the term
involving cosy integrates to zero, since the rest of the
integral is independent of y (i.e., the differential cross
section is cylindrically symmetrical about the direction
of v). The leading term of Eq. (8) does not vanish
altogether, however, as it did for fo, but becomes for
one constituent

—Xv'Zfi(v, t) cos8 (1—cosf)q. (v,f)dm'. (9)

We may neglect the second term of Eq. (g).'
Similarly, the collision term involving fm(v, t) and

q, (v,P) will give an approximate expression

—Xv'EBf2(v, t) sin8 cosP (1—cosf)q, (vpP) d~'. (10)

This result follows directly when one considers that the
expression sin8 cosP merely represents the cosine of an
angle between v and a fixed direction, as cos8 did in the
development of Eq. (9).

Now, if we define 0, (v) = J„' (1 cosP)q. (v,P)dco'—
which is the usual "diffusion cross section" or "mo-
mentum transfer cross section, " we can express for any
constituent of the gas the contribution to (8f/Bt)„ii
due to elastic collisions as

fo(v, t) q, (v,P)+ v(m/M) (1—cosP) v~

X—L"f.(v, t)q. (vA)3 —fo(v, t)q. (vA) d '

Ov

8
=&v—'(m/M) —v4fo(v, t) (1—cosf)q, (v,P)der' . (7)

Ov

One such term will arise for each constituent.

8
1'-'(m/M) —

I v4~, (v) fo(v, t)j—1Vv'Eo, (v) fi(v, t) cos8
Bv

1A EBo4(v)f2(v, t) —sli18 cosp. '(11)
It remains to determine the value of o, (v) for the

' The propriety of neglecting this term is most easily seen at a
later stage in the argument. This term, if retained, would appear
in Eq. (20) where it is clearly compared only with terms of lower
order.
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Fxe. 1. Diffusion cross sections for N2, 02, and O.

gases of interest. Ramsauer and Kollath~ have measured
the total scattering cross section for N2 and 02, and the
differential cross section for three values of f in Ns.
They have also measured' the differential cross section
for 11 values of II from 15' to 165' for several gases
which unfortunately did not include N2, but did include
CO, which is isoelectronic with N2 and which showed a
very close resemblance to N2 in the earlier sequence of
measurements covering only three values of II. In order
to obtain the cross section for elastic scattering from
these measurements, we must subtract the contribution
of inelastic scattering. The only inelastic process which
is significant is vibrational excitation, which is discussed
below.

Having subtracted the inelastic cross section from
the total cross section we take the P dependence of

q, (n,II) for Ns to be the same as that for CO, but
normalize the individual values so that their integral
(or, more accurately, the sum of the 11 measured
values) is equal to the total elastic cross section for Ns.
Then. we proceed to calculate o, (n) for Ns from its
definition.

At low electron energies ((1 ev) Phelps and Pack'
and also Huxley" have measured o, (o) for Ns directly
by diffusion and mobility experiments, and agree very
well with each other. Their values, together with the
values we have calculated from Ramsauer and Kollath
for higher energies, are shown in I'ig. 1. Considering
the great difference in technique between the two types
of experiment, the agreement is very pleasing. There
is even some evidence from the theoretical work of
Fisk" that the secondary maximum of cr. (v) near the
junction of the two measurements is real, so we have
not attempted to smooth it out.

r C. Ramsauer and R. Kollath, Ann. Physik 10, 143 (1931);
ibid. 4, 91 (1930); ibid. 9, 756 (1931).' C. Ramsauer and R. Kollath, Ann. Physik 12, 529 (1932).' A. V. Phelps and J.L. Pack, Phys. Rev. Letters 3, 340 (1959)."L. G. H. Huxley, J. Atmospheric and Terrest. Phys. 16, 46
(1959).

"See H. S. W. Massey and E. H. S. Burhop, E/ectronic and
Ionic Impact Phenomena {Clarendon Press, Oxford, England,
1952), pp. 205—217.

Crompton and Huxley" have measured o.,(o) for Os
in the range 0.05 ev to 2 ev; the results are shown in
I'ig. 1. Their cross section has about the same value
from 1 to 2 ev as Ramsauer and Kollath's total scat-
tering cross section, suggesting that the scattering is
nearly spherically symmetrical. We have thus simply
used Ramsauer and Kollath's cross section at higher
energies. Below 0.2 ev there is a decided discrepancy
between the work of Ramsauer and Kollath and the
results of Crompton and Huxley which at the moment
we have left unresolved.

Neynaber et al."have measured the total scattering
cross section for elastic scattering of electrons from
atomic oxygen from 2 to 12 ev. They further show that
if one takes the theoretical prediction for s-wave
scattering made by Bates and Massey'4 and adds the
p-wave contribution calculated by Klein and Brueck-
ner, ' then one obtains good agreement with experiment.
If we thus take the relative contributions of s- and
p-wave scattering to be known, we can compute the
angular dependence of the scattering and thus the
momentum transfer cross section o, (v). Our results are
shown in I'ig. I.

Excitation of Rotation

The exchange of energy between electrons and the
rotational motion of N2 has been discussed theoretically
by Gerjuoy and Stein, "who consider the interaction of
the electron with the quadrupole moment of the
molecule. They give simple closed expressions for cross
sections for an electron to produce a change of rota-
tional quantum number QJ= ~2. These cross sections
are functions of j and of the ratio of initial and 6nal
electron momenta. Thus, if the distribution of molecules
amongst rotational levels is known, we have a complete
description. At any reasonable temperature, however,
a large number of rotational levels is populated, which
provides a computational difhculty. We have chosen to
say, therefore, consistent with our earlier assumption
that the average electron energy is much greater than
kTg that we can regard the fractional energy loss per
collision as small compared to unity for the great
majority of our electrons. Under these conditions one
can calculate from the results of Gerjuoy and Stein an
average cross section for a collision producing a change
in rotation. This average is (assuming the electron

"These results are quoted as a private communication by I.
P. Shkarofsky, M. P. Bachynski, and T. W. Johnson, RCA
Victor Co. , Ltd. Research Laboratories, Montreal, Canada,
Research Report No. 7—801, 1960 (unpublished).

"R. H. Neynaber, L. L. Marino, E. W. Rothe, and S. M.
Trujillo, paper read at the Second International Conference on
Electronic and Atomic Collisions, Boulder, Colorado, June 1961
(unpublished) .

'4 D. R. Bates and H. S. W. Massey, Proc. Roy. Soc. {London)
A192, 1 (1947).

"M. M. Klein and K. A. Brueckner, Phys. Rev. 111, 1115
(1958).
"E.Gerjuoy and S. Stein, Phys. Rev. 97, 1671 (1955).
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momentum to be hardly changed in the collision):

SprQ'apP ~
0'g = Sg

15

o,= (4n.Q'ap'/15), (13)

independent of the distribution of Xz, since Pj—p

=1. Taking the value Q=0.96 adopted by Gerjuoy
and Stein, we obtain 0-„=2.1.6)&10 " cm'. This tT„, as
well as being independent of electron energy, is also
spherically symmetrical, since the authors show the, t
each individual cross section is spherically symmetrical.
In addition, the authors themselves show that the
expression for the average rate of energy loss of electrons
is similarly independent of the distribution of XJ and is

(du/dt). ,= (32prQ'ap'1VvW/15) (14)

for an electron of velocity v. E is the total density of
molecules and S' the rotational constant of the mole-
cule, such that the energy of the Jth level is WJ(J+1).
We can now construct an average energy loss per
collision for an electron of velocity e by dividing
(dm/dt), by the average collision frequency vlVa„. This
result gives (Au), =SW, and since for nitrogen W =0.249
&&10 ' ev ((&kT,) it is clear that our assumptions are
valid over a range of energy including almost all of our
electrons. Thus, we shall use these simple approxi-
mations for o„and (EN),„ to put into our collision
terms. Now, since AN =mvAv, the velocity change
during a collision is Av=v' v=SW/—mv. These approxi-
mations are invalid for energies near the threshold of
excitation. Thus we shall arbitrarily put in a cutoff,
letting 0-„=0 below a certain electron energy. This
cutoff can be chosen (say at u=0.02 ev) so that it does
not exclude a large energy range but still insures that
he&(e. Then we can do again as we did for the elastic
collisions and expand functions of v' about the neigh-
boring value e.

The term in (Bf/Bt)„~~ involving fp and o„ is now
(since Bv'/Bv= v/v', and a, is spherically symmetric):

(SWXo.„/mv') (B/Bv)(v'fp(v, t)j. (15)

The lead term involving f~ is

(J+2)(J+1)(2J—1)+J(J—1)(2J+3)
X (12)

(2J+1)(2J—1)(2J+3)

where up is the first Bohr radius, Q is the molecular
quadrupole moment in units of euo'. , and XJ is the
probability of a molecule's being in rotational level J.
Fortunately, the factor involving J tends quickly to
the value 2 as J increases so that if Eg is small when
J is small we have

Similarly, the lead term involving fp is

X—v'EBa,fp(v, t) sin8 cosQ.

As before' the terms involving the derivatives of fq
and fp can be neglected.

Huxley" has tentatively concluded from experimental
work that rotational excitation of 02 in air is negligible
compared to that of N2. Therefore we shall not consider
this process in our calculations.

Excitation of Electronic Levels

The term involving f, (v', t) cos8' is zero because of
the assumption of spherical symmetry, as is the corres-
ponding term involving fp(v', t) Note t.hat we have
labeled inelastic cross sections with the indices i and j,
with i referring to the constituent and j referring to
the particular level in the molecule or atom. Since
there will be only one elastic collision cross section per
constituent and under the approximation being used at
most one rotational cross section, we wil1 1abel these as
o-,, and o-,„respectively. Each of these terms requires
different treatment and for that reason this distinction
is most convenient.

The energy levels in which we shall be interested for
our ionospheric problem are the low-lying levels of 0
and 02 shown in Figs. 2 and 3, the lowest level of N2

4,I7
74sec M.L. -=0 ls

I.96 ll0 sec M. L.

L'.
t-

ol

0I0 EO
tO X

op to
O

2 lg
gO

I

N
X

E7) g)N ~o

In considering excitation of electronic levels we can
make little essential simplification of the basic expres-
sion, Eq. (4). We may note to begin with that the
relation between v' and e, when a level of energy I; is
excited, is v'= (v'+2u, /m) & and hence that Bv'/Bv= v/v'.

If we assume that all cross sections for electronic
excitation are spherically symmetrical, then we obtain
(letting o,;(v) be the cross section for exciting a partic-
ular level j in constituent i) the following contribution
to (Bf/ Bt),. u..

2 &*v(Lfp(v'
'

t) (v"'/v)'&' (v' ') fp(»t)&*"(v)j
sl 7

Evo, , (v)—fi(v, t) cos8

EBv—o;, (v) fp. (v, t) sin8 cosP). (18)

tVvpEfy(v, t) (cos8 —cos8) (o „/47r)kd 0.00
0

f $p

= —1Vv'Ea. ,fi(v, t) cos8. (16) FIG. 2. Low-lying energy levels of atomic oxygen.
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FIG. 3. Low-lying energy levels'of 02.

being at about 6.5 ev. Seaton" has calculated excitation
cross sections for the atomic levels and these are shown
in Fig. 4. Also shown are provisional estimates which
we made of cross sections for excitation of the lowest
02 levels, about which nothing was known when we
began our calculations. Very recently, however, G. j.
Schulz has made a study of these excitation processes
and has been kind enough to give us preliminary
information on his work, which suggests that our
estimates may be as much as three orders of magnitude
too large. We discuss below in Sec. 5 the manner in
which the size of these cross sections influences our
results.

Fn. 5. Cross sections for
excitation of the various
vibrational levels of N2.
These data have been kindly
supplied to us in advance
of publication by Dr. G. J.
Schulz of the Westinghouse
Laboratories. We have, on
the advice of Dr. Schulz,
used as a cross section for
excitation to the v=1 state
the cross section for v =2
shifted 0.1 ev to lower
energy.

Excitation of Vibration

The excitation of vibration must be treated by
c 15essentially the same technique as excitation of electronic

levels, since even one vibrational quantum (0.29 ev in

N2) represents a substantia, l energy loss. Haas" and
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FIG. 4. Cross sections for excitation of the two lowest lying
levels of atomic oxygen and assumed values for the two lowest
levels in 02.

"M. J. Seaton, Phil. Trans. Roy. Soc. (London) A245, 469
(1953).' R. Haas, Z. Physik 148. 177 (1957).

~ ~

Schulz" have shown that there is a strong probaoihty
for electrons with energies between 1.7 and 3.5 ev to
lose energy equal to one or more vibrational quanta in
N2. Both authors interpret this process as the formation
of an unstable N2 ion which can decay into various
vibrational levels of N2.

Haas' experiment was of the swarm type and showed
that the maximum of the cross section for this energy
loss process occurs at 2.3 ev and is about 3)(10 "cm'
in magnitude. Schulz erst made measurements by the
trapped-electron method and then extended these with
a high-resolution electron gun and analyzer. In this
latter experiment he was able to measure relative cross
sections for exciting individual vibrational levels in N2.
These cross sections are shown in Fig. 5, in arbitrary
units. For our calculation we normalize them so that
their sum agrees with Haas' measurement at 2,3 ev.
For the time being we shall assume that these cross
sections are spherically symmetrical, so that these
excitations appear in our equations in just the same

"G. J. Schulz, Phys. Rev. 116, 1141 (1959); (private communi-
cation).
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manner as electronic excitations. In further discussion
we shall lump all these processes together as discrete
excitation,

There is some evidence that electrons also excite
vibration in O~ at energies of a few tenths of an electron
volt. Since the study of this process by mobility and
diffusion experiments is complicated by attachment,
it is difFicult to assign cross sections to specific reactions.
At present we shall simply ignore this process, since 02
does not make up more than 10% of the total gas
density in the region of the atmosphere in which we are
principally interested.

4. SOLUTION OF THE BOLTZMANN EQUATION

If we now collect all the collision terms and substitute
them into Eq. (6) this yields a lengthy expression which

may be separated into three expressions for Bfp/Bt,
Bfi/Bt, and Bf&/Bt by multiplying successively by 1/knr,

(3/4pr) cos8 and (2/pr) cosg and integrating over the
total solid angle. This process yields the following
equations:

8 j.eE' 8—[f ( t)1= —— —
L 'f ( t)3

Bf 3we8v

8W, ,„a
+Z &' —L"fo(v,t)j

mn' Bv

m t9

+ —
I ~,.(v)"fo(v,t)]

3f v2 85

one which enters into Eq. (19).A solution of Eqs. (20)
and (21) is

where

e dfp(v)
fi(»t) =- (a+n' tanPt),

mv dv

P QP p

(p2 M2) +V4+2v2(ti2+Mp)

(22)

1 eE ' d dfp(v) SW,o.„d—v'n(v) +P lV; —[v'fp(v)]
3 szv dp dv i ply

SZ

+ —[" '.(v)fp(v) j
M;v' dv

+2 v[~'~(v'~') (v'~'/v)'f p(v'~')

Here pr (=eB/m) is the electron gyro frequency and
v (=P;, E,[o„(v)+o,„(v)+o;;(v)] is the electron
collision frequency. The form of n is similar, but will
not contribute to the final expression.

We may now, using Eq. (22), express Eq. (19) in
terms of fp and its derivatives only. We then integrate
over a cycle of the exciting field. Only the first term
on the right-hand side of Eq. (19) is now considered to
be time dependent. One portion of this term involves
o.' and integrates to zero, while the other portion
involves EpP cos'Pt, which integrates to EpP/2. If we

now use E to denote the rms value of the field we obtain:

~'t(v)fp(v)j =o (23)

—eE 8 e—[f,(v, t)j+—8'Evf, (v, t)
m Bv m

8—[Evf (v,t)j=
8$

—Ev'fi(v, t)P 1V,[~„(v)

and

8 e—[BEvfp(v, t)j= — BEvfi (v,t)—
R m o.4uav

it(u)uv(u)
—EBv'fp(v, t)P S;[o„(v)+o„(v)+o;;(v)j. (21)

—..'()fo(,t)j, (»)
To obtain the steady-state solution for a dc field, we

set P=O and all time derivatives equal to zero in Eqs.
(19), (20), and (21). Mutual solution of these equations
then gives Eq. (25) again, with E denoting the value of
the dc field. It is not possible, however, to let P vary
continuously from high frequencies to zero, because the
assumptions involved in integrating over a cycle of the
exciting field break down when 1/P is comparable to or
greater than the relaxation time of the electrons, We
define the relaxation time with the relation

We now express the time dependence of the electric
field as E=Ep cosPt, and assume that P is large enough
so that fp and Bfp/Bv do not vary appreciably during
one cycle of the exciting field. We thus consider the
quasi-steady condition of constant Ep in which fp and
Bfp/Bv are essentially constant in time. Under these
conditions we can solve Eqs. (20) and (21). We shall
carry out only the solution for f&, since it is the only

where g(u) is the average fractional energy loss of the
electron per collision. In a case in which only elastic
collisions are considered q(u) is 2m/M. In a molecular
gas the average must be taken over all loss processes.

'

For our purposes it is convenient to have as the
independent variable the energy N rather than the
velocity. We therefore let u=kv', where k is such that
u is expressed in electron volts; we also let g(u)

—= f(v),
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but for simplicity we still use &r(u) to denote cross we may write the integral as follows:
sections as functions of u. Our equation then becomes

4 eE ' d dg(u)
k—urn(u)

3 m du — du

[(u+u, )g (u+u;)n(u+u, ) —ug (u) n(u)]du

m—SjQ

(u+u, )g (u+u, )a (u+u;)du

+Q Ã,k: 2m
Lu'o „(u) g(u) ]

. M, du ug(u)0 (u)du+ ug(u)du

168'; d
+ k'0, ,—[ug(u)]

m du

tom 24i

~m—(M 14')

(u+u, )g (u+u, )o (u+u;)du,

+k' Zl (u+u'i)0 i(u+u'~')g(u+u'~') where we have set the integral limit u equal to u —x.
Since

uo—,, (u) g (u) ) =0. (24)
&m t'ai

(u+u, )g(u+u, )0 (u+u, )du

The u, , are defined from the equation v, = Lv'

+(u, ,/k)]'. We may obtain as a first integral of Eq.
(24) the following:

dg m'iV, 3 m u'
—,n'. (u) g(u)

du ' (eE)'n(u)k 2M;ki

8',k
+12 O,,u—

~g(u)

+-,k
—lu—' P $(u+u, ;)o,„:(u+u;,)g(u+u, ;)

0

—uo, , (u)g(u))du . (25)

The constant of integration has been chosen to satisfy
the condition that the first derivative must go to zero
as u increases without limit. "

The solution of this equation, using experimental
and theoretical data for the various cross sections,
requires numerical procedures. The integral involving
the inelastic cross sections in Eq. (25) requires knowl-

edge of the function at energy values u+u, ; for all i
and j when the function is being evaluated at energy u.
For this reason it is necessary, if one starts the solution
at the origin, to use an iterative procedure in the
solution. We have found that this procedure results in
excessive use of computer time, principally because of
the difhculty involved in determining good interpolation
formulas.

We may, however, simplify the integral term in Eq.
(25) if we note that 0.;,(u) =0 for u(u, ; and if we

assume that there exists some value u such that for
u) u, g(u) is so small that the integrand in this term
may be considered to be zero. Under this assumption

'0 3. Sherman, J. Math. Anal. Appl. 1, 342 (1960).

ug(u)0 (u)du=0,

we can solve Eq. (25) by starting at u=u and inte-
grating toward the origin. To obtain starting values for
g(u) we set ir;, (u) and 0;,(u) constant for u&u,
whereupon we obtain an analytical solution to Eq. (25)
in the region u& u .

After obtaining values of g(u) for a particular case
we construct the function G(u) =Au'g(u) such that
Jo G(u) du= 1. This function G(u) gives the fractional
number of electrons per unit energy interval.

3u '
+-

4 k'
(L+uu)0, , (u+u, ,)g(u+u;, )

ua;;(u)g(—u))du . (26)

S. RESULTS

To classify the results which we will obtain let us
first note that, as stated above, our solution is valid in
two diRerent frequency regions: zero frequency and
frequencies such that P)&1/r, . We can further divide
these regions by looking at the dependence of the
function n= v(P'+ai'+v')/L(P' —ai')'+v4+2v'(P+co'))
upon the relative magnitudes of the three frequencies
involved. We shall now discuss several particular cases
which are distinguished by this means.

Case I: v))p, a~: This limiting case may occur when
P=O (dc) or when P is at the lower end of the allowed
ac range. This latter condition is possible because
v))1/r„so that one may have v)&P))1/r, . In this limit
n approaches the value 1/v. If we substitute this
asymptotic value into Eq. (25), we obtain

dg N,m'—= —{Zil"Ln' (u)+n'. (u)+~'. (u)))Z
(eE)'k

3m Q 12$';
0;,(u)g (u—)+ k*'0;,g (u)

. 235; k& m



ELECTRON ENERGY DISTRI BUTION IN IONIZED AIR 2097

Now, if we express each S; as S;=h;X, where E is
the total density, we see that the solution of Eq. (26)
will depend upon the ratio E/N and upon the relative
composition of the gas. The magnetic Geld is negligible
so long as cv((v.

This general result is well known. We can present
here, however, the entire distribution function for a set
of parameters satisfying the above conditions. This is
shown in Fig. 6(a) and 6(b) for the values: 8=0.02
v/m; N=6.7&&10" cm '; h(Ns)=0. 60; h(ps)=0. 13I
h(O)=0. 27. For comparison we include a Maxwell
distribution and a Druyvesteyn distribution each with
the same average energy as the real distribution.

These latter functions can arise out of a crude
analysis of this type of problem, as we may see by
neglecting the inelastic collision terms in Eq. (26) and
considering a gas of only one constituent, whereupon
we get

dg/dl = —LNo. (I)/heB)'(3ms/2M)ug(N). (27)

If we further assume that o., (N) is a constant, the
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Fro. 6. This figure, (a) and (b), shows the calculated electron
energy distribution in air with a number density of 6.7)(1012cm 3,
of which 60% is Ns, 13% is Os, and 27% is O. A dc electric field
of 0.02 v/m is applied. The magnetic field is zero. The equivalent
value of E/p is 1.07 (v/cm)/mm Hg. Maxwell and Druyvesteyn
curves with the same average energy are drawn in for comparison.
Fig. 6(b) is on a log plot in order to show the effect of the inelastic
collisions on the high energy tail of the distribution function.

Fro. 7. This figure, (a) and (b), shows the calculated electron
energy distribution compared to the distributions of Maxwell
and Druyvesteyn for the same parameters as in Fig. 6(a) and
6(b) with the exception that the exciting field is 15 v/m at
50 Mc/sec. This is equivalent to a magnetic field of 5X10 s

webers/m' and an electric field of 0.425 v/m. Note that with this
magnetic field the electric field required to obtain the same
average energy is 20 times greater than that required without
the magnetic field.

solution of Eq. (27) is the Druyvesteyn function gD(N)
= AD exp) —0.548(N/I, )'$. If we choose instead to let
u&o, (N) be constant (constant collision frequency), then
the solution of Eq. (2'/) has the form of a Maxwell
distribution g (I)=Asr expL ——,(I/I, )j.This is essen-
tially a coincidence and does not mean that the electrons
reach a thermal equilibrium. In strongly ionized gases
the tendency is for the electrons to "thermalize"
independent of the neutral gas because the effects of
electron-electron collisions dominate those of electron-
neutral collisions. " Extension of the temperature
concept to slightly ionized gases, however, must be
undertaken with caution. Either of the functions
Gsr(u)=N&gsr(N) or G&(N)=u&g&(N) may be a useful
solution for gases in which inelastic collisions are
unimportant, such as the rare-gases. Which one is the
better approximation depends on the variation of o,(u)
with N. For the particular case we present in Fig. 6,
however, the neglect of inelastic collisions will result in

"J.H. Cahn, Phys. Rev. 75, 293 (1949).
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If we again set X,=h;W, we note that Eq. (28), and
hence its solution, are independent of N. Thus the
distribution function depends only on the relative
composition and not on the total density of the gas.
The other parameters which one can control are P and
E, occurring in the ratio E/P which is thus useful in
scaling solutions. The effect of the magnetic field is
negligible so long as co&(P. The parameter E/X, which
is used to scale dc results, has here no relevance what-
ever.

These results are also known (though perhaps not so
widely as those for Case I) and are supported by
experimental data of microwave discharges. " Our
detailed results are here presented in I ig. 7 for 8=15
v/m, P=3.14&&10s sec ', and the same gas composition
as Case I. They show a distribution function substan-
tially different from that of Case I, in that there are
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FIG. 8. This figure, (a) aud (b), shows the same types of com-
parison as do Figs. 6(a) and 6(b) and 7(a) and 7(b) with the
exception that v,v=co=p=4. 4&(10' sec ' and the electric field
is 0.025 v/m.

an average energy of 25—30 ev instead of the 0.77 ev
which results where these processes are included. One
may on some occasions, however, assume one of the
two above forms and normalize to an average energy
determined by other means (e.g. , by experiment). The
difFiculties inherent in even this process, however, are
apparent in Fig. 6(b) if one is attempting to obtain
results which depend upon the number density in the
high energy tail of the distribution function.

Case II: p)&v, m'. in this limiting case of very high
exciting frequencies, n approaches the form v/P'. If we
put this into Eq. (25) we obtain
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FIG. 9. This figure, (a) and (b), shows the change of the distri-
bution with changing electric field. Other parameters are the
same as for Fig. 6. Note in particular in Fig. 9(b) the large
change in the tail of the distribution function even though the
average energy changes but little.

"H. Margenau, Phys. Rev. 73, 297 (1948).
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more electrons at very low and very high energies. The
same comparison is made with the functions Go(u)
=N&go(N) and G~(u) =N~g~(u) I.n Fig. 7(a) the bump
on the distribution function near the origin is evidence
of our crude procedure in cutting oA 0-„ for nitrogen.
This bump is imperceptible in Case I because the
values of the function near the origin are so much
smaller.

Case III: co))v, P: In this limit the form of n is rr/co'.

This yields essentially the same results as those of
Case II, with the scaling parameter now E/ar. In the
present case the value of P is unimportant, so long as
P is much less than au (and so long as P falls within our
basic limits). Thus the distribution functions of Case II
and Case III are identical for equal values of the
parameters E/P and E/a&. Thus the results in Fig. 7
may be taken, for example, to pertain to the conditions:
8=5)&10 webers/m', E=0.425 v/m. We may also
compare this result to that of Case I and notice that
to obtain the same average energy as that of Fig. 6,
for which B=O, one requires twenty times the electric
field strength used in Case I.

In addition to the three limiting cases just discussed
we have for comparison computed the distribution
function for a case in which the average collision
frequency v, is about equal to P which is in turn
equal to ~. This case, shown in Fig. 8 is for the same
gas parameters as for Figs. 6 and 7 and shows the same
type of comparison. Here we have P=cu=4.4)&10' sec '
and E=0.025 v/meter. These parameters result in an
average energy of 0.787 ev with an average collision
frequency of 3.92)&10' sec '. This case has a shape
very similar to that in Case I with the exception that
the high energy tail is intermediate between the values
for Case I and Case II. The electric field necessary for
the excitation, however, is very little more than that
required for strict dc excitation.

We show in addition the effect of increasing the
electric field for a dc excitation as shown in Fig. 9.
The gas parameters are the same as those used in the
previous calculations. These calculations show the
effect of the very large nitrogen vibrational cross
sections in limiting the growth of the energy. The
bulges which appear on the higher energy curves in the
region from 1 to 2 ev are a reQection of the fact that in
inelastic collisions with N2 the energy at the threshold
is usually considerably larger than the energy lost in
the collision. Therefore, a collision of a 1.7- to 3.5-ev
electron with a nitrogen molecule has a high probability
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Pro. 10. This 6gure shows the e6ect of lowering the value of
the assumed 0& electronic cross sections by a factor of 104. Curve
2 gives the results for the smaller cross section, curve B the
results for the larger.

of leaving the electron with energy between 1 and 2 ev,
which results in a relatively higher population in this
energy region. It is of interest to note that although
the average energy changes only from 0.56 to 0.96 ev
with a change in the electric field of from 0.01 to 0.05
v/m an experiment sensitive to the number of electrons
with 2.4 ev energy, for example, would reQect a change
of nearly 16 orders of magnitude.

In Sec. 3 it was stated that the effect of reducing
the two molecular oxygen cross sections would be
discussed. As an example we show in Fig. 10 two
distributions with exactly the same parameters with
the exception that in one case the 02 cross sections are
decreased by four orders of magnitude. The result is
very slight, due principally to the fact that the original
cross sections assumed for 02 were small relative to
the N2 vibrational cross sections. All the cases presented
here show the dominant role of the N2 cross sections
in controlling the energy of electrons in air.
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