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The probability for recoilless resonant gamma-ray emission or absorption by atoms present as impurities
in a host lattice has been evaluated in the high-temperature limit. The effect of interatomic force constant
differences between impurity atoms and host lattice atoms is included explicitly for a simple model. The
first order quantum corrections have been calculated for the case of an isotopic impurity (no force constant
difference). The Debye-Wailer factor at high temperatures is determined largely by the stiffness of the host
lattice, and partially by the forces between host and impurity atoms. The e6ects of the host and impurity
masses appear only in the quantum corrections.

I. INTRODUCTION slightly misleading, since there is an important basic
difference between the phenomena. In the x-ray case, all
the atoms in the crystal take part in the scattering, and
the scattered intensity depends on the relative dis-
placements of atom pairs, summed over all pairs in the
crystal. In the case of gamma-ray resonance, only one
nucleus is involved at a time, and the probability of a
zero-phonon process depends only on the amplitude of
vibration of that nucleus. Our problem, therefore, is to
calculate the appropriate thermal average for the im-

purity atoms only.
By general arguments of momentum conservation and

translational invariance, Lipkin' has shown that the
relative probability P(f,i), of a gamma-ray emission or
absorption which is accompanied by a transition of the
crystal lattice from state

~
E;) to state

~
Ef) is given by

''N many Mossbauer-effect experiments the atoms
~ ~ whose nuclei are resonant are present as a dilute
solid solution in a crystal of some other material. In such
cases, the details of the thermal vibrations of the active
atoms and the effects of this motion on the observed
resonance pattern are of interest for two reasons. First,
one may use the Mossbauer effect as a technique for
studying the dynamics of the active atoms, and to
derive some information about the interatomic forces
between the solute and host atoms. Secondly, if one is
performing a Mossbauer experiment to investigate some
other aspect of the solid, it is important to know, at
least approximately, the way in which purely dynamical
effects influence the experimental results.

The vibrations of the resonant atoms affect both the
position and the amplitude of the observed resonance
peak. The eftect on peak position, the "second-order
Doppler shift" which depends on the mean square
velocity of the resonant atoms, has been treated by us
in a previous paper' and will not be discussed here. The
e6ect on peak height which depends on the amplitude
of vibration of the resonant atoms was considered by
Mossbauer in his original work, and has been analyzed
by a number of workers since, ' but the particular prob-
lem which concerns us, the case of the dilute impurity,
has not been solved in quantitative detail. Our approach
is more restricted than many others, in that we consider
only the vibrations of a crystal in the harmonic ap-
proximation, and only the zero-phonon processes. Non-
periodic motions of the atoms, such as diffusive jumps,
are not considered in our analysis nor do we consider the
displaced resonances associated with phonon emission or
absorption.

The probability that resonant gamma-ray emission or
absorption will occur without phonon emission or ab-
sorption (a zero-phonon process) is often referred to as
the "Debye-%aller factor" by analogy with the corre-
sponding factor for the coherent scattering of x rays.
For the case of an impure crystal, the terminology is

P(f,s) = ~(Er ~expix. R(l) ~E,) ~',

where x is the momentum vector of the gamma ray and
R(l) is the position vector of the resonant atom. We are
concerned here only with the relative probability of
those events in which no phonons are emitted or ab-
sorbed, and hence, leave the lattice unchanged. This is
clearly given by P(i,i) = ~(E,

~

expssr R(l) ~Z,)~'. How-
ever, we do not know the initial state of the crystal, and
in the usual way express this ignorance by averaging
P(i,i) over an equilibrium distribution of initial states

(1.2)

As pointed out by Van Hove, ' however, for the analo-
gous problem of neutron scattering, the thermal average
of the square of a matrix element of this sort is awkward
to evaluate directly; but, fortunately, the correct result
is obtained by calculating the thermal average of
expist R(l) itself, and then squaring it. Moreover, since
R(l) =x (l)+n(l), where x(l) is the position vector of the
equilibrium position of the /th atom, a constant, and
n(l) is the displacement of this atom from its equilibrium
position, our problem is reduced to the evaluation of theA. A. Maradudin, P. A. Flinn, and S. I.. Ruby, Phys. Rev.

126, 9 (1962).
s W. M. Visscher, Ann. Phys. 9, 194 (1960);H. J. Lipkin, An

Phys. 9, 332 (1.960); K. S. Singwi and A. Sjolander, Phys. Re
120, 1093 (1960).

n. 'L. Van Hove, Technical Report No. 11, Solid State and
v. Molecular Theory Group, Massachusetts Institute of Technology,
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In Eq. (2.5), V represents the potential energy term of

the Hamiltonian (2.2).
In this paper we will be interested in just the

first quantum correction to the classical result for

(expiv. u(l)), and from Eq. (2.4) we see that correct to

order A' we can rewrite the statistical weight function

given by Eq. (2.4) as
~
—pH+h~ g2 (2.7)

If we note that the first term of Eq. (2.6) is a constant,
while the last term of this expression is a function of the
momenta only, and use the fact that the integrations
over coordinates and momenta factor, we are led to the
result that correct to order A'

(expiu. u(l)) =
5'p'

exp —2 C.p(//')u-(/)up(/')+
2 24

[Q C p(/l')up(l') j' d' u
M)

Pi'P' 1
exp ——P 4&.p(//')u (/)up(/')+ P [P C p(//')up(/')]'+ix u(l) d'i"u

2 24 3f )
(2.8)

Ke now write

[P C' p(/l )up(l )]'
« ~) t'p

1
=—2 [Z C'-p(«')up(/')3'

M « t'p

If we apply this transformation to the lattice potentia
energy, we obtain

2 2 C-p(«')u-(/)up(/')
ia, t'p

=-' 2 ~ '(k)Q(kj)Q( —kj), (2 14)

1
+ Q [Q @ (///)u (/l) j2 (2 9) where &v;(k) is the frequency of the vibration mode (kj),

J7, ~ i p and is obtained from the equation

Since Mi= (1—e)M, we have that

where

~P(k) p-(kj) =Ep D-p(k) pp(kj), (2.15)

Mi M (1—e)M M
(2.10) D.p(k) = (1(M)Z 4.p(/) p-' '" "'" (2 16)

It is now convenient to transform to normal coordi-
nates according to

1
u~(/) = P p (kj)Q(k j)p x'k' &ii. (2.11)

(XM)' ki

In Eq. (2.11), /il is the number of unit cellsin the crystal,
e (kj) is the o.-Cartesian component of the polarization
vector for the lattice wave described by the propagation
vector k and the branch index j.The allowed values of k
are uniformly and densely distributed throughout a unit
cell of the lattice reciprocal to that defined by the
translation vector x(l). In order that u (l) be real, we

adopt the following conventions:

Q(—kj)=Q*(kj), e(—kj)=e(kj). (2.12)

In a similar fashion, we find that

PC' p(ll)up(l)
)I p

M~-:
+ +. (k)e (kj)Q(kj)e x'k'"i'& (2.17)E)

so that

P [Q e-p(»')up(/')]'
« t,'p

=M P ~,'(k)Q(kj)Q( —l j), (2.1g)
k'

where we have used Eqs. (2.13a), (2.15), (2.16) and the
relation

The components of the vector e(kj) satisfy the ortho-
normality and closure relations

e2x ik. x( o +g (k) (2.1&&)

p. e.(kj)e.(kj') =8);,

Z, e.(kj)ep(kj) =s.p

The function A(k) is unity, if k=0 or a reciprocal lattice
vector and vanishes otherwise.

(2 13a)

(2.13b) From Fq. (2.17), we obtain also the result that

M
P [+4 p(ll')up(l') j'= QP e—(ki ji) e(k&j 2)cv, ,'(ki)~;,'(k2)e' ' &"&+"' *&'&Q'(k,j,)Q(k,j,).

u L'p S k171 k278

(2.20)
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Finally, we have the result that

x u(l)= P x e(kg)Q(kj)e' '~'"&'&=+ C(kj)Q(kj).
(ZM)'* » j7

(2.21)

It should be kept in mind that the coefficient C(kj) is a function of x(t).
Combining Eqs. (2.9), (2.14), (2.18), and (2.19) we find that the integral in the denominator of Eq. (2.8) becomes

where

I„= exp ——P QP(k)Q(ky)Q( —kg)+x P P B(k&j&,'k j )Q(kij&)Q(k j2) dn(Q),
2 &7' ~171 ~272

Q .P (k) „.P (k) i PP2„.4 (k)

A2 3

B(kigi, kpgp)= Le(kigi) e(kpy&)$m '(ki)~ '(kp)e'~'~"'+""'*&'&
24'

(2.22)

(2.23)

(2.24)

and dn(Q) is the volume element of the phase space of the Q variables.
The integral in the numerator of Eq. (2.8) becomes

Ii ——exp ——P Q,'(k)Q(k j)Q(—kj)+X g B(kiji, k&j,)Q(ki ji)Q(k, j&)
2 &7' ~171~272

Z+-Z K'(kj)Q(kj)+c( —kj)Q( —kj)j dn(Q)
2 &7'

p
— C(—kj)- — C(kj)—

exp ——P QP(k) Q(kj)—i Q(—kj)—i
pnjp(1 ) pnp(k)

1 C(kj)C(—kj)
+X p B(kiji, k,j,)Q(k,j,)Q(k2j&) dQ(Q). (2.25)

2p . Qp(k) ~171~272

We now make a change of variables:

Q(kj) =P(kj)+iA (kj),
where

(2.26)

I = e
—~ . e e~IIp+rl'+ p»~dn(P—)= e ~I, (2.28)—

C( kj) &.e(kj) e—2+ik (l)x
A (kj)= = . (2.27)

pnp(k) (ÃM)'- pnp(1 )

In terms of these new variables the integral I~ becomes

In Eq. (2.28), dQ(P) is the volume element in the phase
space of the I' variables. It can be shown' that the I'
variables are completely equivalent to the Q variables
for calculating thermal averages in the harmonic ap-
proximation, and if we wished we could replace the P's
by Q's in Eqs. (2.28) and (2.29). The parameter p in
Eq. (2.28) is merely an order parameter which we set
equal to unity at the end of the calculation.

We can thus express Eq. (2.8) as

(expiv. u(l))=e ~Iii/Ip. (2.30)

with

C(kj)C(—kj)

The integral Ip, Eq. (2.22), is recognized to be the
partition function of a system whose Hamiltonian is
IIp+II]. Thus, we can write i, t as

QP (k) Ip
——e

—t'" (2.31)

+X P B(kiji, kp jp) A (kiji)A (kp jp),
~171~272

Ilp ', Q Qp(k)P(k j)P(—k——j-),

(2 29a) where F is the Helmholtz free energy of this system.
Similarly, the integral I~1 is the partition function for a
system whose Hamiltonian is IIp+IIi+ilIIp. Thus, we
can write Iii as

e—PF—PhF (2.32)

» 7»27'2
B(kiji kpjp)P(k~j~)P(kpjp), (2 29c) where AF is that part of the Helmholtz free energy of

thjs system wliich is at; least linear in g, We thus obtain
the result that

B(kiji, kp jp) A (k,j,)P (k,j,), (2,29d)
».A&2A

(expiv. u(l))=e ~ e4r"

' A. A. Maradgdin and P. A, Fling. I', t;o be pgbljsged),

(2,33)
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We must now evaluate AF correct to order A'. How-
ever, we can easily show that AP is of order A4, so that
to the order of the approximation to which we work we
can neglect it in Eq. (2.33). We start with the relation

1
F+AF = ——lnZo

rithm in Eq. (2.36) in terms of cumulants, ~ we obtain

F+AF =Fo
———P(Hi+gHo) o+—[((Hi+gHo)') o

2l

—(Hi+gHo)o'] — . (2.3'/)

~ ~ ~

~
—/Ihip

&&~«—+oH»dQ(F), (2.34) Since I'o is independent of g, we obtain for AF the ex-
Zo pansion

Zo —— e S~odQ(F). (2.35)
AF = (H2) o

——,'P[(2HiHo+H2o) o

-2(H.}.(H.).—(H.)"j+
We thus have that

F+hF = Fo ln(e —~&~—'+&~»)o (2.36)
aF = ~P(H o}o+ (2.39)

However, since (Ho}o vanishes as does (HiH&)o, we see
that the leading term in the expansion of AP is

where Fo is —(1/p) lnZo and ( )o denotes an average and this according to Eqs. (2.29d) and. (2.24) is of

over the canonical ensemble dered by the statistical order &.
weight function Zo ' exp( —pHo). Expanding the loga- We have obtained the result that, correct to order 5',

n, o(k)

With the aid of Eqs. (2.21) and (2.23), we find

1 C(kj)c(-kj)
(expix. u(l))=exp ——p —X g B(kiji', ko jo)&(kiji)&(k2j2)

2P kl jlk252

(2.40)

Similarly, v, e have that

1

2P &i

C(kj)C(—kj) 1 [~.e(kj))' 1. O'P'
+ +0(A')

0;o(k) 2p & lVM oo,'(k)

kT [x e(kj)g'
+ +0(fz').

2%M»' oooo(k) 24M kT
(2.41)

B(k&ji, k,j,)A(k& j&)A(k&j,) = P [e(ki ji) e(k&j&)j[x e(ki j&)j[~ e(k&j&)j+0(5')
kl j]k2 j2 24+ MkT kl jlk222

+0(54).
2431kT

(2.42)

Combining Eqs. (2.40), (2.41), and (2.42), we obtain finally

kT [x e(kj)$'
(expix u(l))= exp

2%M ~i (vP(k)

In the case of cubic crystals, this expression simplifies to

5 K

+0(h') .
24(1—o)MAT

(2.43)

kr
(expiv. u(l)) = exp — ~' P — +0(A')

6EM &r coi2(k) 24(1—o)MkT
(2.44)

III. A FORCE CONSTANT CHANGE

When the MOssbauer active impurity is an atom
whose potential of interaction with the atoms of the
host crystal differs from that between the atoms of the
host crystal, the effects of this force constant change
show up in the classical limit. However, because the

effects of an accompanying mass difference wiH not
show up in this limit, we can assume that the ma, ss of the
impurity is that of. a normal a,tom in the crystal.

'I M. G. Kendall and A. Stuart, The Advanced Theory of Statistics
(Charles Griffin and Company, Ltd. , London, 1943), Vol. I, Chap.
3. See also, R. Brout, Phys. Rev. 115, 824 (1959).
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The Hamiltonian for the crystal can be written

H=Z +p 2 ~'-e(«')~-(l)~e(l')+p 2 ~-e(ll')I-(l)ge(l'),
P-'(l)

Ln 2~ la, l'p ln, l'P

where 6 c)(ll') represents the change in the atomic force constants due to the impurity and is nonvanishing only
if either l or l' refers to the site of the impurity atom. The expectation value (expioc u(l)) becomes

(expcic. u (l))=
p( —lP Z C'- (ll') -(l) (l) —-'P r. ~- (ll') -(l) (l')+ (l)}d'"

e p( —lP 2 C'-p(ll')~. (l)~ (l') ~P 2 ~- («')~.(l)~ (l')}d'"~

=Ji/Jp. (3.1)

We now carry out the normal coordinate transformation
(2.11) on the expression appearing in the exponent of
the integrand in the denominator of Eq. (3.1), where-

upon we obtain

1 C(kj)C(—kj)
Mp ———Q

2)3 )*I coip(k)
(3.9)

Mi Q C(ki ji,. kp jp)A (ki ji)A (kp jp), (3.10)
2 &1j1&2j2

where

Jp — . . . e P(iro+&I)—dQ(Q) (3 2)
H, =i P C(k,j„k,j,)A(k, j,)P(k,j,). (3.11)

~1/1~2&2

H()-—--'; P cp, -"(k)Q(kj)Q(—kj),

II, , Q C(k,j, k,j,)Q(k,j,)Q(k,,j,,)

Hp and Hi are given by Fqs. (3.3) and (3.4). The
(3 3) parameter )) is again merely an order parameter and will

be set equal to unity at the end of the calculation. The
desired thermal average can thus be written

(3 4)

with
(expioc u(l))=e ~o+~IJii/Jp

—~
—MP+M1—PhE

)

(3.12)

(3.13)

C(ki ji, k,jp) = Q 6 C)(o)i)c)e. (ki ji)e()(kp j~)g~ dna, nP

y ~2'I( ikl X(m) ~2m ik2 X(n) (3.5)

where AF is that part of the Helmholtz free energy for
the system whose Hamiltonian is H p+Hi+rIH& which
is at least linear in q.

To obtain AIi we proceed as before. We have that
We carry out the same coordinate transformation in

the integral Ji, and then replace the Q variables by P
variables according to

1
F+gF—F() ln(e e(HI+piro))p— (3.14)

where

Q(kj)=&(kj)+iA (kj), (3 ()) where

1 1
Fp

——ln e ——eHodf? (P) = ——lnZp (3.15)
~.e(kj) e P()x(Cx)c—

A(kj) =
(1VM) l Pcp '(k)

l'he result of these transformations is that

J —e
—Mo+MI . . . e 8(Ho+HI+oHO)df? (F)

(3.7)
and (. )p denotes an average in the canonical en-
semble described by the statistical weight function
Zp

—' exp( —PHO). From Eq. (3.14), we obtain

1
F+I) F=Fp f P(Hi+r)H p) p+ ,'P'———-

where

e
—M0+M]J|&) (3.g)

Xt ((Hi+~I«I)')o —(Hi+~HO)p'$+ } (3.&(i)

to second order in C(ki ji ', kp jp). Recalling the definition
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of AF, it is readily found that to second order

ar = ,'p—(r—z-,'),

,P -g P C(k, j&, k,j )C(k,j, ; k4j4)A(k, j )A(k j2)P'(k2j2)&(k4 j4))o
kI j1k2 j2 k3 j3k4 j4

kI jIk2 j2k3 j3

A (k&j))A (k2 j2)
C(k&j)', k2 j2)C(k2 j2, —k2 j2)

a);,2(k2)
(3.17)

In obtaining Eq. (3.17), we have used the well-known
result that

kT [24 e(kj)]'
2A'M»' co '(k)

(3.19)

(P(k,j,)E(k2j2))2—— h(k, +k2)8;»„(3.18)
pa);, '(k))

where 6 (k) is unity when k is zero or a reciprocal lattice
vector and vanishes otherwise.

Equations (3.13), (3.9), (3.10), and (3.17) give us a
result for (exp224 u(l)), which is correct to the second
order in the departure of the impurity force constants
from those of a perfect lattice. It only remains to
evaluate M2, M), and AF. From Eqs. (2.41) and (3.9),
we see that

tween the impurity atom and an atom of the host
crystal is denoted by 8(r), then the coeflicient & p(&l')

becomes

A.p(ll') = $4xXp S~Sp Srxp8"(r)+ 8'(r) — 8'(r)
r3 r

XIXp+ 4"(~)
r2

(3 21)

where
6 p (ll') = $x xpA+8.pB], , «, (3.22)

and vanishes unless either l or l' corresponds to the
defect position. For our nearest-neighbor model, we can
write Eq. (3.21) as

To evaluate M~ and AF we need a model for our
crystal. Ke choose the simplest nontrivial model of a
three-dimensional crystal: a face-centered cubic crystal
with nearest-neighbor central force interactions. In this
case the force constant C ~(ll') becomes

rp

8'( )8——
fp

8"(") 8'(") ~"(")
+ +

rp rp
(3.23a)

(3.23b)

82'(r)
C'-t («') =—

QgrxggP ~ 7
l I

and rp is the nearest-neighbor separation between atoms.
r2 equals a2/V2, where a2 is the lattice parameter.

In what follows we will make use of the relation
XIX p~"( )

r2
(3.20) a.p(2)2222) = —P' A. )) (m)2), (3.24)

where g(2') is the interaction energy between a pair of where the prime on the sum excludes the term with

atoms separated by a distance r, and r" is the distance m =e.
between atoms 7 and /. If the interaction energy be- Equation (3.5) for C(k&j&., k2j2) becomes

C(k&jr., k2j2)=g'{A[(x(n) —x(222)) e(k) j,)][(x(22)—x(e)) e(k2j2)]

+pe (k&g2) .e (k2g2) }g2x4(kl+k2) ~ x(m) {g2x 4kx' [x('x) x(m)1 —1}— (3 25)

where it should be kept in mind that the lattice points m and e refer to the defect and its nearest neighbors.
We are now in a position to evaluate M& and ~F. The expression for M& is explicitly

[24 e(k,j,)][24.e(k2 j2)]
M =1

$2~i(k1+k2) [x(~)—x(&)]

2E'M'p klj4k2ix mn M&& (k))M,.'(k2)

X{A[(x(n)—x(2)2)) e(k)j))][(x(22)—x(2)2)) e(k2j2)]+&e(k&j)) e(k2j2)}{e' '""*'") *~ )1—1}. (3.26)

In order to simplify the analysis past this point, we make an approximation in the evaluation of M& and AF. This
approximation, due to Ludwig' consists of replacing the squared frequencies in the denominator of the summand in

W. Ludwig, J. Phys. Chem. Solids 4, 283 (1958).
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Eq. (3.26) by their average value

M~' = GO&'

3E»
=~tel, =@2,=» 2= (3.27)

where p2 is the second moment of the unperturbed frequency spectrum, and col, the maximum frequency of the host
lattice is given by (012=8/ (y0)/M. With this approximation all the summations can be carried out in closed form.
In the Appendix we show that the error incurred by the use of I.udwig s approximation is 31%%uo in the evaluation
of M».

AVe begin by evaluating the sums over j» and j2 ..

kT
M = Qr{A[SS.(X(12) X(112))]2+B&2)(2«i(rkl+ks) '[x(m) —x(l)]{~2xiks ~ [x(n) x(m)—] 1)

2g2~2P22 k»k2 m
(3.28)

where we have used the closure property of the eigenvectors Eq. (2.13b). The sums over the wave vectors are
evaluated with the aid of the relation

e2 x ik ~ x( l) stirp

where ()„«),0 is unity if x(l) =0 and vanishes otherwise. We thus find

(3.2O)

kT
Ml Q {A[K' (X(N) X(112))] +BK )1V {()x(m)—(l)x04(n) , x(l), 0— ()x(m) —x(l), 0)

2+22@T2~2 ~~],

kT
P'{A[v. (X(e)—X(112))]2+B((2)()x( ) x(», o

2P 22~2 tg
(3.30)

The sum over x(m) vanishes unless x(112) equals x(l), the position vector of the impurity atom. This means that the
summation over x(12) extends over the twelve nearest-neighbors to the defect site. We obtain finally

kT
3fi — P'——{A[2~ (x(12)—x(l) )]2+B((2)

2P2gf

kT
((2{2A a02+12B}.

2@22%2
(3.31)

The expression for d F becomes explicitly

[v. e(k,j,)][si e(ks j,)]
21V 3E P kl)'1 k212 kSS'S mn rs COSS (ki)(0;2'(ii2)(0, S'(kS)

Xe x'(k'+"» 'x(') {A[(x(12)—x(112)) e(kz j&)][(x(12)—x(112)) e(ksg2)]+Be(kzgi) e(ksg2))

X {(r2«i[kgb x(m)+ks x(n)] ( 2 i(kS+krSx) x(m)) {A[(X(g) X(y) ) ' e(irS jS)][(X(g) X(y) ) ' e(li2 j2)]+Be(kSjS) e( Z2 j2)}

X{irsxi[ks ~ x(r)—ks ~ x(s)1 —&2rri(ks —ks) ~ x(r)) (3 32)
In t.udwig's approximation it becomes

(kT)2
Qp= Q gr Qr e

—2«i(ks+ks) ~ x(l){esxi[ks ~ x(m)+ks ~ x(n)] ~2rri(ks+ks) ~ x(m))
2%~M P2 klk2R3 mn rs

X{(, '[ks *( )—k *( )] (2 i(ks—ks). x r)){A (~.X )( X )( )+AB[( )2+( )2]~B2 2) ( )

(kT)2
Z {~xml, 0~x««0~xrl 0+()xm, (0'r)xmr, 0I)xr), 0,}

2@2'M' ~~
X{A2(20 x„„)(si x,„)(x„x,„)+AB[(si x„„)2+(2(x,„)2]yB2,2} (3.34)
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(kT)'
g (A'(io x„i)'(x„( x„i)+2AB(oo x„i)'+8'z'}

2@2'M' ~
n.n.

(kT)'
+ p (A'(oo x i)(oo x, i)(x„i x, i)+AB(L x„i)'+AB(oo x, i)'+8'~'-'} (3.35)

2p, ,'M' ~s

(kT)'
'[5A',ao'+52A Ba oo+1 68 8'].

2p 'M'
(3.36)

In these equations, we have used the abbreviation x„=x(n) —x(nz).
Combining Eqs. (3.13), (3.19), (3.31), and (3.36), we obtain finally

(expioo. u(l)) =exp — z' P — ~'[2A ao'+128]
6~M gi oi.o(k) 2pooMo

kT
R'[5A'Goo+ 528A ao'+1688']+ (3 37)

2@2'3P

IV. DISCUSSION

In the Debye approximation the thermal average
(expir. u(l)) is given in the classical limit by

using Eq. (3.23), we now have

(4 4)

35K T
(expioo u(l)) = exp

2 Mk 0'oi'
(4 1)

where O~ is the so-called x-ray Debye characteristic
temperature. We can convert Eq. (3.37) into the same
form by dining an appropriate effective characteristic
temperature O~~ .'

~-o=(3&) 'Z ~~ '(&).
kj

Using Eq. (4.2), we have in place of Eq. (3.37)

35K T
(expioo u(l)) =exp ——

2 Mk 0'io'
(4 3)

We see that the effective Debye temperature depends

primarily on the inverse second moment of the fre-

quency spectrum of the unperturbed lattice, and that
the correction terms depend in a relatively complicated

way on the forces acting on the impurity atom. The
physical significance of the correction terms can be more

easily appreciated if two additional approximations are
introduced. First, let us assume that 8'(ro) =0.This will

be a reasonable approximation when the impurity atom
is roughly the same size as the host lattice atom. By

1 k' 1 2Aa'+68
P—o+

Q~
2 k2 3 3 Mpoo

SA'go4+528A aoo+ 1688'
+ , (4.2)

3M'p '

where we introduce the notation

A = [4"(ro) &"(ro)—]/ro'

Since ro' ——goo/2, using the notation a=/"(r )o, co'

=0"(ro), we have
(4.5)Ago' ——2 (n —Q.').

Second, we use the nearest-neighbor central force
approximation for evaluating p, 2 and p,2. These calcula-
tions have been carried out elsewhere, ' with the results
that

v—o= 1 68/vo (4 6)

go ——4n/M. (4.7)

Using Eqs. (4.4), (4.5), (4.6), and (4.7), we can
reduce Eq. (4.2) to the substantially simpler form:

k' M n —a')
=0.140——1+0.596

fi' n n i

9 P. A. Flinn and A. A. Maradudin, Ann. Phys. 18, 8j. (1962).

+0744i I+" . (48)
(o. n')o-

n i
Since 0. is a measure of the stiBness of the crystal lattice
[(4/3)(n/ao) equals the bulk modulus in this ap-
proximation], it is clear that the effective characteristic
temperature depends in the usual way on the stiffness of
the lattice and the mass of the host atoms. The correc-
tion terms have the expected effect: If o.'&o., the re-
storing forces acting on the impurity are stiffer than
those acting in the pure crystal, and the effective
characteristic temperature is raised by the correction;
the converse is true for n'(o. .

To obtain f, the fraction of recoiless events, we must
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f= exp +0(l2')
3EM» cu 2(k) 12M'i), T

((2=E2/)222c2. (49)

square (expi22 u(l)) as discussed in the introduction. At that f can be written as
the same time we introduce the energy of the gamma ray
directly, using the relation, kT

1'inally, using (4.3), (4.8), a[)d (4.3), we have

f=(expiv. u(l))'

L" kT fn n'—)=e» —0.420 1+0.SW~
)22C2 n 5 n

n —n)2
+0 l44 ~+".

i

(kT= t.xp —
i

'-'p;)

1 M 1 (O„q2
X 1+—

i i
+Oui'), (4.11)

20 M' @2[2 2 k T J

where we have introduced the limiting high-temperature
value of the Debye characteristic temperature of the

(4 1 ) host crystal by"
O~ = (5/3) [22PP//2 (4.12)

We can now consider the application of (4.10) to the
experimental situation. First, we note that in this ap-
proximation neither the mass of the impurity nor that
of the host lattice enters. It is clear, then, that in
choosing a host lattice to obtain a large resonant frac-
tion, the appropriate parameter to consider is the bulk
modulus rather than the Debye temperature. Second,
we can consider the possible usefulness of measurements
of the resonant fraction as a function of temperature to
obtain information about the crystal. In principle, from
such measurements one couM determine o.' by using
Eq. (4.10). Such a procedure, however, would not be
very satisfactory. The derivation of Eq. (4.10) assumes
that [(n—n')/n] is moderately small; this leads to two
sorts of problems. One is experimental: f must be de-
termined with great accuracy, which is dificult, since it
depends on a measurement of peak intensity. The other

difhculty arises from the use of the approximation of
Eq. (4.6). The error in using an approximate rather
than the true frequency spectrum of the unperturbed
crystal (generally unknown) may not be negligible in
comparison with the [(n—n')/n] terms. Since essen-

tially the same information can be obtained in a more
straightforward way by accurate measurement of peak
position, ' there does not appear to be any great value in
using intensity measurements for this purpose.

In the case of a mass defect, we f)nd from Eq. (2.44)

The product @2' 2 for our model of a face-centered cubic
crystal with nearest-neighbor central-force interactions
is 1.68. In the Debye approximation it is 1.8. The result,
Eq. (4.11),shows that the classical result for the Debye-
Waller factor for a perfect, cubic, host crystal

f=exp[—(uT!M). [ -27, (4.13)

is a good approximation for the f factor of a mass
impurity as long as the temperature T satisfies the
inequality

I'»
(20@2[2 2M'/M) & 5.8 (M'/M) l

(4.14)

ACKNOWLEDGMENT

The suggestion that the work described in this paper
be carried out was made to the authors by S. L. Ruby.

' C. Domb and L. Salter, Phil. Mag. 43, 1083 (1952).

where the last expression follows on setting p2p 2=1.7.
If the Mossbauer active impurity is heavier than the

atoms of the host crystal, Eq. (4.13) can be used over a
greater temperature range than if the impurity mass is
the same as or lighter than that of the host atoms.
Apart from this qualitative conclusion, Eq (4.11).
provides no other information about the dynamics of
the impurity atom.

We write Eq. (3.26) for M[ as
APPENDIX

M2 —— {A8)+M2},
2A'3P

(A1)

where

g1q1 Z2q'2 mn

[22 e(k)j))7[22 e(k2j2)7
'(&1+&2) t ( )—(Ol

Q)' ] GD'

&&{e2 'k"*("' *( ') —1}{[(x(22)—x(222)) e(k&j2)7[(x(22)—x(222)) e(k2j2)]}, (A2)

[22 e(k2 jz)][22.e(k2 j2)]
&2xi(k2+kx) [x(m)-x(l)J{&2xik2 [x(x) x(m)] 1}— (A3)

22;,'(k))(o, ,'(k2)

We consider each of the sums in turn.
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We begin by evaluating the sums over mandein Eq. ('A2). We first set x(m) equal to x(t), the position vector of
the impurity atom. The vector x(m) then runs over the twelve nearest neighbors to the impurity site. We then let
x(m) run over the twelve neighbors to x(l) in turn while in each case x(e) =x(l). The result ls

1 (a(()
S(——P P ~

—
~

X2X[2y,.'el, e2,+2"'„'e(„e.„+2(c,'ei, e2,]»(».(2(o;('(k,)a)P,'(k2) ~2)

«( *+ .,)( *+ .,)[ L o(k*+k,)] [ o(k*+k")]—4 '[l o(k+k.,)] '[l (k*+k.,)]]

+(el„+el,)(e2„+e2,) [sin[nap(kly+ki, )]sin[vrap(kpy+k2, )]—4sin'[2~ap(kly+k»)]sin2[2map(k»+k2, )]]

+(ei,+el,)(e2,+e2,) [sin[nap(kl, +kl.)]sin[~ap(k2~+k2g)] —4sin'['2vrap(ki, +k»)]sin'[2'vrap(k„+k»)]]}. (A4)

Inobtaining Eq. (A4) wehaveused thefact that the eigenvector e(kj) transformsasthe vector k. For convenience,
we have also written e (ki jl) as ei,.

It follows from the form of Eq. (A4) as a function of ki and k2 and the transformation properties of the eigen-

vectors that 5~ is isotropic in the vector x. I hus, 5] can be written as

Qp
2 ei e2 +eiyely+el e2

5,=—"2+ P
3 kl(1 k2('2 Ggl'((ki)%12'(k2)

X[(ei,+el„)(e2.+e2„)[sin[map(k»+ki, )]sin[map(k2, +k2„)]—4sin'[2map(kl, +ki„)]sin2[2~ap(k„+k2„)]]

+(ely+el~)(epy+eps) [sin[~ap(kly+ki)]sln[vrap(kpy+k2, )]—4sin [2+ap(kly+ki*)]sin [z~ap(kpy+k2, )]]

+(el+ei)(e2+e2*) [sin[~ap(kl+kl )]sin[~ap(k2+k2)] 4sin [2~ap(kl+ki )]sin'[2vrap(k2, +k2,)]]}.(A5)

The next simplification we can effect in this expression follows from the fact that each of the three terms in the

curly brackets contributes equally to the sum. This means that S& becomes

e»e2~+elyepy+eize2*
'1 a0& P g (ei.+e»)(e2*+e2)

klg1 k272 M jl 1 GD22 2

X[s&n[~ap(klz+kly)] sin[~ap(k2g+kpy)] 4 sin. [2map(ki, +kl„)] sin'[ z2ap(k~g+kpy)]} (A(j)

el e2 +eiye2„
=ap'"' 2 2 (el+el)(e2*+e2..)

] ill ]232@)j1 1 ~j2 2

el* el*+el ) e2, (el,+e2„)
sin[-ap(kl. +ki„)] P sin[-ap(k2, +k2„)]

] 272 Q)j2

=a02"2 p
kl 71 40jj 1

X{sin[~ap(ki,+k»)] sin[map(k2, +k2y)7 —4 sin'[2~ap(k»+k»)] sin'[2vrap(k2x+k2y)]} (A7)

ei.(ei.+ei,) e2*(e2.+e2,)—4 p sin'[2map(ki, +ki„)] p sjn'[-', ~ap(k„+k„,)]
kl jl Gojl I ] 222 opj2 2

eely ey 8], ~2y ~2@ ~2y

+2 s'n[~ap(ki+kly)] p sin[vrap(kz, +k„)]
(o, 2(ki) ] 2j2 Q)j2

ely(elm+ ely) e2„(e2.+e2„)
4 2 sin [2~ap(klx+kly)] E»n'[2~ap(k2. +k2y)] . (AS)

CO;,'(kl) k2(2 (u,,'(k2)

The summands in the first and third terms are odd functions of the wave vector so that these terms sum to gero
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are left with

e, (kj)[e,(kj)+e„(kj)]
S = —4aoog' P sin'[-', ~ap(k, +k„)]

k7' a) '(k)

e„(kj)[e.(kj)+e„(kj)]—4googP P —sin'[-', prao(kg+klj)] . (A&)
Cu j2

It is clear, however that

e, (kj)[e,(kj)+e„(kj)] e„(kj)[e,(kj)+e„(kj)]
sin'[porgo(k +k )]=2 sin'[-,'prao(k, +k„)].

(uP(k) GOj

(A10)

Our expression for S~ finally becomes

1 [e,(kj)+e„(kj)]'
Si= —8ao'~' —Q sin'[-,'orao(k. +k„)]

2 » a& '(k)
(A11)

The sum over k and j in the curly brackets has been evaluated elsewhere for this model' and has the value

[e,(kj)+e„(kj)]' XM
sin'[-.; orap (k,+k„)]=

~P(k) 4qV'(rp) p,
(A12)

Q'ith the aid of this result, S~ can be written as

2g 2~2+2/p 2 (A13)

Turning now to the sum S2, we begin its evaluation by performing the sums over m and n, with the result that

e(kzj, ) e(k,j,)
S2 4 Q Q [&*el e2*++p el e2 +& el e2 ]

k171 k272 Mjl 1 COjg 2

X{sin[prap(k~, +k~„)]sin[prap(kp, +kp„)]—4 sin'[-,'7rap(k~, +k~„)]sin'[-,'prap(k„+k»)]

+sin[~go(k1p+kls)] sin['irao(kp„+kp. )—4 sin'[-,

'map�(k»+k&,

) sin'[&wrap(kp„+kp. )]
+sin[&go(kls+klg)] sin[orgp(kpg+kpg)] —4»n'[pm'ao(k&, +k») sin'[-,',orgo(k„+k„)]}. (A14)

We again make use of the facts that 52 is isotropic in the vector x and that each of the three terms in the curly
brackets contributes equally to the sum. We thus obtain

[e(k&j&) .e(k&j&)]'
S,=4~' P g {sin[~go(k,.+k,„)]sin[~go(k, .+k,„)]

k171 k272 Q)j1 1 ~jg 2 —4»n'[p7rap(kg, +kg„)] sin'[-', orao(ko. +kp„)]}. (A15)

The first term in the curly brackets gives a vanishing contribution to 52, because it is odd in the vectors p& an
The expression for S2 becomes

Le(k J ) 'e(k 2 )]'
Sp= —16m' Q sin'[-,'orao(kg, +kg„)] sin'[-,'7rap(kp, +kp, )]

kzz»2i~ rp, ,'(kg)(o;, '(kg)

e,'(k j) ' e,'(kj)= —32gP P sin'Pmao(k, +k,)] —16~' Q sin'Pvrap(k, +k„)]
~~ co'(k)» coP(k)

(A1.6)

e (kj)e„(kj)—32~' P sin'[-,'~ao(k, +k„)] . (A17)
coP(k)
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kT'
EsL2+ ass+ 17.4141']

2@2~M2
(A20)

e,'(kj) =r
sin L-,

' g, (u.+x„)]=—(o.Ss»),
Ri cos'(k) ass If we compare this result with that obtained using

I udwig's approximation,
e,s(kj)

sin t-,' g, (u,+u„)]=—(O.6323), (Aia)
» toss(k) fss M, = — E'[2A ass+ 128],

2p223f2
(A21)

e, (kj)e„(kj) 1V
sin'L-', g,(u.+u„)]=—(—O.OSii). we see that the coefficient of dao' is given exactly by

Ludwig s approximation, while the coe%cient of 8 is
31%%uq low in this approximation. These results are con-
sistent with those obtained elsewhere4 in cases where
exact calculations could also be carried out. In all cases
studied so far, Ludwig's approximation gives results
which are somewhat smaller than the true values.

co '(k)

With these results, we ca'n finally express 52 as

(A19)Ss= — (17.414).
pg

The three sums appearing in this expression have been Combining Eqs. (A1), (A13), and (A18), we find

evaluated elsewhere for the present model. " They have that M& equals
the values
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We investigate in the limit as the range of the interparticle interactions becomes indefinitely great, but is
still small compared to the size of the system, the behavior of a large class of order-disorder models. This
class includes, for example, the Ising model, the spherical model, and the Gaussian model. We show that
when certain general conditions hold and the interparticle interaction is chosen to be the same for all models,
but otherwise arbitrary, the energy per particle above the critical temperature has the same limiting value
through terms of order 1/R, where Eis a measure of the nu. mber of spins in the range of the interaction.
We further show why the behavior above the critical point in this limit does not necessarily provide informa-
tion about the behavior below the critical point. Some examples are worked out which illustrate the above
results.

1. INTRODUCTION

HE purpose of this paper is to investigate the
behavior of a certain class of order-disorder

models as a function of the range of the interaction. We
investigate the limiting behavior of these models as the
range of interaction becomes indefinitely great, but is
still much smaller than the total size of the system. In
the second section of this paper we show that above the
critical point, when certain general conditions are met,
the details of the model (probability distribution of the
various states of the system) but not the shape of the
interaction are unimportant in the limit of indefinitely
long-range forces. The class of models considered is

general enough to contain the Ising model, the spherical
model, and the Gaussian model. Below the critical

* Supported in part by the U. S. Atomic Energy Commission.
f On leave of absence from Los Alamos Scientific Laboratory,

196i-i962.

point no such general result is obtained. We see that in
this region the details of the model affect the energy per
spin in leading order.

In the third section we compute the energy per spin
for the one-dimensional spherical model (and Gaussian
model) with exponential interactions between spins. We
verify explicitly the results of the second section for this
type of interaction by comparing the results of the
third section with the previously known results for the
Ising model. We also verify explicitly that the behavior
below the critical point is din'erent for the spherical and
Ising models.

In the last section of this paper we evaluate the energy
per spin of the three-dimensional spherical model as a
function of the range of a force which drops off approxi-
mately exponentially with distance. Here we may follow
the behavior of the known third-order transition with
range.


