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The probability for recoilless resonant gamma-ray emission or absorption by atoms present as impurities
in a host lattice has been evaluated in the high-temperature limit. The effect of interatomic force constant
differences between impurity atoms and host lattice atoms is included explicitly for a simple model. The
first order quantum corrections have been calculated for the case of an isotopic impurity (no force constant
difference). The Debye-Waller factor at high temperatures is determined largely by the stiffness of the host
lattice, and partially by the forces between host and impurity atoms. The effects of the host and impurity

masses appear only in the quantum corrections.

I. INTRODUCTION

N many Mossbhauer-effect experiments the atoms
whose nuclei are resonant are present as a dilute
solid solution in a crystal of some other material. In such
cases, the details of the thermal vibrations of the active
atoms and the effects of this motion on the observed
resonance pattern are of interest for two reasons. First,
one may use the Mgssbauer effect as a technique for
studying the dynamics of the active atoms, and to
derive some information about the interatomic forces
between the solute and host atoms. Secondly, if one is
performing a Méssbauer experiment to investigate some
other aspect of the solid, it is important to know, at
least approximately, the way in which purely dynamical
effects influence the experimental results.

The vibrations of the resonant atoms affect both the
position and the amplitude of the observed resonance
peak. The effect on peak position, the ‘“second-order
Doppler shift” which depends on the mean square
velocity of the resonant atoms, has been treated by us
in a previous paper! and will not be discussed here. The
effect on peak height which depends on the amplitude
of vibration of the resonant atoms was considered by
Moéssbauer in his original work, and has been analyzed
by a number of workers since,? but the particular prob-
lem which concerns us, the case of the dilute impurity,
has not been solved in quantitative detail. Our approach
is more restricted than many others, in that we consider
only the vibrations of a crystal in the harmonic ap-
proximation, and only the zero-phonon processes. Non-
periodic motions of the atoms, such as diffusive jumps,
are not considered in our analysis nor do we consider the
displaced resonances associated with phonon emission or
absorption.

The probability that resonant gamma-ray emission or
absorption will occur without phonon emission or ab-
sorption (a zero-phonon process) is often referred to as
the “Debye-Waller factor” by analogy with the corre-
sponding factor for the coherent scattering of x rays.
For the case of an impure crystal, the terminology is

1 A. A. Maradudin, P. A. Flinn, and S. L. Ruby, Phys. Rev.
126, 9 (1962).

2W. M. Visscher, Ann. Phys. 9, 194 (1960); H. J. Lipkin, Ann.
Phys. 9, 332 (1960); K. S. Singwi and A. Sjslander, Phys. Rev.
120, 1093 (1960).

slightly misleading, since there is an important basic
difference between the phenomena. In the x-ray case, all
the atoms in the crystal take part in the scattering, and
the scattered intensity depends on the relative dis-
placements of atom pairs, summed over all pairs in the
crystal. In the case of gamma-ray resonance, only one
nucleus is involved at a time, and the probability of a
zero-phonon process depends only on the amplitude of
vibration of that nucleus. Our problem, therefore, is to
calculate the appropriate thermal average for the im-
purity atoms only.

By general arguments of momentum conservationand
translational invariance, Lipkin? has shown that the
relative probability P(f,7), of a gamma-ray emission or
absorption which is accompanied by a transition of the
crystal lattice from state | E;) to state | E;) is given by

P(fi)=[(Es|expix-R(O) | E)[?, (L1)

where x is the momentum vector of the gamma ray and
R () is the position vector of the resonant atom. We are
concerned here only with the relative probability of
those events in which no phonons are emitted or ab-
sorbed, and hence, leave the lattice unchanged. This is
clearly given by P(i,3)=|{E:|expix-R()| E;)|%. How-
ever, we do not know the initial state of the crystal, and
in the usual way express this ignorance by averaging
P(i,3) over an equilibrium distribution of initial states

2 i e P8 |(E;| expix-R() | E)[?
S e B ’

As pointed out by Van Hove,? however, for the analo-
gous problem of neutron scattering, the thermal average
of the square of a matrix element of this sort is awkward
to evaluate directly ; but, fortunately, the correct result
is obtained by calculating the thermal average of
expix- R(J) itself, and then squaring it. Moreover, since
R(@)=x(1)+u(), where x(I) is the position vector of the
equilibrium position of the /th atom, a constant, and
u(l) is the displacement of this atom from its equilibrium
position, our problem is reduced to the evaluation of the

(1.2)

7=(P)=

3L. Van Hove, Technical Report No. 11, Solid State and
Molecular Theory Group, Massachusetts Institute of Technology,
1959 (unpublished).
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thermal average of expix-u(l), which we denote by
(expix-u(l)). The fraction of recoiless events f is then
given by |{expix-u(l)})|2.

For simplicity, we restrict our calculations to the case
of cubic crystals with one atom in the primitive unit
cell, and in investigating the effect of force constant
changes, use the specific model of a face-centered cubic
crystal with only nearest-neighbor interactions, which
we have used elsewhere.* The generalizations to more
complex crystals, and to more elaborate models, are
straightforward, but such elaboration does not seem
justified at present.

Finally, our calculations in this paper are restricted
to the high-temperature limit, where by high tempera-
tures we mean those of the order of, or greater than, the
high-temperature Debye characteristic temperature of
the host crystal. This restriction is due primarily to the
simple dependence on temperature the results in this
limit possess, which should make the interpretation of
experimental data somewhat easier than at very low
temperatures, where the temperature dependence of the
results is less pronounced. In the high-temperature limit
the thermal average of an operator O is given by

(1.3)

where H is the crystal Hamiltonian, and where dQ is the
volume element in the 6V-dimensional phase space for
the crystal.
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II. A MASS DEFECT

In this section we calculate the thermal average
(expix-u(l)) in the special case that the mass of the
atom at x(/) is changed from its normal value M to a
value M’= (1— )M without any changes in the atomic
forces which link it to its neighbors in the crystal.

It is easy to show that in the classical limit the change
in mass of the /th atom will not change the value of
(expix-u(l)) from what it is for the perfect monatomic
crystal. This conclusion follows from the explicit ex-
pression for {expix-u(l)) in the classical limit

(expix-u(l))

/- . / exp(—BH) exp[ix-u(l)]d*¥p d*Nu

[ [ ootcommmpon Y

where H is the crystal Hamiltonian,

o:2 l
O—I—% Zﬂ@aﬂ(ll')ua(l)uﬁ(l) (2.2)

1 la,l’

=Y
la

In Eq. (2.2), #.(l) is the a-Cartesian component of the
displacement of the /th atom from its equilibrium posi-
tion in the static lattice ; ®o5(l)") =Pop(!—1') is an atomic
force constant of the crystal; M, is the mass of the /th
atom; and p.(!) is the & component of the momentum
of the Ith atom, pa(l)=M i.(l). If we substitute Eq.
(2.2) into Eq. (2.1) and note that the integrations over
the momenta are independent of the integrations over
the displacements and hence cancel between the numer-
ator and denominator of Eq. (2.1), we find that

/ - / DL 38 T Do (Yt (Dt (1) -0 () i

{expix-u(l))=

[ eur-

The atomic masses no longer appear in this expression
and this establishes our initial statement.

To obtain the effect of a pure mass defect in the
high-temperature limit we must, accordingly, consider
the quantum corrections to the thermal average ex-
pressed by Eq. (2.1). A way of evaluating these correc-
tions was indicated by Wigner® who showed that they
are given correctly by Eq. (2.1), if the statistical
weighting factor exp(—BH) is replaced by

e—f’H(1+h2g2+ﬁ4g4+ e ),

where in our notation the coefficient g, is given by

(2.4)

*A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall,
Ann. Phys. 15, 360 (1961).
5 E. Wigner, Phys. Rev. 40, 749 (1932).

(2.3)
3B 2 Pap(U)1a(Dug(l')1d*Nu
32 1 7 B33 1 oV \?
P LA
8 ta My d[uD) 24 1« M \Ou,()
B33 (1 4 92V
Fos Pa(Dps(l’) 2.5)
24 1e,v8 MMy Oun(l)oug(l’)
I 1
=——3 —d,,()
8 la Ml
+63 ! ®,s(I ]2
E‘EM,[% s () ug(l')]
g3 ®,5(11")
+— T T ppall). (26)

24 ta,v8 MMy
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In Eq. (2.5), V represents the potential energy term of
the Hamiltonian (2.2).

In this paper we will be interested in just the
first quantum correction to the classical result for
{expix-u(})), and from Eq. (2.4) we see that correct to
order #? we can rewrite the statistical weight function

IMPURITY ATOMS 2061
given by Eq. (2.4) as
e BH+%% g2,

2.7)

If we note that the first term of Eq. (2.6) is a constant,
while the last term of this expression is a function of the
momenta only, and use the fact that the integrations
over coordinates and momenta factor, we are led to the
result that correct to order 72

#2833

B8 1
/ - / exp{ > Doalyta Qs+ 5 L% 0 inu() }dw
l

24

{expix-u(l))=

(2.8)

ﬁ23

B 1
f - / exp[—; B0 D+ 5 2L e (1) }d .

We now write

1
> —M_[Z D3 (U )us(l') J?

la 1 UB

1
=ﬂ ZZ;. [%} Bop (1 )us(l') ]

1 1
+(———)z [X Suus) . (29)
Ml M/ « 8
Since M ;= (1—¢)M, we have that
1 1 €
_ = (2.10)

M, M (1—oM M

It is now convenient to transform to normal coordi-
nates according to

1
ua(l)= 2 ea(k)Q(kj)ermix®. (2.11)
(v kj

1
2

In Eq. (2.11), N is the number of unit cellsin the crystal,
eq(kj) is the a-Cartesian component of the polarization
vector for the lattice wave described by the propagation
vector k and the branch index 7. The allowed values of k
are uniformly and densely distributed throughout a unit
cell of the lattice reciprocal to that defined by the
translation vector x(7). In order that #.(l) be real, we
adopt the following conventions:

0(=kj)=0*(kj), e(—kj=e(ks). (2.12)

The components of the vector e(ky) satisfy the ortho-
normality and closure relations

Za Ca (k])ea(k]l) 261'1"7
2 s ea(kp)es (k) =0ap.

(2.13a)
(2.13b)

M
> [l% Pap(Uupg(l) P=— 2 X e(kijr)-e(kajs)w;?(Ki)w;; (kg)e?r itk (DO (K, j1)Q (k2 j2).

N k141 k252

If we apply this transformation to the lattice potentia
energy, we obtain

3 2 , P (I )t (Dus (1)

la,l/
=3 %l 0 (K)Qk)HO(—kj), (2.14)

where w;(K) is the frequency of the vibration mode (k3),
and is obtained from the equation

wi(K)eq(kf) =25 D op(k)es(ky), (2.15)
where
Dos(k)=(1/M)2 1 Pap(De 270, (2.16)
In a similar fashion, we find that
ZZI;S Do (Uus(l')
My}
:(V> 2 @it (k)ea(k)Q (ke ix®  (2.17)
I kg
so that
lZ [j;ﬁ Do (U )ug (V) T
(2.18)

=M %j w (QkHO(=k7),

where we have used Egs. (2.13a), (2.15), (2.16) and the
relation

3, eikex(d = NA (k). (2.19)

The function A (k) is unity, if k=0 or a reciprocal lattice

vector and vanishes otherwise.
From Eq. (2.17), we obtain also the result that

(2.20)
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Finally, we have the result that

x-u(l)=

(NM)} s
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(2.21)

It should be kept in mind that the coefficient C (k) is a function of x(J).
Combining Egs. (2.9), (2.14), (2.18), and (2.19) we find that the integral in the denominator of Eq. (2.8) becomes

g
L= / - / exp[—iZQfQ(k)Q(kj)Q(—kj)H\ b3 B(kua;km)Q<k1j1>Q<k2j2>}dsz<Q>, (2.22)

kj k171 kaje
where
22 (k) =0 (k) —157%6%* (k), (2.23)
%233
B (kljl 3 k2j2) = 24N|:e (k1]1) . e(k2j2)]wj12 (kl)wj22 (kg)EZTi(kl'H‘Z) -x( l), (224)

and dQ(Q) is the volume element of the phase space of the Q variables.

The integral in the numerator of Eq. (2.8) becomes

B
L= / / expl—EZQJQ(k)Q(kj)Q(—kj)H S Blkujs; ke Q(kejD0 (ko)

kj kij1k2g2

[/ exp{—gkzjsz¢<k>[@<kﬂ—ié?3{ﬂ[@

28 xj Q2(k)
We now make a change of variables:
Okj)=P(kj)+id (kj), (2.26)
where
A(kj)=C(—kj)=K'e(kj) i (2.27)

ge(k)  (NM)F Be2(k)

In terms of these new variables the integral /1 becomes
r
jlze—Mj ... /3—5(H0+H1+nH2)dQ(P)= M1, (2.28)

with
1 _ Ck)HC(—kj)

S 9rk)
N X Bkiji; kejo) A (kij A (kogs), (2.29)
kis1keje
Ho=33 9206) P(kj)P(—kJ), (2.20D)
ki
x .
H]:_E 2. B(kiji; kefo) P(kyji) P(koje),  (2.29¢)
kij1kej?
21\
112:_ Z ]5(k1j1}k2j2)A (k]jl)P(kzjz). (2-29d)

B ks

(—kj)—i

1 _ Cky)C(—kj)

+§ > [C(kj)Q(kj)+C(~kj)Q(—kj)]}dﬂ(Q)

C(ky) ]
822 (k)

. B(kljl;kg»@(klﬁ)(z(km)}dsz«z). (2.25)

k1j1k272

In Eq. (2.28), d2(P) is the volume element in the phase
space of the P variables. It can be shown® that the P
variables are completely equivalent to the Q variables
for calculating thermal averages in the harmonic ap-
proximation, and if we wished we could replace the P’s
by (s in Eqgs. (2.28) and (2.29). The parameter 7 in
Eq. (2.28) is merely an order parameter which we set
equal to unity at the end of the calculation.
We can thus express Eq. (2.8) as

(expix-u(l))=e My /I,. (2.30)

The integral Io, Eq. (2.22), is recognized to be the
partition function of a system whose Hamiltonian is
H+H,. Thus, we can write it as

Ty=¢"F, (2.31)

where I7 is the Helmholtz free energy of this system.
Similarly, the integral 7y is the partition function for a
system whose Hamiltonian is Ho+H1+9H,. Thus, we
can write /q; as

Iy =¢ PF—BAF (2.32)

where AF is that part of the Helmholtz free energy of
this system which is at least linear in n, We thus obtain

the result that
(expiv-u(l))=e M-FAF,

8 A. A. Maradudin and P. A, Flinn (to be published),

(2.33)
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We must now evaluate AF correct to order %#2. How-
ever, we can easily show that AF is of order %%, so that
to the order of the approximation to which we work we
can neglect it in Eq. (2.33). We start with the relation

1
F+AF=—-1nZ,

¢—BHo
X / ... f e flrhldQ(P),  (2.34)
Zy
where
Zo= / / ePHOGQ(P). (2.35)
We thus have that
1
F+AF = Fo—— In{g~F@Ern), (2.36)
B

where Fois — (1/8) InZo and (- - )¢ denotes an average
over the canonical ensemble defined by the statistical
weight function Z¢ ! exp(—pBH,). Expanding the loga-
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rithm in Eq. (2.36) in terms of cumulants,” we obtain
. 1 s
If+AF=F0—E —B<H1+nH2>o+2—'[<(H1+nH2)2>o

—(Hy+nHy)*]— -+t (2.37)

Since Iy is independent of 5, we obtain for AF the ex-

pansion

AF:<H2>0_%ﬁ[<2H1H2+H22>0
—2(Hy)o{Ha)o—(Ho)* ]+ - .

However, since (Hs)o vanishes as does (H1H3)o, We see
that the leading term in the expansion of AF is

AF=—3B(HH ok,

and this according to Egs. (2.29d) and (2.24) is of
order 7*.
We have obtained the result that, correct to order 72,

(2.38)

(2.39)

. 1 _ Cky)C(—kj) C . .
{expix-u(l))=exp{—— > ———— > B(k1]1;k2]2)A(k1]1)A(k2]2) . (2.40)
26 Q2 (k) kij1ked2
With the aid of Egs. (2.21) and (2.23), we find
NC(—ki . N2 232
1 _ChC(-kj) 1 L[« e(k) I 1 ILhﬂ +O(h4)J
8% k) 8% NM Leopk) 12
kT ek 7%
- Loe®F M o, (2.41)
INM & wpk) 24MET
Similarly, we have that
»”oo1
2 B(kijr; kojo)A (kijn) A (kejo) = —— ¥ [e(kijr)- (ko) JTx- e(kijn) JLx- e(kega) 1+-0 (%)
k1j1kese 24N? MET wii1keie
722
= +0 (). (2.42)
24MET
Combining Egs. (2.40), (2.41), and (2.42), we obtain finally
kT x-e(ky)]? 722
(expiu-u(l»:exp[— L A — —l—O(h‘*)}. (2.43)
INM i wp(k)  24(1—MET
In the case of cubic crystals, this expression simplifies to
(expin-u(l)) [ Yoy e +0<h4>} (2.44)
expix-u(l))=expi— K . .
b Pl onar" 5 opl) 24(1— o MAT

III. A FORCE CONSTANT CHANGE

When the Mdssbauer active impurity is an atom
whose potential of interaction with the atoms of the
host crystal differs from that between the atoms of the
host crystal, the effects of this force constant change
show up in the classical limit. However, because the

effects of an accompanying mass difference will not
show up in this limit, we can assume that the mass of the
impurity is that of a normal atom in the crystal.

7M. G. Kendall and A. Stuart, The Advanced T heory of Statistics
(Charles Griffin and Company, Ltd., London, 1943), Vol. T, Chap.
3. See also, R. Brout, Phys. Rev. 115, 824 (1959).
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The Hamiltonian for the crystal can be written

o (l
H:ZI’ 0
la 2M

la,l’
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+3 ZB ‘I’aﬁ(ll/)”a(l)%ﬁ(l')+%lzl,ﬁ Aag()ua(Dup(l'),

where Aag(ll') represents the change in the atomic force constants due to the impurity and is nonvanishing only
if either [ or /' refers to the site of the impurity atom. The expectation value {expix-u(l)) becomes

h f xXp{— 3B Y Pug ()t D15 (D)~ 38 Y Mg (U)o (Dug (V') Fine-u(l)}d*Vuu

{expix-u(l))=

/ e / exp{—28 2 Pap(Ul)1a(Dug(V)) =38 2 Aup (0 )1t (D (1)} d*Vut

=]1/.]0.

We now carry out the normal coordinate transformation
(2.11) on the expression appearing in the exponent of
the integrand in the denominator of Eq. (3.1), where-
upon we obtain

]0=/ .- '/e_ﬁ(”"‘LH‘)dQ(Q), (3.2)
where
Hy=% § w2 (K)Qk)Q(—kj), (3.3)
7
=3 % Clkiji; kefn)Q(kij)Qksgn), (3.4)
kijiksjo
with
. . 1 .
C(kijy; kogo) :W "Enﬁ A (mn)eq(kij1)es (ks j2)
X g2 ik x(m) g2 iky-x(n) (35)

We carry out the same coordinate transformation in
the integral J, and then replace the Q variables by P
variables according to

Q(kj)=P(kj)+id (kj), (3.6)
where
‘ K'C(kj) e—2mik-x(D)
A(k])= - 3.7
(VM): B (k)
The result of these transformations is that
Ji= ~M0+M1/. . ./e—ﬁ(Ho+H1+nH2)dQ(P)

=g MetMi] (3.8)

where

(3.1)
1 CkHC(=kj
_1 (ky)C( ])’ (3.9)
28k wi(k)
B L ) .
M1=5 > Clkiji; ko)A (kijr)A (kaje), (3.10)
kij1keje
Hy=i 3 C(kiji;kej)Ad(kiji)P(ksjs).  (3.11)
kij1kaje

H, and H, are given by Egs. (3.3) and (3.4). The
parameter 7 is again merely an order parameter and will
be set equal to unity at the end of the calculation. The
desired thermal average can thus be written

(exptr-u(l))y=eMotMiJ, /],

— p—Mot+M1—BAF
’

3.12)

(3.13)
where AF is that part of the Helmholtz free encrgy for
the system whose Hamiltonian is Ho+H;-+nH, which

is at least linear in 7.
To obtain AF we proceed as before. We have that

1
F+4AF=Fy—— In{e~f@HvtnHY), (3.14)
B

where

1 1
Foy= ""5 ln/ . /C_ﬁHOdQ(P)Z—[; InZ, (315)

and (---) denotes an average in the canonical en-
semble described by the statistical weight function
Zi " exp(—pBHy). From Eq. (3.14), we obtain

1
F+AF= FO_B{ —B(H+nHs)0+36°

X[ (H1+nH?2)?o0— (Hy )14} (3.16)

to second order in C (kyj;; kojs). Recalling the definition
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of AL, it is readily found that to second order

AF= _%.30‘122%

kijikegje k3jskesy
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=%ﬁ Z Z C(kljl; szz)c(k3j3;k4j4)A (k1j1>A (k3f3)<P(k2j2)P<k4j4)>0
A (kij)A (ksgs)
C(kij1; kogo)C(ksjs; —k2j2)——¥. (3.17)

= >

k1j1kej2ksss

In obtaining Eq. (3.17), we have used the well-known
result that

1
<P (kljl)P(kﬂ_h»o: —Z@“A (k1+k2)5j1j2y

wjy "\ K1

(3.18)

where A (k) is unity when k is zero or a reciprocal lattice
vector and vanishes otherwise.

Equations (3.13), (3.9), (3.10), and (3.17) give us-a
result for (expix-u(l)), which is correct to the second
order in the departure of the impurity force constants
from those of a perfect lattice. It only remains to
evaluate Mo, My, and AF. From Egs. (2.41) and (3.9),
we see that

_ kT [x-e(ky)]?
2NM ki w?(k)

M, (3.19)

To evaluate M; and AF we need a model for our
crystal. We choose the simplest nontrivial model of a
three-dimensional crystal: a face-centered cubic crystal
with nearest-neighbor central force interactions. In this
case the force constant ®,4(ll") becomes

% (r)
0%, 0%

Dag(ll')=—

r=rtV

, (3.20)

T:'l‘“,

axﬁ /!
= —745 (r)

where ¢(r) is the interaction energy between a pair of
atoms separated by a distance 7, and 7!¥' is the distance
between atoms / and //. If the interaction energy be-

wjs (kZ)

tween the impurity atom and an atom of the host
crystal is denoted by 6(r), then the coefficient Aqg(ll’)
becomes

XaXg XaXp 5,13
Aus (i) = [_T”" ()0 ) =—0'()
¥ e 14

XaXg
e LC) I CED
7? -7
and vanishes unless either / or I’ corresponds to the
defect position. For our nearest-neighbor model, we can

write Eq. (3.21) as

Aps(i) =[xaxA+84B rart?, (3.22)
where
0" (ro) 6'(ro) ¢"(ro)
=— + + X (3.23a)
7o 703 702
6’ (7o)
B=— , (3.23b)
7o

and 7 is the nearest-neighbor separation between atoms.
7o equals ao/V2, where ao is the lattice parameter.
In what follows we will make use of the relation

Aug(mm)=—=37" Aag(mn), (3.24)

where the prime on the sum excludes the term with
m=n.
Equation (3.5) for C(kij1; kajs) becomes

C(kijr; kajo)=2Z{AL(x() —x(m))- e (k1j1) JL(x(n) —x(m))- e (ksj>2) ]

+Be(k1j1) . e(k2]'2)}621ri(k1+k2) ~x(m){e21rik2- [x(n)—x(m)] _ 1},

(3.25)

where it should be kept in mind that the lattice points 7 and # refer to the defect and its nearest neighbors.
We are now in a position to evaluate M; and AF. The expression for M is explicitly

1 ,[x-e(kyjn) Tx- e(kags) ]
2N?M?B k1irkzi2 ma w,-f (kl)a.)j22 (kz)

M,

X{AL(x(n)—x(m))- e(kij) JL(x(1) —x(m)) - € (ko j2) 1+-Be(kyjr) - e (kyjs)} {2 ke Ixm=xtml 1},

g2 i(k1tka) - [x(m)—x(D)]

(3.26)

In order to simplify the analysis past this point, we make an approximation in the evaluation of M, and AF. This
approximation, due to Ludwig?® consists of replacing the squared frequencies in the denominator of the summand in

8 W. Ludwig, J. Phys. Chem. Solids 4, 283 (1958).
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Eq. (3.26) by their average value
1
(fk)=—2 w?k)
3N ki

=lo=p,, (3.27)

where us is the second moment of the unperturbed frequency spectrum, and wz, the maximum frequency of the host
lattice is given by wz?=_8¢" (ro)/M. With this approximation all the summations can be carried out in closed form.
In the Appendix we show that the error incurred by the use of Ludwig’s approximation is 319, in the evaluation
Of M 1.

We begin by evaluating the sums over 7; and 72:

kT
Mi=—- Z Z {A[K (X(n) X(m))]Z_][ BK2}621r1(k1+k2) [x(m)—x(l)]{emmkz [x(n)— x(m)]__l} (3‘28)
1\72]”2,(,122 kikz mn

where we have used the closure property of the elgenvectors Eq. (2.13b). The sums over the wave vectors are
evaluated with the aid of the relation
>k 2RO =No. o) (3.29)

where 6x(z,0 is unity if x(/)=0 and vanishes otherwise. We thus find

kT
M= W"m {A[K (x(n)— X(’n))]2+BK2}NZ{‘SX(m)—X(l) 00x(m)—x(2),0— Ox(m)—x(1),0}
kT
= 2 {ALx: (x(n) —x(m) ) P+ B} ximy—x(» 0. (3.30)
QM

The sum over x(m) vanishes unless x() equals x(7), the position vector of the impurity atom. This means that the
summation over x(n) extends over the twelve nearest-neighbors to the defect site. We obtain finally

M=

2 ALk (x(m) =x(D) I+ B}

2”2

kT .
=— k*{2Aa*+12B}. (3.31)
2u?M?

The expression for AF becomes explicitly
1 [x- (ki) J[x-e(ksjz)]
F ’ ’
. 2N3M33? 151 kzzaz kzsj:s v% % w2 (ky)w;j?(ke)w;2 (ks)
Xetritkrtka XD {A[ (x(n) —x(m))- e (k1 1) JL(x(n) —x(m))- e(kaj2) 14 Be (kij1) - e (kaj2)}
X {eariter sl ot <0} (AL (x(5) = x()) - (ks ) T Ge(5)—x(r))- o) T+ Be s o) ek}

>< {627ri[k3-x(r)—k2-x(s)] —_ 627ri(k3—k2) -x(r) } . (3‘32)

In Ludwig’s approximation it becomes

kT)?
AF=_(—) Z Z/ —2wi(ki1+k3) - x(l){627rz[k1 -x(m)+ka- x(n)]_621r1(k1+k2) x(m)}
2N3M3/J,23 kikoks mn rs

X {2 ilka-x (ke x()] — g2wiCke—kD) X} A2 (1 Xpm) (16 Xar) (K Xar) FABL (16 Xm) - (o x) T BA) (3.33)

(-T)?
2 3M3 Z Z {6le Uaxnx 06Z’Crl 0+6xm1 06er 06xrl 0}
“ mn rs
: X A2 (3 Xom) (3 Xar) (Ko Xor)+ABL (36 Xnm)? (- x00) ] B3 (3.34)
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(RT)?
= > {A2(%- X002 (Xn1* Xn2) + 24 B(x X1) 2+ B%3?}
2#23M3 n
h (BT)?
+ 3 {42 (x-X00) (0 X00) (X2 Xo2) FAB (k- X0+ AB(w- x,0)*+ B2} (3.35)
2,11,23M3 11,x5'l
(RT)?
= [ 542" 4524 Ba+168B2]. (3.36)
L

In these equations, we have used the abbreviation Xum=x(n)—x(m).
Combining Egs. (3.13), (3.19), (3.31), and (3.36), we obtain finally

kT
(expix-u(l))y=exp{— K2 -
6NM  xi wi(k) 2uM

IV. DISCUSSION

In the Debye approximation the thermal average
{expix-u(l)) is given in the classical limit by

3nt T

e

where @ is the so-called x-ray Debye characteristic
temperature. We can convert Eq. (3.37) into the same
form by defining an appropriate effective characteristic
temperature Op:

1 k%1 2 Aa*+6B
LR paettes
Oz 73 3 My
SA%2ay4+52BAag*+ 168 B%
4+ Lol (4.2)
3M2M23
where we introduce the notation
pa= BN)1 Y w;%(k).
kj
Using Eq. (4.2), we have in place of Eq. (3.37)
=ep| e T @3)
expix-u(l =exp{—-————}. .
( P 2MEOg

We see that the effective Debye temperature depends
primarily on the inverse second moment of the fre-
quency spectrum of the unperturbed lattice, and that
the correction terms depend in a relatively complicated
way on the forces acting on the impurity atom. The
physical significance of the correction terms can be more
easily appreciated if two additional approximations are
introduced. First, let us assume that ¢’ (ro) =0. This will
be a reasonable approximation when the impurity atom
is roughly the same size as the host lattice atom. By

4.1)

T
-¢[240¢-+12B]

T
[ 5420 +52BAa?+168B ]+ - - - } (3.37)
2u M

using Eq. (3.23), we now have
B=0

A=[¢" (r))—0" (ro) J/re.

Since ri=a¢*/2, using the notation a=¢"(ry), o
=0"(r), we have
Aad=2(a—d).

(4.4)
and

’

(4.5)

Second, we use the nearest-neighbor central force
approximation for evaluating u_» and us. These calcula-
tions have been carried out elsewhere,® with the results
that

p_o=1.68/ps (4.6)
and

pe=4a/M. 4.7)
Using Egs. (4.4), (4.5), (4.6), and (4.7), we can
reduce Eq. (4.2) to the substantially simpler form :

M

1 a—a
—=0.140— —{ 1+0.596( )
Oz " a a

/
a—a

Vo).

Since a is a measure of the stiffness of the crystal lattice
[(4/3)(c/a0) equals the bulk modulus in this ap-
proximation |, it is clear that the effective characteristic
temperature depends in the usual way on the stiffness of
the lattice and the mass of the host atoms. The correc-
tion terms have the expected effect: If o’>q, the re-
storing forces acting on the impurity are stiffer than
those acting in the pure crystal, and the effective
characteristic temperature is raised by the correction;
the converse is true for ¢/ <a.

To obtain f, the fraction of recoiless events, we must

o4

a

9 P. A. Flinn and A. A. Maradudin, Ann. Phys. 18, 81 (1962).
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square {expix-u(l)) as discussed in the introduction. At
the same time we introduce the energy of the gamma ray
directly, using the relation,

k2= F2/H%. (4.9)

IMinally, using (4.3), (4.8), and (4.9), we have
J=(expix-u(l))’
E? kT a—a’
= exp{ —0.420 —[1+O.596< )
7 a a
7

a;a )2+- : }} (4.10)

We can now consider the application of (4.10) to the
experimental situation. First, we note that in this ap-
proximation neither the mass of the impurity nor that
of the host lattice enters. It is clear, then, that in
choosing a host lattice to obtain a large resonant frac-
tion, the appropriate parameter to consider is the bulk
modulus rather than the Debye temperature. Second,
we can consider the possible usefulness of measurements
of the resonant fraction as a function of temperature to
obtain information about the crystal. In principle, from
such measurements one could determine o’ by using
Eq. (4.10). Such a procedure, however, would not be
very satisfactory. The derivation of Eq. (4.10) assumes
that [[(a—«’)/a] is moderately small; this leads to two
sorts of problems. One is experimental: f must be de-
termined with great accuracy, which is difficult, since it
depends on a measurement of peak intensity. The other
difficulty arises from the use of the approximation of
Eq. (4.6). The error in using an approximate rather
than the true frequency spectrum of the unperturbed
crystal (generally unknown) may not be negligible in
comparison with the [(a—a’)/a] terms. Since essen-
tially the same information can be obtained in a more
straightforward way by accurate measurement of peak
position,! there does not appear to be any great value in
using intensity measurements for this purpose.

In the case of a mass defect, we find from Eq. (2.44)

+o734(
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that f can be written as
kT

72?
f= exp{ - K2y -
3ANM  xi wi(k) 12M'RT

kT
—exp| —( i)
M

1M 1 /0,2
x[1+—— (——> -I-O(ﬁ“)}}, (4.11)
20 M7 pop—o\ T

where we have introduced the limiting high-temperature
value of the Debye characteristic temperature of the
host crystal by

1 O(ﬁ‘*)]

O, 2= (5/3)ush2/ k2 (4.12)

The product usu_s for our model of a face-centered cubic
crystal with nearest-neighbor central-force interactions
is 1.68. In the Debye approximation it is 1.8. The result,
Eq. (4.11), shows that the classical result for the Debye-
Waller factor for a perfect, cubic, host crystal

S=exp[— (kT/M)i%u_s], (4.13)

is a good approximation for the f factor of a mass
impurity as long as the temperature T satisfies the
inequality

0.

(204 oM/ M) 5.8(M"/ M)

A

(4.14)

where the last expression follows on setting pou_s=~1.7.

If the Mé&ssbauer active impurity is heavier than the
atoms of the host crystal, Eq. (4.13) can be used over a
greater temperature range than if the impurity mass is
the same as or lighter than that of the host atoms.
Apart from this qualitative conclusion, Eq. (4.11)
provides no other information about the dynamics of
the impurity atom.
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APPENDIX
We write Eq. (3.20) for M, as
M=o (ASHBS), (A1)
where o ki
S1= Z Z ZI [K'e( 1]1):":“.6( 2]2)]621ri(k1+k2)-[x(m)—x(l)]
k171 kaiz mn wji? (Ky)w;.? (ks)
X{ermike- txm=xtml — 1T (x(1) —x(m) ) - e (k1 j1) JL(x(n) —x(m) ) - e (koj2) ]}, (A2)
$=3 > > [x-e(kajn) JLx- e (ko 2)]6.21ri(k1+k2).[x(m)——x(l)]{627rik2.[x(n)—1(7n)]—1}_ (A3)

wi12(k1)‘°i22(k2)

We consider each of the sums in turn.

k171 k2j2 mn
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We begin by evaluating the sums over # and # in Eq. (A2). We first set x(m) equal to x(f), the position vector of
the impurity atom. The vector x(%) then runs over the twelve nearest neighbors to the impurity site. We then let

x(m) run over the twelve neighbors to x(J) in turn while in each case x(#) =x(/). The result is

ao\?
Si=2 2 (*) X 2 X[ 2212022+ 2k, 2e1,€20+ 2 2€1 0, |
ki ko 0,2 (K1)w ;2 (ko) \ 2 e

XA{ (e1s+e1y)(e2s+e9y) [Sin[wa0 (k1o F1y) ] sin[wao (koutkay) 1— 4 sin? 3mac(kro-kyy) ] sin?[3rao(kastkay) ]
+ (e1y+612)(62y+€2z) [Sin[ﬂ'do(km‘l"klz)] Sil’l[ﬂ'ao (k2y+k2z):|— 4 Sil’lZE%ﬂ'(lo(kly‘*—klz)] Sinz[%ﬂ’do(kgy—{—kk)]]
+ (er.te10) (2. e20) [sin[wao (k1 +kis) ] sin[ wao (ke kox) 1—4 sin?[ 3wao (ki k1s) Isin? 3mao(ko.+kes) ]1}. (A4)

In obtaining Eq. (A4) we have used the fact that the eigenvector e (k) transforms as the vector k. For convenience,
we have also written e,(k171) as éis.
It follows from the form of Eq. (A4) as a function of k; and ks and the transformation properties of the eigen-

vectors that S; is isotropic in the vector . Thus, S; can be written as

(102 elxe2z+elye2y+elze2z

S1= —K2
3 k171 kg2 wj12(k1)wj22(k2)

X{ (e1z+e1,) €2zt e2y) [Sin[mao (Bratk1y) ] sin[wao (keot-koy) 1— 4 sin? Frao (1ztk1y) 1 sIn? 3mrao(kestkey) ]l
+(e1,te12)(eay+e2.) [sin[ wao (k1 k1) ] sin[wao (koy+ ko) ]— 4 sin?[ Fmao(kyy k1) ] sin?[ rao(key,+k2.) ]

+ (e1ste12) (€22t €20) [Sin[7a0 (k1,4-F1z) ] sin[wao (koo +Rox) ]— 4 sin?[ Fmao (ki +k12) 1 sin? Gmao(ke.+k22) 11} (AS)

The next simplification we can effect in this expression follows from the fact that each of the three terms in the

curly brackets contributes equally to the sum. This means that S; becomes

S 9 2 Z 611321‘["311/620—*—612621( + )( + )
- €116 €22 T €
TS etkesit)

X {sin[wao(k1o+kiy)] sin[wao(kostkay) 1—4 sin[ wao(brotkuy,) ] sin? Erao(Bostkay) ]} (A6)

o Z Z elze2x+ely62y (e +e )(e +e )
= QoK et wjlz (kl)wj22 (kg) 1z 1y)\C2z 2u
X {sin[wao(k1s+k1y) ] sin[wao(kost-kay) 1—4 sin?[ Frao(kiotkyy) ] sin?[3rao(kastkey) 1} (AT)

e1z(e1ste1y) e2z(e2ste2y)
:a(,z,g{ T in[mao (et by)] S e L i (haat-Fy) ]
ki w;2(ky k2iz Wyt (ke
e1z(e12+e1y) eas(Caste2y)
—a s T i ira(brtby)] S " sin?[inao(krat-Fay)]
ki wi?(ky ks wj2(ks)

esy (¢2zte24)

w]'zZ (k2)

y(ersteyy
fl._(fl__eﬁ sin[7wao(k1otk1)] 2 sin[wao(kostkay) ]

k11 Cdj12<k1) koj2
e1y(e1zte1y) €2y (€2st€2y)
T inmao (bt k)] S e Y sintdrao(kae b Bay)] . (AS)

ki1 wjl2(k1) k2jr  wjy2 k,

The summands in the first and third terms are odd functions of the wave vector so that these terms sum to zero
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We are left with

(k) [es(ky)+e, (ks 2
§ e — o {Z es(k7)lea(ks)+e, (kj)] - kﬂ)]}
ki w;*(k)
eu(k ) z kj + kj 2
—4002,3‘2 A)Lee(ki) ey ()] sin?[imas(Bat-hy) ]} . (AD)
ki wi(k)
It is clear, however that
ex(kj)[es(kj)+e,(kj)] - ey (kj)[es(ky)+e,(kj)] .
o () sinChrao (ko) 1= 5 oK) sinCimas(ktR)] (A10)
Our expression for .Sy finally becomes
1 _ Lea(ky)te,(kj) T ?
1= —tage |y DY ] (A11)
2 kj wjz(k)

The sum over k and 7 in the curly brackets has been evaluated elsewhere for this model* and has the value

Lea(kf)+ey (kDT NM N
—————————sin?irao (k&) ]= =— (A12)
ki w;? (k) 49" (r0) s
With the aid of this result, S1 can be written as
SLZ—"ZdoszAm/p.Q?‘, (A13)

Turning now to the sum .53, we begin its evaluation by performing the sums over m and #, with the result that

Se=43% 2 M[szemeu+Ky2‘31y62y+"22612622:]
kij1 k272 wj12(k1)wj22(k2)
X {sin[7ao(k1stk1,)] sin[mao(keatkay) ]—4 sin¥ 3mao (k1) ] sin?[ Smao (koztkay) ]
+sin[wao(kiy+ki) ] sin[mao(key+k) —4 sin?[Gmwao(kuy+ki) sin’[Grao(key+ko.) ]
+Sin[7rdo(k1z+k1x)] Sin[ran(kzz+k2z)]_4 sin2[%7rao(k1z+k1z) Sing[%ﬂ'aﬂ(k%"'"k?x)]}' (A14)

We again make use of the facts that S; is isotropic in the vector x and that each of the three terms in the curly
brackets contributes equally to the sum. We thus obtain

kl '1 * kZ '2 g
S2=4K2 z Z [e( J ) e( J ):] {sin['/rao(ku—}—kl,,)] Sin[#do(k21+kgy)]

ki1 kaj2 w,-f (kl)wjgz(kZ) .
—4 SHIQE%W(ZO (km‘}"km)] Sin?‘[’%ﬂ’do (k2x+ kgy)]} . (A15)

The first term in the curly brackets gives a vanishing contribution to .Sy, because it is odd in the vectors k; and k.
The expression for Sy becomes

Le(kisr)-e(kasz) 1

o= —16x2 klgzm wj12(k1)wj22(k1) Sillz[%rdo(k]_;;"“kly)] SinZE%ﬂ'ao(kn“f‘kgy)] (A]())
e.* (k) 2 e (kj) ?
=—-322{3 sin2[:§—7rao(k¢+ky)]} —16x2 { > sin’[ 37ao (kx+ky)]}
ki wj ki wj k)
ex(kj)ey(kj) 2
—32K2{ ¥ sinthrao (kb hy)]L . (ALT)
ki wi(k)
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The three sums appearing in this expression have been
evaluated elsewhere for the present model.’ They have
the values

el(ky) N
sin?[ iwao(k,+k,) ]=—(0.5811),
ki w2 (k) 7P
e2(ky) N
sin?[ rao(k.+k,) ]=—(0.6323), (A18)
ki w(k) Ko
ex(kj)e, (kj)

N
sin?[ iwao(k .+ k,) ]=—(—0.0811).
ki (k) M2

With these results, we can finally express S; as

N2

Sy= ———(17.414). (A19)

M2
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Combining Egs. (A1), (A13), and (A18), we find
that M, equals

T
; 2:<2[2A a+17.414B].
2#2

M=— (A20)

If we compare this result with that obtained using
Ludwig’s approximation,

My=— [24a2+12B],

22

(A21)
2.“2

we see that the coefficient of 4a¢ is given exactly by
Ludwig’s approximation, while the coefficient of B is
319, low in this approximation. These results are con-
sistent with those obtained elsewhere! in cases where
exact calculations could also be carried out. In all cases
studied so far, Ludwig’s approximation gives results
which are somewhat smaller than the true values.
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We investigate in the limit as the range of the interparticle interactions becomes indefinitely great, but is
still small compared to the size of the system, the behavior of a large class of order-disorder models. This
class includes, for example, the Ising model, the spherical model, and the Gaussian model. We show that
when certain general conditions hold and the interparticle interaction is chosen to be the same for all models,
but otherwise arbitrary, the energy per particle above the critical temperature has the same limiting value
through terms of order 1/R, where R is a measure of the number of spins in the range of the interaction.
We further show why the behavior above the critical point in this limit does not necessarily provide informa-
tion about the behavior below the critical point. Some examples are worked out which illustrate the above

results.

1. INTRODUCTION

HE purpose of this paper is to investigate the
behavior of a certain class of order-disorder
models as a function of the range of the interaction. We
investigate the limiting behavior of these models as the
range of interaction becomes indefinitely great, but is
still much smaller than the total size of the system. In
the second section of this paper we show that above the
critical point, when certain general conditions are met,
the details of the model (probability distribution of the
various states of the system) but not the shape of the
interaction are unimportant in the limit of indefinitely
long-range forces. The class of models considered is
general enough to contain the Ising model, the spherical
model, and the Gaussian model. Below the critical

* Supported in part by the U. S. Atomic Energy Commission.
1 On leave of absence from Los Alamos Scientific Laboratory,
1961-1962.

point no such general result is obtained. We see that in
this region the details of the model affect the energy per
spin in leading order.

In the third section we compute the energy per spin
for the one-dimensional spherical model (and Gaussian
model) with exponential interactions between spins. We
verify explicitly the results of the second section for this
type of interaction by comparing the results of the
third section with the previously known results for the
Ising model. We also verify explicitly that the behavior
below the critical point is different for the spherical and
Ising models.

In thelast section of this paper we evaluate the energy
per spin of the three-dimensional spherical model as a
function of the range of a force which drops off approxi-
mately exponentially with distance. Here we may follow
the behavior of the known third-order transition with
range.



