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The three sums appearing in this expression have been Combining Eqs. (A1), (A13), and (A18), we find

evaluated elsewhere for the present model. " They have that M& equals
the values
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We investigate in the limit as the range of the interparticle interactions becomes indefinitely great, but is
still small compared to the size of the system, the behavior of a large class of order-disorder models. This
class includes, for example, the Ising model, the spherical model, and the Gaussian model. We show that
when certain general conditions hold and the interparticle interaction is chosen to be the same for all models,
but otherwise arbitrary, the energy per particle above the critical temperature has the same limiting value
through terms of order 1/R, where Eis a measure of the nu. mber of spins in the range of the interaction.
We further show why the behavior above the critical point in this limit does not necessarily provide informa-
tion about the behavior below the critical point. Some examples are worked out which illustrate the above
results.

1. INTRODUCTION

HE purpose of this paper is to investigate the
behavior of a certain class of order-disorder

models as a function of the range of the interaction. We
investigate the limiting behavior of these models as the
range of interaction becomes indefinitely great, but is
still much smaller than the total size of the system. In
the second section of this paper we show that above the
critical point, when certain general conditions are met,
the details of the model (probability distribution of the
various states of the system) but not the shape of the
interaction are unimportant in the limit of indefinitely
long-range forces. The class of models considered is

general enough to contain the Ising model, the spherical
model, and the Gaussian model. Below the critical

* Supported in part by the U. S. Atomic Energy Commission.
f On leave of absence from Los Alamos Scientific Laboratory,

196i-i962.

point no such general result is obtained. We see that in
this region the details of the model affect the energy per
spin in leading order.

In the third section we compute the energy per spin
for the one-dimensional spherical model (and Gaussian
model) with exponential interactions between spins. We
verify explicitly the results of the second section for this
type of interaction by comparing the results of the
third section with the previously known results for the
Ising model. We also verify explicitly that the behavior
below the critical point is din'erent for the spherical and
Ising models.

In the last section of this paper we evaluate the energy
per spin of the three-dimensional spherical model as a
function of the range of a force which drops off approxi-
mately exponentially with distance. Here we may follow
the behavior of the known third-order transition with
range.
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We find that the thermal and magnetic properties are
the same below the transition point for the one-, two-,
and three-dimensional spherical models in the long-
range interaction limit.

2. LIMIT OF LONG-RANGE FORCES

We shall illustrate a more general result on the be-
havior of various order-disorder models by three ex-
amples: the Gaussian model, the spherical model, and
the Ising model. For these three models (and in fact for
a whole class of models) the partition function is the
same above the critical point through terms of order
1/R, where R is the range of the force. Below the tran-
sition point there is little or no relationship. We shall

E/kT= —-', P v,A;;v;. (2.1)

If we make use of the well-known integration formula, 4

use methods introduced previously by Kac' and ex-
tended by us' to show this result. Previously Brout' has
essentially obtained, among other results, a special case
of this result by diagrammatic analysis.

The first step in our program is to rewrite the partition
function in a form to permit the sum over all states of
the system to be performed easily. Let us suppose that
the energy of the system given by a quadratic form (A
is assumed symmetric)

exp(-,' Q v;A;;v;)= (2m) ~"
+00 N

~ exp( —-', P x —P x,;(Al);;v;)II dx (2 2)

which holds for any symmetric 3;;, then the partition function

Z= g exp( —L'/kT)
all states

may be written as

(2.3)

Z= (27r)
—""

all states

+00 N N

exp( —
2 Z x*'—2 x'(~') iv~)II de

+00 N N
=(2 )-"" " e p(—-,'g x,')5lt(*;)IIZ,

where 5R(x;) is defined by

5R(x;)=— Q exp( —g x;(A-*'),,v;).
all states ~tl

(2.5)

5K(0) =1.0,

N N

5ffr(x,)= II{cosh[g x;(A&);;]). (2.6)

Eq. (2.4) is valid whenever (2.3) is. For the examples we
are considering, 5R(x,) is simply evaluated.

In the Ising model the states of the system are given
by v;= ~1, for all j.Thus we have at once, normalizing

In the Gaussian model' the v; are independently and
normally distributed with mean zero and unit variance.
Thus, again normalizing 5R(0) = 1.0, we obtain

5ng(x, ) =
N N dvj

p(—-'Z "—2*'( ')"~)II = p(-'Z*; ',*;).
i=i ii , i=i (2~) $ i,j

(2.7)

In the spherical model' all sets of values of the v; which satisfy

(2.8)

are equally likely. We impose this restriction in the now standard way by use of the Laplace transform formula

k+io0

8(x-y) =
2XZ k—io0

~e(~—u)d~ (2.9)

' M. Kac, Phys. Fluids 2, 8 (1959).' G. A. Baker, Jr., Phys. Rev. 122, 1477 (1961).
3 R. Brout, Phys. Rev. 118, 1009 (1960); and 122, 469 (1961).

See, for example, M. G. Kendall and A. Stuart, The Advanced Theory of Statistics (Hafner Publishing Company, Ne~ borg 1958)
Vol. 1, Sec. 15.2.' Introduced by T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
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Thus, approximately normalizing OR(0) = 1.0, we have

I+zoo +to

ORs(*;)=
k—ico -to

N N dp ~

~ exp(Xq —P qvt2 —P x;(A&);;v;)g
t-r t.g t=r (2gc)&

2' Z A;—ioo

/' 1
s"'exp~~ —x x;A;;~;)(2') "&'dg (2 I)

&4q '.t

The value of the q integral is known' to be potential, then

u(q) =—g V(r) expL2~ir q).
1V lattice

(2.15)( 4$
oRB(&')= I I

It& »(PX g—x;A,,x;'j~)(2e) **~

EQ g;A@gtt t,t

OR, (~,)-&-;I 1+(1+4~)&))-:
Xexp( —', 1VL(1+4$)'*—1j), (2.12)

(q)= Z (() p(2 ~""( q) (2 17)
ES latticewhere

P= (P ~;A;t*;)/X. (2.13)

In order to maintain the same total strength for V(r)
(2 11) for varying ranges, let

V(r) = r(r/R't")/R, {2.16)
For E very large we may use the method of steepest
descents' to obtain an asymptotic value for (2.10).It is where R is proportional to the number of spins in the

range of the interaction. Using (2.16), Eq. (2.15)
becomes

1
Z, = P exp(2~iq j)xt,

1
Att ———P a(q) expL2xiq (j—i)].S q

(2.14)

If r is the vector between two points and V(r) is the

The next step in our program is to examine the be-
havior of the interaction matrix 3;;. We shall now
assume that the indices i and j are d-dimensional posi-
tion vectors and that A is a function of (i—j) only. We
may then diagonalize 2 by introducing the eigenvectors
Z, and eigenvalues a(q),

where (=r/R"". We may show by use of the same type
of arguments which lead to Riemann's theorem on trig-
onometric functions' that

Ia(q) I
&~ II(1+~""q,)

j=l
(2.18)

where q; is the jth component of q. We have also
assumed that

I ~(() I
d((x', (2.19)

where 3f and 3f' are certain finite positive constants.
We are now in a position to show that for T& T, the

partition function for each of the three examples we are
considering is

Z= (2m) ~ ~ exp( ——,
' g I Z, l

'$1—a(q)])g dZ +O(DnEg'"/R'). (2.20)

Q x,A,;x;=P a(q) Iz, I'. (2.21)

Eq. (2.20) is exact for the Gaussian model.
For the spherical model we may, assuming $ to be

small, expand (2.12) as

=exp(+ ', X$ 4EP+ ). -—(2.22)
6 G. A. Campbell and R. M. Foster, Foxier Integrals for

Practical Applr'catrorcs (D. Van Nostrand Company, Inc. , Prince-
ton, New Jersey, 1948), pair 650.0.

7 See, for instance, H. Jeffreys and B. S. Je6reys, Methods of
Mathematica/ Physics (Cambridge University Press, New York,
1950},&hap. 17.

For the Gaussian model, (2.20) follows at once from
(2.4) and (2.7) when we note that

The terms through order $ in (2.22) together with (2.4)
give (2.20) . It remains to show that the remainder of the
expression is neglectable to the required order. The
weighting factor in (2.4) is a positive definite quadratic
form. As (2.12) can increase asymptotically as $-+ co

at a rate bounded by expLX(&)&) the whole integral
converges. If in addition the maximum of I a(q) I

is less
than 1.0, then the integrand has a single maximum at
the origin (I Z~I =0). Leaving aside factors of the order
of 1.0, we may estimate the mean value of P by esti-
mating the value of each term of $ separately and adding
them up. Thus, replacing sums with integrals over the

See, for example, P. Franklin, A Treatise on Advanced Calcglgs
(John Wiley R Sons, Inc., Neer York, 1949), p. 480.
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first Brillouin zone, we obtain

a(q)dq -'
estimate we compute the root-mean-square value, and
include all terms. Thus the error due to the fourth-order
'te s l 'tll

By Eq. (2.18), we have

-i4

(2.28)

NM'

NM' (lnR)''

~max= & 0 (2.25)

as the equation for the critical point. For lower tempera-
tures than it, there is little relationship between the
models considered here. This point will be made clearer
by several examples examined in the following sections
of this paper.

We follow the same procedure to establish (2.20) for
the Ising model as we did for the spherical model.
Expanding the ln cosh terms in the exponent of the par-
tition function in powers of their arguments, we get
from (2.6)

plus terms of lower order, which is the required result.
We denote the absolute value of the maximum a(q) bya, . We remark that (leaving factors of order 1.0
aside) one can obtain corresponding bounds for P, P,
etc. Equation (2.24) may not be the best bound obtain-
able, but it is sufficient to show that (2.20) is at least
asymptotically correct. It is to be noted that this proof
fails when a, reaches 1.0. At this point the integrand
of (2.4) no longer possesses a single peak at the origin.
We identify

5it(x) =g(cosi Z, [a(q)j-:). (2.29)

The partition function (2.4) may be easily evaluated to
give

Z= exp ~iN a(q)dq (2.30)

Evaluating (2.20), we obtain

plus terms of lower order in N. However, this is the
same expression as we obtained (2.23) for the error in
the spherical model. Hence the same bound (2.24)
follows under the same restrictions (a,„(1.0). Corre-
sponding bounds can be obtained for any order. Thus
Eq. (2.20) also holds for the Ising model.

We see from the above special cases that for the
asymptotic formula (2.20) to hold the important re-
quirements are: (1) the integrand of (2.4) must have a
single peak at the origin; (2) through second order in the
x's, 1n8R(x) must agree with ln5tt, a(x); and (3) the
higher order terms in in5R(x) must becrease more
rapidly than 1/R in the limit as R —& ~.

Although condition (3) is satisfied for a wide class of
functions, it need not always be satisfied as can be seen
from the following example. Suppose the states of the
system are v~= ~1,where v~ are the Fourier transforms
of the v;. Then

Z= exp ——,'N ln(1 —a(q))dq

= exp(-', P x;&;;x;
=exp i~N a(q)dq —AN a'(q)dq+ . (2.31)

We again identify the erst term in the exponent as the
part of 5Kr(x;) which we need to complete (2.20). Our
problem is again to bound the remainder. Transforming
the fourth-order term to the Zq basis, we obtain

N
Z», a'*(qi)Z» a'*(q,)Z»»a~(q3)Z», a'(q»). (2.27)

N2 g .a, a .e
1 2 3

The prime means the summation extends over only
those q; for which P; q; is an integral multiple of N. On
the assumption that (2.27) is small, we may compute its
approximate magnitude by treating it as a perturbation
to the integrand of (2.20). To avoid a spuriously low

From (2.18) we see that there is a volume of order R '
near the origin of q space in which, in general, a(q) is of
order 1.0 rather than of order 1/R. Thus there will be
contributions from this region to the higher terms in
(2.31) by terms of order 1/R, which spoils (2.20).

3. EXAMPLE OF THE ONE-DIMENSIONAL
SPHERICAL MODEL

The Ising model for one dimension with an expo-
nential interaction between spins has previously been
solved exactly and some of its properties analyzed in the
long-range limit. If the spin-spin interaction energy is
given by

N—I N

(3.1)
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then the energy per particle is found to be asymp-
totically equal to

——'(1—«)J[—1+(1—2E) &j, (3.2)

above the critical point, K,=—,'. The constant J is equal
to half the maximum possible interaction energy per
spin, and K=J/kT. Below the critical point
energy is

The integration over the v's is readily performed,
yielding 4

e~«&&dqdetlq~v A'il i (38)
k—ioo

Z= —tanh's,
where

the
Since the determinant is the product of the eigenvalues

(3 3) and the eigenvalues are, ignoring terms of order «~,

s= 2E tanhs. (3 4)

In the Appendix of our previous paper' it was stated
that the results of the Bragg-Williams approximation
differed from these by a factor of two. That was in-
correct. They are the same. Equation (A1) of that
paper needs a factor of two to be consistent with

Eq. (2.8), where E was defined as —,
' the maximum

possible interaction energy divided by kT.
We shall work out the corresponding results for the

spherical model. ' We will verify explicitly that the
results of the previous section are valid in this case of
exponential interaction. If we de6ne

g ..=«I& 1'I+«& (3.5)

then we may write the interaction energy over kT as

~';= —(1—«)E[&'—(1+«)~' 3/(2«) (3 6)

where 8;; is the Kronecker delta and X is the number of
spins in the system. The quantity E is taken to be half
the maximum total interaction energy per spin, J, over
kT as above. If we introduce the spherical constraint,
(2.8), by means of (2.9), we may write the partition
function, (2.3), as

k+ioo +00

cos (2~j/lV) —«

q
—(1—«)E

1+«' 2« cos(—27rj /E)
j=1, , N, (3.9)

2' k—ioo

2'

dq exp E(q——,') —— d~
4m

cosco —r
&&in q-(1-«)K' (3.10)

1+«' 2«cosi0—

For «(1, we may rewrite the a& integral in (3.10) as

dku in{ (1+«')q+«(1 —«)E—[(1—«)E+2«qf costs}

d&o ln(1+«' —2«cos~). (3.11)

we may, where E is large enough to approximate sums
with integrals, write (3.8) as

k—iao

e~&dq ~ ~

(2xe)"" By a standard integration formula' we may easily show
that the second integral vanishes. Using the same

exp( q p p.2++ p.Q . .p.)Q dp. (3 7) standard formula to do the first integral, we may write
i, g i-i for (3.10)

z=-
27l'b

q (1+«') +«(1—«)E+{[q (1+«')+«(1—«)E$' —[(1—«)E+2«qf'} &-

dq exp E(q——',)—-',Xln
2

(2q —1)«= (1—«)

2r 1—r
E+',E q' — qIC — -E'—

1+« 1+«
(3.13)

Equation (3.13) was derived by setting the partial
derivative of the logarithm of the integrand of (3.12)
equal to zero and then simplifying. As (3.13) is a quartic
equation it can be solved explicitly for q, but we will not
carry out this step. For r=0 we recover the known'

In the limit as X~ ~ we may evaluate (1nZ)/1V
exactly by means of the method of steepest descents. v

The location of the saddle point is given by solving the
following equation for q:

short-range solution,

q, = (E'+ ', )&. -(3 14)

For «very near unity, the right-hand side of (3.13) is
very small, so long as the radical does not vanish. When
this condition is satis6ed, we obtain q, =—,. For r near 1,
the radical vanishes for q=0 and q=E. Thus, in the
limit as r tends to unity, we obtain

q.= 2 («2),
q, =E (E)-',).

(3.15)

The energy per particle implied by the spherical

~ B. 0. Peirce, A 5lzort Table of Integrals (Ginn and Company,
Boston, 1910), No. 523.
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FIG. i. Limiting energy
per spin curves for the one-
dimensional spherical and
Ising models as the range of
the interaction becomes
indefinitely great.

physically one should consider it to be

BR= lim lim lirn
H-+0+ r-+1 N-+oo

8 (lnZ)/N
(3.17)

This would correspond to the results of measurements
at fixed magnetic field strengths as r~ l. As the
introduction of a magnetic Geld B corresponds to
multiplying the integrand of (3.12) by

expt 4i p, 'O' N/ (q—E)$, (3.18)

E=—(q,——,')kT. (3.16)

If we carry the solution of (3.13) to the next higher
order in (1—r) above the critical point (E=2), then,
substituting in (3.16) we obtain (3.2) for the energy per
particle. Thus we see that the conclusions of Sec. 2 hold
for the one-dimensional spherical and Ising models with
exponential interactions. When we note that the
Gaussian model may be obtained from the spherical
model by setting q= —,'instead of integrating over q, we
see that the results are also identical for it above the
critical point. It should be noted that the next order
deviations can be obtained for these three cases are
found to be of order (1/R)' rather than (in'/R)'

In Fig. 1 we illustrate the energies for the spherical
a,nd the Ising models below the critical point in the limit
as r —+ 1. One sees that agreement above the critical
point does not imply anything about the behavior
below the critical point. In fact, although the Gaussian
model agrees with the other two models studied above
the critical point, it is not even defined below the
critical point.

It is important to note that neither the one-dimen-
sional spherical nor the Ising' model possesses any
critical point for r(1, but both possess a discontinuity
in the specific heat at E= ~ in the limit as r —+ 1. Al-
though the first-order term in the (1—r) expansion has
a singularity (and, in fact, so do all higher terms), one
cannot conclude that the sum of all of them do. As we
see from these examples, it need not. Hence caution
must be exercised in attempting to draw conclusions
about the nature of the transition for r(1 from the
limiting nature of the transition.

While it is true that if one defines the spontaneous

magnetization for r= 1. as the limit of the spontaneous
magnetization as r~ 1, one obtains zero below the
transition point together with an infinite susceptibility,

one readily computes that 5K=p)1 T/T, f—& for T(T,
and 0 for T& T„,. This result is in agreement with the
results for r —+ 1 in two dimensions and the results for
all r in three dimensions. "

4. VARIATION WITH THE RANGE OF THE INTER-
ACTION OF A THREE-DIMENSIONAL

SPHERICAL MODEL

In the previous section we considered a one-dimen-
sional model in which the interaction energy fell off
exponentially with the distance between the spins. We
shall generalize that model to three dimensions in the
following way. Instead of having the interaction energy
fall o6 exponentially with the distance we shall let it
fall off exponentially with

~
x~+ ~y~+ ~

s~, where x, y,
and z are the three components of the separation vector
between the two spins. We shall consider the spins to
be placed on a simple cubic lattice. The interaction
energy over kT may, for this model, be written as

Ag= —(1—r)'ELBXBXB
—(1+rN)35X SX8)/(6r+2r3), (4.1)

where B is defined by (3.5) and X means the direct
product. The quantity E is again taken to be half the
maximum total interaction energy per spin, J, over kT.
In this model we know from the work of Berlin and Kac'
that there is a transition for nearest neighbor inter-
actions only (r=0) which corresponds to the onset of
spontaneous magnetization. With the model discussed
here we can follow the transition as a function of range
all the way to the limit of inanite range (though small
compared to the size of the system).

The analysis of this model follows very closely that
for the one-dimensional problem which was given in the
previous section. If we follow steps analogous to (3.7)—
(3.11), we obtain for the partition function

Z= dq exp N(q ——,')—
2x'$

gj
16m'

dMdG0 dM

(1—r)'E (1—r)'(1 —r')'E
Xln (1+r'—2r cosa) (1+r'—2r cos~') (1+r'—2r cos~")

~ q+
6r+3r' 6r+2r'

(4.2)

where reference 9 has again been used and lV denotes the total number of spins in the system. In the limit as
' The author is happy to acknowledge a fruitful discussion of this point with M. Kac and T. H. Berlin.
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S -+ ~ we may evaluate (1nZ)/N exactly by means of the method. of steepest descents, 7 if a normal saddle point
exists. From the results of Berlin and Kac we know that for r =0 a normal saddle point does exist above the critical
point, and below the critical point the integrand possesses a cusp instead of a saddle point at the point of the

' maximum value on a path of steepest descents for the q integration. %e shall find that the same situation hold. s for
all r(1. If a normal saddle point exists, its location is given by solving the following equation for q:

1( (1—«)'Ei ' 1(1—«)'(1—«')'Et' (1—«)'Ky ' 1
O=1—! q+——

I q+
2 k 6r+2r' I 2 6r+2r' k 6r+2r' /

dMdM dM

(1—r)'E) (1—r)'(1 —r')'E-
X q+ !(1+r'—2r cosa&)(1+r' —2r cos~')(1+r' —2r cos~")—

6r+2r' ) 6r+2r'
(4 3)

&Ve may perform the integration over ~ by means of a standard integration formula, "obtaining

1 ( (1—r)'Eq —' 1 (1—r)'(1—r')'E (1—r)'E~ —' 1
o=i—

I q+ q+
2k 6r+2r' I 2 6«+2»~ 3 ~' o

(1—r)'E
q (1—)'(1—')'K '

X ! q+ !(1+r') (1+r'—2r cosa&') (1+r'—2r cosa&")—
6r+2r' j 6r+2r3

(1—r)'E '
4r'! q+- (1+r' 2r cos~')'—(1+r'—2r cos~")'

6r+2«'
(44)

e may perform the integration over co' by letting m =cos~', and factoring the denominator to find its zeros. If we

confine our attention to q&E&0, the ferromagnetic-type interaction case, then we may use formula number 566
of reference 9 to perform the m integration. The corresponding analysis can easily be carried out for E(0, the
antiferromagnetic case, but we shall not give it here. The result of the m integration is

0=1—
3r+r' (1—r') (1—r)'E

(6r+2r') q+ (1—r)'E (6r+2r') q+ (1—r)'E

1
X dM

7I 0

( 16(1—«)'E! rq+ (1—«)'E/(6+2«')] (1+»—2«os~")
! !
~ (1+r)(6+2r') fq(1+r' —2r cosa&")+ L(1—r)'/(3+r'))E(r —cosa&")) 2P

(4.5)
!q(1+r' —2r cos~")+! (1—r)'/(3+r')]E(r —cos~")!

where K(k') = sn '(1,k) is the complete elliptic integral
of the 6rst kind. One should note that (4.5) reduces in an
obvious way to the corresponding result of Berlin and
Kac' when r is set equal to zero. In order for the formula
which corresponds to (3.8) to be valid in this derivation,

q must be greater than E for the v integrations to con-
verge. In the one-dimensional case the term correspond-
ing to the integral goes to infinity as q

—+ E and thus
there is a solution for all E and therefore no transition
in the one-dimensional case for r (1.The same is true in
two dimensions as was in one dimension. The equation
analogous to (4.5) and (3.13) is, for two dimensions,

» No. 300 in reference 9.

2r (1—r)'E

4rq+(1 r)'K ! 4«q+(1 —r)'E)!q! n. —

K/4«q+ (1—r) 'E)
(XK, (4.6)

(1+«)2q2

in which the appropriate term goes to inanity logarith-

mically as q
—+ E. The limit as r —+ 1 is q, = 2 for E(2

and q, =E for E&—,', which is exactly the same as for
the one-dimensional case. The coefficient of (1—r)' is,
of course, different than that of (1—r) was in the one-

dimensional case; hence the dimensionality makes a
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difference in the leading order (which vanishes) of the
energy per spin above the critical point (critical only in
limit as r~ 1).

In three dimensions we see from (4.5) that while the

integrand is singular at co"=0, the integral, being
essentially J' incp"dcp" near pp"=0, is finite in the limit

q
—+ K. Thus, for r(1, we obtain a solution, q„of (4.5)

for K less than E, as given by

1 ~1 r' —1 (3+r') (1—r')
K,=—

/

2 E1+r 2 7rs p

(
4(1—r')'(1+r' —2r cos&p")

[(3+y') [1+r')+y(1—r)' —[1+r)' cos "j') '

$3+r'(1+r')+r(1 —r)' —(1+r)' cosrp"j
(4 7)

K= K,+A (q K.)'*+O—((q K.)). — (4 8)

By the arguments of Berlin and Kac' it then follows at
once that the specific heat is continuous and its slope is
discontinuous at the critical point for all r &1.Thus the
transition is of the third order. In the limit as r —+ 1, we
again obtain the same limit as we did in the one- and
two-dimensional cases. Again, of course, the coefficient
of (1—r)' differs from that of (1—r) in the one-dimen-
sional case and so the dimensionality makes a difference
in the leading order of the energy per spin. Also the
spontaneous magnetization persists in the limits as
r —+ 1 in three dimensions. This result follows easily
using the methods of Berlin and Kac.'

To establish (4.8), we use the expansion" for K(x):

- r(-', y~) '
K(x) = ——P (1—x)"

2' ~=0

1 1
X ln(1 —x) —4 ln2+4 ———+ —— . (4.9)

1 2 2'

It is easy to show that contributions to A can only come
from the terms involving ln(1 —x). As these terms are
all of the same sign, we can obtain a lower bound on the
magnitude of A by considering only the first one. A
lower bound is all we need to differentiate A from zero.
If we introduce 6 = (qjK)—1, substitute the rs =0

"E. T. Whittaker and G. N. Watson, A Course in 3IIodern
Analysis (Cambridge University Press, New York, 1927), Ex. 20,
21, p. 299.

It follows for any r &1, in exactly the same way as
Berlin and Kac' demonstrated for r =0, that q, =K
for K)E,. E, varies from' 27+18%2—15v3 —10.5+6
=0.7554396 to 0.5 as r goes from 0 to 1.0. It should be
noted that (1—r') J' is of the order of unity and not of
order (1—r).

To establish the nature of the transition it will suffice
to show that K near E, is of the form

coefficient of ln(1 —x) into (4.5), drop several terms of
order (5) and order (1.0) we reduce the calculation of
the lower bound to the magnitude of A to the evalua-
tion of

(1—r)'(3+r') dip" ln(8 —cos&p")
(4.10)

2rr'(1+ r) ' 'y —cosco
where

0= 1+(1—r) '(3+r') (1+r)—'8,

y= (3—2r+3r')(1+r) ' (4.11)

By the use of some known integrals and series expan-
sions" we can compute that

0.5k
O

0.0 I.O 2.0
T

5.0

Fro. 2. Speciiic heat curves for nearest neighbor (r=0) and
indefinitely long range (r=1) interactions for the three-dimen-
sional spherical model. Intermediate values of the range inter-
polate between the two curves shown and have a discontinuity in
slope which becomes progressively sharper as r goes from 0 to 1.

It is to be noted that in the limit as r —+ 0 we obtain
about 6%%uo larger magnitude for A than Berlin and Kac'
did. This is because in order to demonstrate the proper
dependence on (1—r) we had to include a slightly more
complicated term than they did to establish the result
for r=0.

In Fig. 2 we give a sketch of the specific heat curve for
the three-dimensional problem for r=0 and r = 1.

"W. Grobner and N. Hofreiter, Integraltafel, Zmreiter Teil,
Bestimmte Integrale (Springer-Verlag, Berlin, 1958), Nos. 332.24
and 338.13.


