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A maximum variational principle is shown to be applicable for conduction problems (including "drag"
effects) in the presence of a magnetic Geld. The part of the diagonal tensor element that is even in the
magnetic Geld is maximized. The relation between the "high-Geld" work of Chambers, Lifshitz, and co-
workers and the variational method is pointed out, the latter being applied to accommodate open orbit
effects, and to obtain interpolation formulas to span high- and low-Geld solutions (keeping in view the
phonon drag effects). It was found that standard operator expansion techniques are useful for obtaining
solutions for the high-field limit. Symmetry considerations are facilitated by use of some of the operators
suggested by the variational problem, and it is shown that if no drag effects are present and a time of relaxa-
tion permitted, some new relations emerge for the cross coefficients connecting the charge Bow and tempera-
ture gradient. Finally, because the scattering by spin waves is analogous to the scattering of phonons, (since
double-magnon processes are shown to be negligible at low temperatures), the theory of "magnon-drag"
follows precisely that of phonon drag, and the effects can be automatically incorporated in all the expressions.

1. INTRODUCTION

~ ~HF main effort of this paper is to produce a
maximum variational principle that applies to

conduction problems in a magnetic field.
The work of Ziman, ' ' Garcia-Moliner and Simons, '

Tsuji, 4 and Bross, ' and others has indicated some in-
trinsic difficulty that prevented a true maximum prin-
ciple when in the presence of a magnetic field, as for
example holds for the electrical conductivity in the
absence of a magnetic field. ' This difficulty has been
related by Ziman to a zero contribution to a kind of
entropy production. The definition of entropy in the
problem was, however, adjusted by Ziman and he was
able to arrive at an extremal principle; but still a
maximum principle remained elusive. It is not clear to
what extent the entropy interpretation is significant;
nevertheless the difFiculty is a real one, since it is
rejected in the mathematical theorems that can be
proved. Tsuji, on the other hand, has provided a
maximum principle, but what is maximized does not
involve the magnetic field directly, and the principle has
the curious feature that the Boltzmann equation's exact
solution appears in the side condition, this solution kept
unaltered during variations, and then (after the varia-
tions are taken) set equal to the trial function and solved
for. Tsuji's resulting equations and Ziman's are the
same (and equal to Kohler's7 for spherical energy
surfaces), and we feel that the setting equal of the exact
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solution to the variational trial function after variations
are taken in Tsuji s work, is essentially an assumption
about convergence that is equivalent to the non-
maximum nature of the Ziman formulation of the
problem. (Tauber's' work resembles Tsuji's in this
respect. ) Thus it has appeared as if a conspiracy exists
against a true maximum principle in the presence of a
magnetic field.

Our result is that a maximum principle does hold in
the presence of the magnetic field, but what is maxi-
mized is the part of the diagonal conductivity tensor
element that is even in the magnetic field. We should
like to acknowledge a conversation with Professor T,
Holstein in which he remarked that a true maximum
principle might have to do with something even in the
magnetic field. We had previously separated the Soltz-
mann equation into even and odd parts, but had lost
interest in the problem until stimulated again by
Professor Holstein's remark.

A second effort of the paper has been to relate the
variational formulation of the problem with the recent
work of Kohler, ' McClure, ' Chambers, " Lifshitz et
al. ,

i2 "and others who solved the Boltzmann equation
with a view to effects in large magnetic fields. This
relationship is discussed in Sec. 5, and in fact the varia-
tional principle can be used to provide interpolation
formulas that accommodate open orbit e6ects. The
problem as we have envisaged it resolves itself into con-
sideration of the inverse operator 1/(I.+ALII), where I.
is the ordinary collision operator (involving drag effects)
$Eq. (A14)$, and M the magnetic operator LEq. (2.3)j.
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The high-Geld expansion regards M greater than L, but
one of the eigenvalues of M is zero. A method for over-
coming the difficulty associated with this is discussed in
Sec. 5 and Appendix E for the case when a time of
relaxation exists, and the natural extension of the
method to the situation when such an assumption is not
valid is presented in Appendix F.

In dealing with the maximum principle, operators
were found which directed our attention to symmetry
considerations. The Onsager relations have long ago
been shown by Kohler" and Meixner" to be satisfied by
the solutions of the Boltzmann equation. %e present a
shortened proof containing drag effects, and, in so doing,
uncover some apparently new symmetry relations LEq.
(4.7)), that are valid when a time of relaxation exists
and the drag effects can be neglected. Presumably these
could be veri6ed by measurements on impurity scatter-
ing at temperatures below which drag effects are
important.

Finally, it is shown in Sec. 7 that spin waves stimulate
magnon-drag effects almost exactly analogous to
phonon-drag effects. The analogy with phonons is al-
most exact, since double-magnon processes are shown in
Appendix 0 to be negligible. The difference between
magnon and phonon scattering formally consists then
only in that the former alters the electron spin, the latter
does not. (Also in the former, the one-electron energy
depends on spin. )

The paper is organized as follows: Sec. 2 defines the
Holtzmann equation and the conductivity tensor, ap-
pealing to Appendix A for some details. The maximum
principle is derived in Sec. 3 with the crucial symmetry
relation proved in Appendix B. A method for handling
integrals involving inverse operators is discussed in
Appendix C. The Onsager relations and others are
discussed in Sec. 4. For this, the heat conductivity is
required, and that is given in Appendix D. The relation
between the variational solutions and the recent high-
field work is discussed in Sec. 5, with some of the matrix
element calculations in Appendixes E and F.The results
for the high-field drag effects is tabulated in Sec. 5. The
new variational principle is applied in Sec. 6, and inter-
polation formulas discussed there. The theory of magnon
drag is carried out in Sec. 7, with the justification
of the neglect of double-magnon processes indicated in
Appendix G.

2. DEFINITIONS

The distribution function for the electrons is assumed
to be of the form

p

f(k s) =f (E.(k))— g(k,s),
BE

(2.1)

where s denotes spin and k the one-electron state and

fp is the Fermi function; the Boltzmann equation is set

"M. Kohler, Ann. Physik. 40, 601 (1941)."J.Meixner, Ann. Physi. 38, 609 (1940).

up in Appendix A, and is"

(L+M)g= —(A X+B Y), (2.2)

where L Lgiven by (A14)j is the collision operator (con-
taining phonon-drag and magnon-drag effects) acting
on g, and 3f is the "magnetic operator"

I el ~fp c9fp d
M(g) = — vXH ~pg=- —g,

Ac BE BE d)
(2.3)

where H is the magnetic Geld, v the velocity of the
electron, and t /the s(k) of McClure' and the 1(0) of
Chambers"j representing the time from some point of
origin in its orbit as the electron would rotate in k space
under the influence of the magnetic field alone. X and Y
are the forces

X=a+ ) e~ vg,
Y= T 'v„T— —

(2.4a)

(2.4b)

where 8 is the electric field, and f the Fermi energy. A
and B are then

A=
~

e~ v(rl fp/rlE), (2 Sa)

B= —(E t )v (8fp/—BE)+y(k, s)+ y& (ki, ),s(2.5b)

where y is the phonon-drag term, Eq. (A18) of Appendix
A, Lequivalent to the II, of Eq. (31) of TM1j and
y& i the corresponding magnon-drag term (see Sec. 7),
obtained by solving the phonon and magnon Boltzmann
equations.

In demonstrating the maximum principle, we must
introduce an operator L ' which is the inverse of L
delned as follows:

L 'L(g)=g (2.6)

9j'hen a time of relaxation r exists, we have

L ~ (1/r)(~fp/~E),
L ' —& r(8fp/BE)— (2.7)

where

J;=Q;o;;X,+Q;S;;F;,
~"'-'=Z ~ o*s'&s+Z ~ S'~'1"r,

(2.9a)

(2.9b)

o,,=—
( e

~ Qg e;(8fp/BE) (L+M) 'A;, (2.10a)-
S; = —~e~gq s;(Bfp/BE)(L+M) 'B; (2.10b)—

O'; '=Pg e@(8fp/BE)(L+M) As, (2.11a)

S;,'=Qg e;E(Bfp/BE)(L+M) 'B;. (2.11b)
'6 Some of the notation and of the derivations in the present

paper refer to previous articles, Phys. Rev. 112, 158"I (1958);120,
381 i1960). We refer to these as TM1 and TM2, respectively, in
the text. References to the literature on the variational principle
can be found there, also.

The solution to (2.2) is formally

g= —(L+M)-'(A X+B Yj, (2.S)

and hence the charge flow J and the energy flow W can
be written
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The effects of the nonequilibrium component of the
phonons (and magnons) appear in two places: First in
the y's in 8, Eq. (2.5b), which give rise to the "drag"
effects in the thermoelectric power, and second in the
additional contributions to I. Lsee Eq. (A14)7, which
gives rise to "relaxation" effects in all the normal trans-
port coefficients. For a magnetic field, all that alters is
that L has M added to it, and the conclusions are of
the same sort as without a magnetic field.

There are two quantities we shall want expressions
for. If a magnetic Geld is applied in the s direction, and
an electric field is applied in the x direction, and no
current Qow is allowed in the y direction, then a Geld X„
is built up. The ratio X,/I, is then

pzz=Xz!jz= L&** o'~w'tru~/o'uwl (2.12)

Thus the "drag" effects enter S linearly through S„and
S,„, and the relaxation effects enter in a complex way
in all the S;,'s and 0-;,'s.

3. THE MAXIMUM PRINCIPLE

Consider g(k, s) to be separated into a part g&'& even,
and a part g(' odd in the magnetic field. The Boltzmann
equation (2.2) then separates into two, one arising from
the terms odd in the magnetic field:

g(o) — L—iMg (&) (3.1a)

the other from terms even in the magnetic Geld, which
when (3.1a) is substituted into it becomes

where

Z(gt'&)= —(A X+8 Y),

Z, —=L—ML-iM.

(3.1b)

(3 2)

Now in Appendix 3, it is shown that 2 is positive
defir4ite, arid symmetric, Pi.e., satisfies Eq. (32) with 2
taking the place of the operator 0). Hence, (3.1b)
which is identical in form with the Boltzmann equation
without a magnetic Geld, except that L has become 2,
leads to a true maximum principle in the usual way. We
shall not repeat the details of the variational procedure;
these can be found in the articles mentioned in reference
6. Corresponding to the separation of g into even and
odd parts, we can separate 0-;; and S;;into even and odd
parts by means of the identity

1 1 t 1~ t 1 1

L, ) E L,
(3.3)

If a magnetic 6eld is applied in the s direction, and a
thermal gradient in the x direction, then X and X„are
both generated, if no electrical currents are allowed to
Row (J',=0, J„=O).The latter conditions allow X, and
X„ to be determined as functions of V, and the
thermoelectric power is then

S=X (dT/dy) '= (p ./&)LS. —5 .( ~ / )j (2 13)

Thus, the even part o-;; ' and the odd part 0-;; ' are

o; & = —
l el Z& v, (ufo/i')~ 'A— (3.4a)

4. SYMMETRY PROPERTIES

The basic symmetry properties that the conductivity
coefficients satisfy are the Kelvin-Onsager relations.
Kohler" and Meixner" have shown that they are
satisfied by the solutions to the Boltzmann equation
including a magnetic Geld. The situation including the
nonequilibrium component of the phonons requires that
the phonon heat Qow be computed, and again the rela-
tions have been shown to be satisfied. ' "Use of the
operator Z introduced in the last section facilitates
these proofs. We find also that when a time of relaxation
is assumed to exist, and phonon-drag effects neglected,
some new symmetry relations occur.

If the electric and thermal currents are not written
as in (2.9) but as'7

J;=P;5;;&'&X;*++;S;,&» V.

W;=Q; 5;,&'&X;*++,5;,&4&Y;,

(4.1a)

(4.1b)

where 8'; includes the electron and phonon energy
Rows, and where

1 d
X =&,+ 2' —=X;+ F,, (4 2)

then the Kelvin-Onsager relations are

5; &"&(H)=5,&m&( —H) . m=1 4

5;,&» (H) =5,~'~ (—II)

(4.3a)

(4 3b)

5;;& '(H)=S, , t '&(—H) (mm'}

= (1,1)(2,3) (3,2) (4,4). (4.3c)
'~.See. H. B. Callen, Phys. Rev. 73, 1349 (1948).

o;;~'&= —
l el P~ v;(4tfo/BE)z '( IvI—. ')A;, (3.4b)

and similarly for S,;:The quantity maximized by the
new variational principle is then 0-;;('. This will provide
us with g&'&; and Eq. (3.1a) will then enable us to
get g(o)

Thus the major conclusion of this paper is that where
symmetry properties are concerned, one can deal with
the operator 2 which has all the virtues of L. In
practice, one is however faced with integrals involving
the inverse operator L ' but it is shown in Appendix C
that all such integrals reduce to an "internal" Boltz-
mann equation, which can be solved separately so to
speak, off to one side. It is in practice the fact that these
internal Boltzmann problems must converge inde-
pendently that distinguishes our solutions from Ziman's
and Tsuji's.
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S . .0)—Ssj 0 pj's

The relationship between the coefiicients in (4.1a) and Then we insert in the tensor elements (2.10) factors like
(2.9a) are (5.1) on each side of 1/(L+M), or using the result of

Sec. 2, around 1/Z. For the purposes of this section it is
advantageous to use the former; we shall come back to
the new formulation in later sections. Thus

=2 A. b~F-(Bfo/B~) vij —(4 4b)
L+M

To get the relations between the coefficients in (4.1b)
and (2.9b) requires computing the energy flow of the
phonons: This is done in Appendix D. The result is

(
cr,,= —P A;„l

EL+Mj„„.

S;;=—PA! l 8;„,
kL+M) „„

A;„=P A, (k) p;„(k),

(5.2a)

(5.2b)

(5.3a)

1
S i"'——P fv,E(Bfo/BE) r;$ —A;,

k I+M
(4.4c)

( 1 'j 1
! =2 ~-(k)* ~i- (k) (5 3b)
kL+M „~ ) L+M

where z,; is given in (D4). Now in Appendix 8 it is
shown that 2 'MI. ' is "antisymmetric" as defined by
Eq. (83), and that 2 is symmetric. Hence from Eqs.
(3.3) and (4.4), the Kelvin-Onsager relations (4.3) are
satisfied.

We see moreover from (4.4b) that if phonon-drag
effects are neglected

S; 2&(H)= Q A, A,E. (4.6)

If now the collisions are elastic, i.e., if a time of relaxa-
tion is assumed to exist for I., then E commutes with
L+M; hence S,;&'& Pand consequently S;;, Eq. (2.10b)]
satisfies

S,,&'& = T):,;++ Pw, E(Bfo/BE)

1
X

~
8, A;), (4.—4d)

I+MR

To obtain (5.2) and (5.3), we have in fact inserted one
factor (5.1), iI),k i'&, say, on the left of 1/(I.+M), and
another, 8» (j), say, on the right, 6") and 8") diflering
by containing q,„=v;(Z—i)" and q,„=v;(Z—t)", re-
spectively. This corresponds to the usual approxima-
tion, in which y;„and qj„are assumed to be selected
out in the respective places because of the orthogonality
of angular factors (arising specifically in A„or B„).Of
course, a truly complete set would incorporate both
situations, and no distinction would have been made.

Equations (5.2) form the solution to the problem.
The variatioeal expressions are obtained from this by
first approximating the infinite e sum as a finite one,
m=0, 1 S (and letting S go to infinity afterward),
and employing the relation

(5.4a)

where 0 represents any operator, and 0""' is the
cofactor of 0„„in the determinant !loll whose elements
are

S,,&'& (H) =Si;&'& (—II),
S;;('&(H) =S;;&'&(—H),

(4.7)
o„„.=Z, y„(k)*o(q. ).

Equations (5.2) become then in one step

(5.4b)

that is, it satisfies the same relations that S;j&') and
S;;&4& do. (This is apparently a new result, as a search
has failed to reveal it in the literature. )

lt may be possible to verify (4.7) experimentally at
very low temperatures, below the phonon-drag region
and in which elastic impurity scattering prevails.

S. VARIATIONAL AND "HIGH-FIELD" SOLUTIOES

It is possible to correlate the solutions of the Boltz-
mann equation that have recently been discussed by
McClure" Chambers "Lifshitz et al.""(which have
led to the open-orbit high-field considerations) with the
variational solutions as follows. First a complete set of
(not necessarily orthogonal) functions p„(k,s) is intro-
duced. By definition

(L+M);,""' D'i (A;,A;)
0.;;=—p A;„A;„.=, (5.5a)

IIL+Mll

S i D') (A;,8;)/D@, —— (5.5b)

where D'i is a determinant with elements L"„„+M"'„„,
and where D' (A), ,A, ) is D;; bordered with a row of A,„
and a column of A j„,the lower right-hand element being
zero. Equations (5.5) are the variational expressions for
the transport coefficients.

The high field expre-ssiorss following from (5.2) arise by
by choosing the functions p„ to be the eigenfunctions
of the operator M LEq. (2.3)j

(5.6a)

Z. v (k)*~.(k')=B~.~" (5.1) ar„=2m-n, t/T H ' (v=0, &1, ~ ), (5.6b)
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Z &'n&~n PnPn'p
1+ip)„GABE.

(5.8)

which is just the result of references 10—13 in the same
approximation.

Thus the high-field work and the standard variational
procedure differ essentially only in the choice of the
complete set &p, since (5.8) can be converted to deter-
minants just as in (5.4) (see Sec. 6).

If a time of relaxation is not assumed (or assumed not
to be constant), then (5.2) is no longer valid, and it
becomes a question of expanding 1/(L+M). This can
be done by standard operator techniques:

where T=T(k„E) is the period of the orbit (see
references 10—13). If that is done and if we assume a
constant time of relaxation 7-, and a constant T, then

(L+M) 'v-=(Bfo/BE) '(~ '+~~-) 'v-, (52)

and (5.2) becomes in one step

introduction of certain "projection" operators, as shown
in Appendix F.

The expansion here, and the method in Appendix F,
should be contrasted with the "Fourier method" of
Sec. 5 of Lifshitz et al."Our results will differ by con-
taining directly the matrix elements of M' which keeps
the diagonal part of L+M together in one piece. When
a time of relaxation may be thought to exist, our results
will relate to those of Chambers" in a way parallel to
how our results in Appendix F relate to those of refer-
ence 12.

The matrix elements for the case when a time of
relaxation is assumed are discussed in Appendix E, it not
being dificult to see from (5.9) that the high-field
limit is

1 ~ 1
lim 8~-" L'+M'j„„M„'

1 1 1
L „' L,„p' I.o—„', (5.14)

~o'
1 1 1

(5.9) which with (5.13) yields
L+M I.'+M' M' M' M'

where we added and subtracted a, quantity C (to be
determined):

t)' 1 )) 1 1
const,

kL'+M') oo Mo' I-oo
(5.15a)

L'=L—C,

3II'=M+C,
(5.10) ( 1

lim
(

1
I

0

because one of the eigenvalues of 3f is zero, which can
become embarrassing. It turns out to be advantageous
to choose C such that L has no diagonal elements, and
JI/I' has omly diagonal elements, with respect to the
eigenfunctions of 3E. Such a condition, when a time of
relaxation is valid, is satisfied by the choice L«, where

t'
lim

i~ "EL'+M')„p

1
Lmo

Loo+M Loo
(5.15c)

1 1
LQ (5.15b)

Loo Loo+M„H

I..()„E)=gd(y. "I.(p. ),
1 y 1 1 1(5») lim

~ " L'+M'l„, „M„' Lpp+M„H
(5.51d)

the integral being taken around an orbit (if closed) or a
period, in general. Since the eigenfunctions (5.6) are
pure exponentials, we have L„„=Lpp for any n. It is
then obvious that L„'=0, and in fact we get

(1/M') „.= (L„+M„)
= (Bfp/BE) '(7 p p '+iso„) 'p -„,„,—(5.12a)-

Lnn' =Lnn' ~—n, n'Lpo

= (Bfo/BE)P(~ ')- —(~ ')-&-.,"j, (5.12b)

With these results, we can return to (5.2) and write
the limiting forms of 0-;, and S;;for certain assumptions
concerning i),p (i.e., A;p). The drag effects manifest
themselves in the fact that 8;pg0 in general whether or
not open orbits occur, because y,p/0. (See Eq. (2.5b)
and Eq. (A18).j Thus the high-field limits are Dor S,
see Eq. (2.13)j:

I. 8 0+0; 'v~0@0;

where the (1/p) „'s are obtained from (2.2). In the
limit of large H we can expand 1/M„':

1
o'; ~ —P Aip A.p~const'v

3f0'
(5.16a)

const, v=0
llm
~ "M ' 1/H, eAO.

(5.13) S,;~ —g A;p 8;p const,
3f0'

(5.16b)

If a time of relaxation cannot be assumed, then the
generalization of this procedure can be handled by the

p" ~ijS=—S;;—S,,— const.
T — t7jg

(5.16c)
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II. &;o=0', &~oA0; VI. v;p ——0; i= j;

mao m L'+M'
0,, —+ —Q QA; „A,„

nSp

1
A;, —, (5.17a)

J.'+M' „„H m p 1 1 1
= —2 A, „A,, nI

—+ — —, (5.21a,)
Flo'

S,;~ —Q Q A,„B,o
mwo s L'+M'

S ~ —QQA — Bp
nwo p L'+M'

B,, „—,(5.17b)
I.'+M', H

1
B;, „—(drag). (5.21b)

L'+M' „, „H
p" ~ijS=—5;;—S;,— H.
T — 0'g'g

III. v,;o@0) m, o
——0,", jW j;

o" —+ —Q P A. p

nwo m L'+M'

+A i, n
— A jiiL'+M'

1
S'i ~ P A 'p B&pcoils't (diag), '

Mo'

S—& const.

IV. vp ——vp ——0; i~j;
1

o.;;—+ —P PA; „—A;„-—,
M„' ll

S~i~ —Q Q A, B;p
mao z L+M p—

8;,l.'+M'

pii ~ij.
S—& ——5;,— const.

ops

V. z;o/0; i= j;

0'''~ —P A o A p const,
~o'

1
S;i~ —P Agp B;p~const.

Mp'

1

H

(5.1.7c)

(5.18a)

(5.18b)

(5.18c)

(5.1.9a)

(5.19b)

(5.19c)

(5.20a)

(5.20b)

The following points are to be noted about these
equations. The a members correspond to well-known
results"" (except for use of M„' for M„). The fi

members all contain drag effects in addition to the
"drift" effects. In (5.19b) the drag effects add a new

type of term (the first m sum) which has the same
limiting values (with respect to powers of Fl) as the
drift term. In (5.18b) however, the drag effect yields a
term which approaches a constant in the limit, whereas
the drift effect would yield a term going as 1/H.
Similarly, in (5.21b), the drag effect yields a term whose
limit goes as 1/H, whereas the drift term goes as 1/H'.
Thus the high-field limits are altered by phonon-drag
effects.

The c members of these equations show the thermo-
electric power limits as calcula, ted from (2.13), but the
notation needs some explaining. In these equations, the
temperature gradient is supposedly applied in the
i direction, where i is perpendicular to s, the direction
of the magnetic Geld, and j is mutually perpendicular to
i and s. Thus in (5.17c), S;, corresponds to what is
calculated in (5.18b).

In one case, (5.17c), we find S H. However, in
device applications what is crucial is not S but the
"figure of merit" Z=S'/pp, and it will be the case that
the limit S' H' is compensated by the limit p H', so
that Z~const. (This supposes that limIr+a&K Kphononi

when p H'. )
It should be noted that in the thermoelectric powers,

the limiting expressions behave as some power of 1/H,
and this power is the same whether or not drag quanti-
ties are included. One might have anticipated say
(5.18b) perhaps to yield a different asymptotic value
for some S, but it is not the case; both terms in (5.17c)
have the same limiting power of 1/H.

This completes the formal solution of the Boltzmann
equation. The generalization to situations where a
relaxation time does not exist is carried out in Appendix
F. The main object has been to show the relation be-
tween the variational solution (5.5) and the high-field
solution (5.8). This relationship is developed further in
the next section.
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&ij Q AgnAj n(@ )nn'
nnl

(6.1a)

(6.1b)

where, for any function Q, ,

Q -=Z~ v»-(k)(1 —~L ')Q (k) (62)

Thus instead of (5.5) we obtain

a,,= x)(A, ,A,)/n,

S;;=n(A, ,B,)/x),

(6.3a,)

(6.3b)

where the elements of the determinant X) are 2„„",and
where 50(A, ,B,) is the determinant S bordered with a
row of A;„and a column of 8,„, the lower right-hand
element being zero. The results (6.3) are what the new
variational principle leads to, and are to be contrasted
with (5.5). We repeat that, in practice, what distin-
guishes (6.3) from (5.5) is that in (6.3), integrals
involving L ' occur that are evaluated by separate
internal variational principles, and that these integrals
must converge independently, whereas on the old
principle they appear automatically in an approxima-
tion that corresponds to the number of rows and
columns in D.

We should like now to get a variational expression
that will include open-orbit effects. This amounts to
constructing an appropriate complete set of functions
q„. In the standard treatments, the choice was

y„&' =v, (E f')" ncosn„(E— i )—", —(6.4)

where spherical energy surfaces lay in the background,
and n, is the angle between k and the direction of
applied electric field, x. Corresponding sets of functions

q „&&' and y„&*& would also be necessary as used in (5.2)
and (6.1).

Now if a magnetic field is applied in the s direction,
and spherical surfaces still obtain, the standard expres-
sions (6.4) may be written

v, = v slna cosp,

v„=n sinn sinP = v sinn cos(P+m. /2),

sz v costly

(6.5)

where n is the angle between s and k, and where p is
the azimuthal about the polar s. A complete set of

0. NEW' VARIATIONAL SOLUTIONS AND
INTERPOLATION FORMULAS

In the last section we have confined ourselves to the
usual approach in which matrix elements of the operator
L+3f appear. We saw, however, in Sec. 3 tha, t it is the
operator 2 that has the desirable symmetry properties.
In this section, we shall convert to the new variational
principle.

First, instead of (5.2), we obtain from (2.10)
using (3.3),

angular functions is suggested by each component as
follows:

(p~)~2~3 = slIlny& cosn2p (E i )"3, (6.6a)

p„,„,„,&»=sinngn cosLn~(P+~~))(E —i)"3, (6.6b)

q „.. .&' = cosn&n cos/(n2 —1)p j(L—f)"', (6.6c)

where n, =0, &1, , (i =1, 2, 3). The usual expression
is obtained by letting e&=n2= &.

Now if we wish open-orbit. effects, we are interested in
distorted surfaces, and in particular in the possibility
of there being a component V,o of v which is constant
with respect to p. This corresponds roughly to the term
n2=0 in (6.6), except that for distorted surfaces, if we

go around the orbit in k space, not only does p alter, but
e will vary also. Therefore we desire in addition, a
replacement of n by a quantity cx which will remain con-
stant as the electron describes an orbit. We can do this
formally as follows: Consider a solid object with a
center. This is to represent the occupied part of a zone.
Through the center draw the s axis, and at some dis-
tance L from the center along s draw a plane perpen-
dicular to the s axis. This plane cuts the object in a
slice of area with perimeter P. We now construct a
conical surface connecting the perimeter of this slice
with the center of the object. The curved area of the
conical surface is called S. If the object is a sphere, then
the perimeter is a circle of radius R (I'=2m.R) and the
perpendicular distance from the center to the perimeter
is a constant D, say. Thus,

sinn=—8/D=A/S, for spherical surfaces, (6.7)

since A =vrR' and S=mRD. We can now use A/S in the
general definition of cx since it has meaning even for
distorted surfaces:

u= sin '(A/S), for distorted surfaces. (6.8)

a is a continuous variable going from 0 to m/2 and then
from ~/2 to 0 as the slice moves from the top of the
object to the middle to the bottom. It remains constant
as the electron rotates in its orbit. Such a choice for a is
not unique, but it shows that at least a consistant
definition is possible. A complete set of functions can
then be constructed as in (6.6) with n replaced by a.
Open-orbit eGects will be accommodated by e2 ——0 in
(6.6b), and the usual results (spherical surfaces) will

appear when e~=e2=1 and n=~. We are still a long
way from detailed computations involving distorted
surfaces, but we can at least formally write out the
expansion. (As an approximation, one might use any
averaged n.)

Equation (6.6) will lead to a ratio of determinants as
in (6.3) where the rows and columns of S are labeled
(nin2n3)=(000), (001), , (010), (011), , (100),
(101), , etc.

A "simple" interpolation formula can be obtained
for 0, , (xmas, x'Ns) by choosing nq 1, taking the——two
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possibilities es ——0, 1, and allowing Ns ——0. (The 00 choice
corresponds to the usual electrical conductivity energy
dependence assumption. )

~ 100~*')

8110(

~100'*'~»0"
xx'As. (6.9)

L'100,100 I110,100

L 100,»0 ~110,»0

Certain simplifications have been made. First M
operating on q i,o,o'*' is zero whence )see (3.2)]

In this way, we can see how the variational principle
leads to interpolation formulas. The real difficulty has
of course not been avoided; namely, the "hard pound-
ing" (to use Ziman's phrase") that must accompany
any detailed calculation.

It should be noted that in these results, we have not
assumed that I. could be represented by a time of
relaxation, Note also that the matrix element of 2 in
(6.12) involves the inverse operator I. '. Such integrals
may be handled by the method of Appendix C. The
results here may be compared with Tsuji's work4

(which uses the ordinary variational principle and has
not considered the large H limit).

( ')= r ~ ( *')
n1n2n3, n1'Ong' = n1n2n3, n1'Ons' ) (6.10) 7'. THEORY OF MAGNON-DRAG

and similarly for e2 and 0 exchanged, for 2 is symmetric.
Also for the same reason A„,0„,' ——A„,0„,' Lsee (6.2)].

In the limit of high-magnetic fields, the terms in 4
get large as H', and hence will dominate. Thus, multi-

plying out the determinants in (6.9), we get cancella-
tion, with the result (x'= x)

liiii 0'~~= LAi00{ l] /Lr00 r00{
IImoo

xx'Ns (open orbits), (6.11)

which is the variational expression for this limit. If there
are no open orbits, then 3100( ' =0, and this result does
not hold. We get instead, from (6.9)

0 xz A110 A110 /+110, 110 1 (6 12)
+—&oo

which is the variational expression in this case corre-
sponding results hold for x/x'. %e have ignored
possible vanishing of terms because of symmetry or
other reasons, and have limited the discussion to
xx'Qs. For intermediate situations (H ~ ~), Eq. (6.9)
as it stands should give an indication of how things go.
As more and more angular terms are deemed necessary,
more and more rows and columns are added to the
determinants. For a given number, however, the varia-
tional principle provides the "best" expression.

All the results of the preceding sections can be taken
over for the situation in which the scattering is by spin
waves, and this leads directly to magnon drag in the
thermoelectric power. The analogy between magnons
and phonons is not, strictly speaking, exact, because

(1) double-magnon processes occur in first order in the
spin-wave treatment, whereas they do not appear in the
corresponding order of electron-phonon interactions;
and (2) the electron energy depends on spin for the
former, but not for the latter. Double-phonon processes
have been considered by Franzak and the author, "and
the corresponding analysis for magnons can be fashioned

by analogy, with the result that double-magnon
processes appear to be negligible at low temperatures.
Thus the usual treatment of electron-phonon processes
and that for magnon-electron processes differ only in
that the former do not involve spin Qips, whereas the
latter do, and that in the latter the one-electron energies

depend on spin. '0 Ke shall develop the analogy in this
section.

The electron-phonon interactions U & ph and electron-

magnon interactions U, 1 „arise from the perturbation

of the Coulomb and exchange terms in the Hartree-

Fock equation, which when converted to second

quantized short-hand notation are":

=E L ~ ( R(J) (J))— ~ ( R(~))] (7.1a)

.kklP~P~~

V.r „——P tt.„(r—R(l))= —2 P s S~J(r—R(l)) (7.2a)

8s'kk'a

'8 Reference 1, p. 512."E.Franzak and M. Bailyn, Bull. Am. Phys. Soc. S, 280 {1960),and see article elsewhere in this issue. LAlso an application of a
similar procedure is given in M. Bailyn, Phys. Rev. 121, 1336 (1961).j

'0 Kasuya PProgr. Theoret. Phys. Japan 22, 227 (1959)j has also considered the problem of scattering by spin waves. He was not
looking for magnon-drag, however.

"For spin waves see S. V. Vonsovskii and K. A. Turov, Zhur. Exptl. i Teoret. Fiz. 24, 419 (1953); and A. I. Akhiezer, V. G.
Bar'yakhtar, and M. I. Kaganov, Soviet Phys. —Uspekhi 3, 567 (1961).
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The ck, ~'s are creation operators for the electrons, the
at's for the phonons and 6~'s for the magnons. The wave
vectors k, o, x refer to the electrons, phonons, and
magnons, respectively. The phonons are also distin™
guished by a polarization index j (j=1,2, 3). The
double-phonon effects appear in the last member of
(7.1b), where the term written out involves the destruc-
tion of two phonons, and the dots indicate that there are
corresponding expressions for a creation-destruction
pair and for two creations. The double-magnon terms in
the last member of (7.2b) arise from the s component of
the s S spin vector dot product. The above expressions
are not all-inclusive. For example, we have left out
processes in which a magnon and a phonon are emitted
simultaneously, and in which three or more of either
magnons or phonons are emitted or absorbed. 4 is the
ion position index.

The single-magnon processes are immediately analo-
gous to the single-phonon processes provided the
replacement I

see (A:IO)j"

1 mp dip8' "&= Q - — sv(v)
TAp 365 K (6

kk', ss'
Lv(ks) —v(k's')]n(x; ksk's'). (7.5)

Here Xp(pp(x)) is the equilibrium distribution function
of the magnons, 6 is the crystal volume, v(r) the mag-
non velocity V„Z(x), s=hc (x)/KT,

&fp
np=- —Q g fe In'-'Lp, (k,s)g' =, (7.6)

s &~o

and n(x; ksk's') is the relative probability that, a rnag-
non x will interact via the electron process ks~ k's.
The expression for it is'"'

completely analogous to the corresponding phonon-drag
one. "'4 LThe latter. can be found for example in Eqs.
(H2) —(H7) of T1VI2."j

~kk'j~ ~ Jkk', x

~2S i
=8(k—k'+ +K)f —. P .*J(r)P .d'r, (7.3)

kx

n(x; ksk's')

Jll-'Dk. k'~-la( —)~(—)

is made, and provided the sum over polarization j is
neglected. Thus, all we have to do to convert to magnon
effects is to use (7.3) in (AS) and (A9), and allow for spin
Qips. But the double-magnon processes must be shown
to be negligible: This is done in Appendix G. Finally,
from the s component of the s.S product in (7.2), there
arises a difference between the one-electron energies of
up-spin electrons and those of down-spin electrons (up
and down relative to the spin-wave description, i.e., the
axis of alignment) which can be writtens'

where

dip 1 [1~]

+ Q + Dksk'8' 1l( )~( )
ds KTr(K)

(7.7)

(7.9)

&+(k) =&(k)—
p (1~~)Jkk, (7.4)

where Jkk is the diagonal matrix element, and —2'SXp is
the total spin of the ion system (of the d electrons, that
is, which provide the spin waves), where S is the spin
of one ion, and X the number of ions. Thus —',X(1—p) is
the number of magnons.

The consequence of the last point is for example that
when the variational principle is applied, the expansion
functions must take into account the difference in spin.
Such a situation has in fact been worked out in a
previous work. "The result is that for a certain number
of rows and columns in the determinant D Lsee Eq.
(5.5)] corresponding to an approximation in the phonon
problem, we must now have twice as many, because of
spin. The details are rather involved, and we shall
content ourselves with merely making the reference.

Ke shall complete this section by writing out the
magnon-drag contributions S' "' to the thermoelectric
power. The expression is an example of a quantity

' See. S. V. Vonsovskii and E. A. Turov, reference 21, Kq. (23)."M. Bailyn, "Transport in Metals with Magnetic Impurities, "
Westinghouse Research Report 029-8000-P1.

0(—) —+ 2mkb(E' —E—fi(o(v)),

~(—)= s(k' —k —~—K),

(7.10)

(7.11)

and where, in (7.7), r(x) is the relaxation time for the
x magnons involving all processes which do not involve
electrons (such as magnon-magnon and magnon-phonon
processes). Since the difference in energy in (7.4) is
independent of k, and since we may expect that the
difference at the Fermi level may be accommodated by
a change in k magnitude that will not upset the usual
geometry in k space, "we may adapt the free-electron
approximation as

v.(ks) —+ (h/no*) k„ (7.12)

where m* is spin independent. Thus the square bracket
in (7.5) is approximately the same for all processes

s4 M. Bai}ya, Phil. Mag. 5, 1059 (1960). See also TM1, refer-
ence 16.

"The notation on the right-hand side here resembles that of
TM1 and TM2 of reference 16. See also reference 24.

"Namely that an electron is scattered to and from approxi-
mately the same energy surface. This refers to the geometry in k
space, and does not imply an elastic collision approximation
elsewhere.
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involving the same reciprocal lattice vector (for all
processes of a given umklapp type, to use the term
employed in TM1). As a result, the same preliminary
sum over kk' can be employed that was used in reference
24, and we end up with

d&o mo
g(mag) sv(x)

Tnp 3A ~ ds m*

rK(x)—'
Xg(~+K)

K g ~ 7-Kf 1C

(7.13)

where

r„(x) =(3~/2)S[lp ()Jkk"'~ )„7
X[kp/ix+Ki jco(v), (7.14)

where S is the spin of the individual ion, l p is given by
(A13), and the square brackets are designed to be
dimensionless. The angle bracket is an average over
kk' for a given rand .K. (Clear distinctions among the
magnon wave vector x, the reciprocal lattice vector K,
the electron wave vector k, and the Holtzmann constant
z are casualties of the notation. )

This result is identical with that for phonon drag, and
will yield for example anomalous signs for the Umklapp
processes. Thus to distinguish magnon drag from
phonon drag will in general be difficult. Our experience
with phonon drag in metals is that at best, the theory
can be shown not to be inconsistent with experiment,
all predictions being in the realm of guess work since
the actual numerical result is a small difference between
large terms of different sign, each rather sensitive to
impurity content, etc. (The small difference may how-
ever be large compared to the diffusion component. )
In the case of magnon drag, we merely point out that
the magnon-magnon relaxation time has been estimated
to be within an order of magnitude of the magnon-
electron relaxation time, " which indicates the possi-

bility that 5& 'g' might actually play a role in the
thermoelectric power of some substances.

8. SUMMARY

We have attempted in this paper to formulate a
niaximum variational principle for conduction problems
in the presence of a magnetic Geld, including phonon-
drag effects. We have shown that for symmetry con-
siderations the operator Z, =L—ML 'M is the im-
portant one, not X+M. Methods for the high-magnetic
field expansions have been indicated, and the limiting
expressions for the drag effects in the thermoelectric
power have been discussed. Finally, magnon-drag
effects have been shown to be analogous tophonon-drag
effects.
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APPENDIX A. THE BOLTZMANN EQUATION

The method of taking into account the nonequilib-
rium component of the phonons by solving 6rst the
phonon Boltzmann equation and substituting the result
into the electron Boltzmann equation has been shown
in TM1."The only extension required for this paper is
the inclusion of a magnetic field streaming term. How-
ever, in order to have expressions which will convert to
the spin-wave scattering problem (Sec. 7) with no
trouble, it is desirable to rewrite some of the steps in a
new notation.

The Boltzmann equations for the electrons and
phonons are

=P P ([P,f' (k's'; ks)+P, "(k's'; ks)][g(k's') —g(ks)g
('fy 'fq
E8$ I drift ~~ ~coll

+g G;(e)[P;f'&(k's'; ks) —P, f &(k's'; ks) j}, (A1)

where
BTp 1 Eioj

+—', g [P;f'&(k's', ks)+P;&'&(k's', ks)]&0,
BfiCu r(j e) kk'cc'

t'BX /BEi
=G (~)l';(e) '+ ', P [P, f (k's';-ks) P,"(k's', ks) j[g—(k's') —g(ks) j,

E 8~ drift E R I coll kk'
(A2)

and where 1V(je)=N p [BXp/BA(o]Gf(e). The phonons
are described by a wave vector e, a polarization index

"E.Abrahams, Phys. Rev. 98, 587 (1955), has estimated the
electron-magnon relaxation time at 10 sec, and C. Kittel and
E. Abrahams, Revs. Modern Phys. 25, 233 (1953),have estimated
magnon-magnon relaxation at ~10~ sec.

j (= 1, 2, 3) and a frequency &u, (e) r(j e) is the p. honon-

relaxation time involving all processes except the
electron-phonon ones. The sums as in (A3) are defined

in TM1, and mean that all processes are summed over
that pertain to a particular type of phonon (je). The
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drift terms are where in (A16)

(Bf lifo U&rl

=Llol v X—(&—f)v.&] +M(g), (A4) r;.(g) = ——; g [P;&'&(k's', ks) —P, '&(k's'; ks)]
«&&t ~&, BB j ~rssr

(&&N/&&/) a„.&g= —(&7No/&7h&o) ho&V, &o.7) (A.S)
&&[g(k' ')-g(k )]

=P [P;& & (k's'; ks) —P, &'& (k's'; ks)]g(k's').
(A17)where X and Y are defined by (2.4). The P's are

And also in (2.2), or rather in (2.5b),
P, & & (k's; ks) = («T) 'W;&'(ks —+ k's) fo(1—fo')

( )] (A6) y(ks) = —P [P, & &(k's'; ks) —P;&'&(k's'; ks)]

P, &'&(k's; ks) = («T) 'W;&'&(ks-+ k's) f,(1 f,')—
X&[P-' P+ ho—& (&s)] (A7)

8$p
&&l&(je) h&op', &o. (A18)

t3AEO

l V;&'& (ks —& k's) = 2~h—'
I
V ...I

'N(js),

W &'&(ks —+ k's) =2~k 'I V» I'[N(j&r)+1],

V&, &,...——
&& (k—k'+ &r+K)[2MN&o, (&r)/5]-i

(A8) In order to convert to the spin-wave problem (see
Appendix G), all that has to be done is to replace the

(A9) V of (A10) by the spin wave J, and to keep this replace-
ment in mind in the W's of (A8) and (A9), and then in
the P's of (A6) and (A7). Then the Boltzmann equation
(2.2) reads precisely the same, except that the spin-wave

y e, (+) . p p, s~od3r (A10) description i& replaces the phonon description &rj.

The N(j&r) of (A8) and (A9) are the phonon-occupation
numbers; e, (&r) is the unit vector in the direction of
polarization of the j&r phonons; M is ion mass; v(r) is
the potential from one ion at r =0; and K is a reciprocal
lattice vector or zero. The P's satisfy

P, &'& (k's; ks) =P;&'& (ks; k's). (A11)

For order-of-magnitude estimates (which we need later
in Appendix G), it is sometimes useful to write the
square root in (A10) as

(h,g)o= (g,h)o,

(h, h)o&0,

(82a)

(82b)

APPENDIX B. SYMMETRY PROPERTIES
OF THE OPERATORS

Ke define integrals

(h, g)o =——g& h(k)0(g), (81)

of arbitrary functions h and g, for the operator O. The
functions h and g will all be assumed to be periodic in
the repeated zone scheme in k space. It is well known
that L~" satisfies the symmetry relations ' '

2M&o;(o)

go &N*

kp,
h&o;(o) M

and it was shown in TM1 that L(g) [see (A14)] also
does. It is also known that 3f satisfies the antisym-
metrical relation '4"

where t 0 is the Fermi energy at T=0 and can be written
(h, g) ~= —(g,h) ss, (83)

L(g) =L'"(g)+L"""(g), (A14)

|'&&=h'h p/2rN*,

ho'= 3m'N/6,

where 6 is the crystal volume.
When (A2) is solved for G and substituted into (A1),

the equation (2.2) results, where

which corresponds to changing the sign of the magnetic
Geld on the right-hand side of the equation.

We wish now to prove that the operator 2 of (3.2)
satisfies (82). By successive use of the relations (82)
(valid for L) and (83) (valid for M), we get

g, g[—MI; M(h)]=g, [M(g)]L; [M(h)]
=g, [M(h)]L;&[M(g)], (84)

L&"(g)= Q [P;& &(k's', ks)

L"'"(g)= & LP"'(k' ';k)

since if L is symmetric, so is L '. But the quantity in

(84) is symmetrical in g and h (since L ' is symmetric)

yP,.&~& (k&s& ks)][g(k&s') g(ks)] (A15) and is positive definite [i.e., satisfies (82b)] when g= h

(since L ' is positive definite if L is). Thus, —ML 'M
satisfies (82); but L does also. Hence the sum, which is

2, must satisfy (82). This completes the proof. It
P; &'&(k's'; ks)]X(j&r)1'„(g),—(A16) follows also that 2 ' satisfies (82).
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Ke wish finally to prove that 2 'ML ' satisfies (B3).

By successive manipulations as in (B4), it is easy to
show that

P~gZ 'ML '(h)= —P~hL 'MZ '(g). (BS)

L 'MZ '=L 'M(1 L'M—L 'M) 'L ' (B6)

[using (AB)—'=8 'A 'j But L 'M commutes with
functions of L 'M. Thus (B6) becomes

term will be a ratio of determinants of similar integrals:

Z~ LM(g) jL '[M(h) j=D'"'(M(g), M(h))/D'"'. (C&)

The determinant can be expanded in a series, and the
series must converge independently of whatever ap-
proximation is used that leads to (C6).

APPENDIX D. CALCULATION OF W&"

The heat flow of the phonons is, using (A2) for 6;(e),
(1 L—1MI —1M)—1L—1MI—1 g—1ML—1 (B7)

which when substituted in (B5) completes the proof.

APPENDIX C. SUMS INVOLVING
INVERSE OPERATORS

%e consider sums of the form

W "=P v(je)hip;(e)

=Q v(je)hcp—

BXp
(~)

RAM

BEp
li(je)

Bkco

BEp
hppv Y

(P,q)~-'= —Z~ P(k)L '(q) (C1) +P [P& &(k's'; ks) —P&'i(k's'; ks) jg(ks), (D1)

The solution is
L(h) =q(k).

h= L—'(q),

(C2)

(C3)

and the current corresponding to the flux p is then
precisely (C1). In fact (C2) is analogous to (2.2) of the
text, (C3) is analogous to (2.8), and (C1) is analogous
to (2.9) using (2.10). The analogy is complete, and the
variational solutions (5.5) are applicable at once. These
require a complete set of functions p„, which as noted
before may be chosen to 6t most readily the functions
of p and q of (C1).Thus the sum in (C1) can be written

(P,q) ~- = D' "'(P,q)I/D' "',— (c4)

where we have placed an index y on the D's in order to
specify that the solution is in terms of the expansion
functions q„. Of course the complete solution will be
independent of which set we choose, but an approximate
solution (one or two rows or columns in D, for example)
will depend on which functions we have chosen. The
elements of D above are d„, where

To know L ' is to know the solution to a Boltzmann
equation. In fact each sum as in (C1) is analogous to a
current Row, and can be calculated by a separate
variational principle, adaptable to the particular p and

q of (C1).
The corresponding Boltzmann equation is for an

unknown, say h(h), and reads

kk'

where v(jo)=V,cu, (e) is the phonon-group velocity.
The erst term in square brackets is the drift term in
(A2), the second is the electron "reaction" term. The
latter can be written in terms of y of (A18) by employ-
ing the relation

ZZ=Z (D2)

[See Eq. (21) of TM1.]Thus we may write

Wp"=P Tii;; I;+P g(ks)y;(ks)

1
=P T~,;I;—P y;(ks) [A X+B Y], (D3)L+M'

using (2.8), where
(BXp)'

2'«-= —~ b(j~)jt[v(jv) j-(h~)'~
l

l (j~) (D4)
1& i BhM1

APPENDIX E. MATRIX ELEMENTS OF I/(K+M),
ASSUMING A RELAXATION TIME

From (5.9), we get for the first few terms

1 — 1 1

L+M „„M'„M' M'„

d-= —Z~ v-(k)L(v-) =&-,
and the other integrals are

(CSa)
+P L,' „L' ~

' 3E 3f'„. 3P„
P-=Z~ p. (k)P(k) (CSb)

As an example of how this works, consider evaluating

(g,h) g

Qg gz(h) =Qg gL(h)+Pg [M(g)jI.—'[M(h) j, (C6)

where we used (B4). The first term involving L can be
evaluated by integration (in principle), but the second

1 1 1
L'„„ L'„ „"

M'„"
L„„.

(E1)

%e are interested in the limit H —+ ~. Therefore, from
(5.13), we desire the e and I"sums in (E1) to contain
as few 1/M'„, e/0, as possible. However, if two succes-
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1
g I.'o„ I.'„„" L'„—p

~o ' wo 3f'„. 3f'„. M o H
(E2a)

sive M„'s in (El) have n =0, the sandwiched-in matrix
element of I,' must be I.'po which is zero. This simplifies
things enormously, and the result is (5.14) for the
lowest power of 1/II. From this, we were able to write
(5.15) for the largest terms in the limit H —+ ~. We list
below the next largest terms:

1
Z L'o. L'. o

~'p n'go

where P„t is the Hermitian conjugat, e of P„. The
quantity C in (5.10) is now chosen t.o be

(F6)

Thus the operator 1/M' is diagonal with respect to the
functions p„(t) and has the matrix elements (that are
still operators)

1
dt p — y = dt q PnM' Q L„.„+M

nl

1
df q

— po, (F7a)
L„„+M„

1 1 1 1

3Eo n~~p HEI' n& M'n H
(E2b) 1 1

~t po --go= ~t yo yo.
M' I-oo

(F7b)

1 1
Q I'.;

M' ~'&p M'„

1 1
I.'„()-

M'o B'

1 1

Hap M'„ IP

(E2c) This corresponds roughly to (5.17) of the text. We also
have I.„„'=0.The analogy with the time of relaxation
situation is then complete.

To evaluate something lilce (2.10), we proceed as
follows:

Here, (E2a) corresponds to (5.15a), (E2b) to (5.15b),
etc.

as follows:

Q(~».,&)=Z- Q-(&.I-') .(~), (F1)

(F2)

(These I'„'s are the operator counterparts of the kk'

indices on IVo~. in Sec. 5 of reference 12.) Clearly

APPENDIX F. MATRIX ELEMENTS OF
1/(L+M), GENERAL

When a time of relaxation does not exist, difficulties
arise because L is not a function, and the p of (5.6) do
not form a complete set for all the variables t, k„K We
would like to be able to use the simplification that arose
in the previous Appendix, namely that Lpo =0. But if
the y„'s of (5.6) are used, and L is an operator acting on
t, k„and E, then the meaning of the matrix element
L„d fi eednin (5.11) is rather obscure.

The difficulty can be overcome by introducing pro-
jection operators P„which operate on any function
Q(t, k„E),

1
g;;&'&= —Q A, A;

M'
(F9a)

A;„p„,
n

(F9b)

1
g;, ~"=Q A, I' A;-

3F M'
(F10a)

1
Q A, (p„- L o' A;ppp

neo M„' I pp

1
+Q A;op o Low'

Loo M„'

+ Q Q A;„q„L„„.' A;„.p„. (F10b)

g . =g . .o)+g . .(&)+.. .

where the superscript p in g,,'» indicates how many
times 1/E appears;

„P =1,

L(Q) =2- LI'-(Q).

where 1 is the unit operator. Now from (A14), we can
write

(F4)

The sums here may be evaluated by successive
applications of the method of Appendix C. As an
example, consider the erst sum in the square brackets
of (F10b). It can be written

Thus in a formal way, we can writ, e the operator I. as
Q I'~A'~q L I'o- -A'opo ~,

3E„' I pp

~~nn' Pn L.pny

because L„p =L 'p t since I'„I'„(e'Qe)=0(. The prob-
(F5b) lem is what to use for the quantities enclosed in circular
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brackets. Suppose we introduce a complete set of func-
tions P„(k). Then

where

Po A'opo=Po P))tp(k)Uy,
Loo JR

(F12)

I7.=Z k.(k) A'oo o

I-op

D(x) (P A,.o&o)/D(x) (F13)

where to evaluate U„by means of the method of
Appendix C, we have introduced another set of expan-
sion functions X„(k), which may (or may not) be the
same as the P„.The eleinents of D&» are

d„„=P), X„(k)l.ooX„(k). (F14)
FIG. 1. Two-phonon umklapp transition.

Eq. (F11)now reads

2 &.Z(A'. o -),[&oL(4.)], (F15)

and the inverse operator here can be taken care of by
another application of the method of Appendix C. It is
clear that such computations will very quickly become
very tedious. In addition, an attempt to make computa-
tions must overcome the difficulty that i), (k) is not well

known for substances with distorted energy surfaces.
Nevertheless the method indicated in the Appendix is
the natural generalization of the one in Appendix E to
the case where a time of relaxation does not exist.

Voo &'~=is' e&(e)[2MA o)&(e)/A] '*Vga~, (G1)

( )][s '( )]
&&2MlV[o), (o)o),'(e')]''A 'V), o, (G2)

where p(N) is a fraction that depends on u =
~

k—k'
~
/2ko.

For simplicity, a free-electron model was used. This
enabled the electron part of the matrix elements for the
single and double processes to be similar. (A statement
of this type of approach has since been made" in a more
general way. ) Thus, the two matrix elements in (7.1b)
were taken to be (s=k —k')

APPENDIX G. NEGLECT OF DOUBLE-MAGNON
PROCESSES

eÃ
V), ), =—e ''~ (iy)) dpo (63)

The effect of double-phonon processes in first-order
perturbation theory has been worked out by Franzak'
for the electrical resistivity. This was done with the
alkali metals in mind, in which a large phonon anistropy
exists. The results were calculated numerically in some
detail at high temperatures, with the result that the
double-phonon processes contributed at most about 4%
to the resistivity for the most anisotropic of the alkalis;
but probably 1%would be a more representative figure.
In the case of double-magnon processes at low tem-
peratures, we have two differences from the above-
mentioned calculation: (1) The limit of low tempera-
tures decreases the effects enormously, and (2) the
magnon-electron interaction matrix element (7.2) is
much larger than the electron-phonon matrix element
(7.1). If it were not for (2), there would be no question
of the neglect of the double-magnon processes.

We shall here outline the results of the double-phonon
calculation. The geometry of an umklapp double-
phonon process is shown in Fig. 1. There is a sum over
the two phonon wave vectors that ranges over the
overlap volume of the e and 0' spheres. We shall call
this volume g(n) times the total volume of the sphere,

V),o,„'. ' 15's' 1 1 1 f m)1
(G4)

12 2M Ao) X 12 ko) Ml iV

whereas for the magnons the corresponding ratio is 1/X.
The factor in (G4) can be about 10 '/1V, so that the
double-magnon processes are, all other things being
equal, much larger relative to single-magnon processes
than are double-phonon processes relative to single.

In the variational principle the electrical resistivity is

proportional to the dpp integral:

doo= P), k I.&) (k ). (G5)

There will be a single-phonon contribution dpo(') and a
double-phonon contribution dop"), and we shall be
interested in the ratio d")/d"'. Adapting Franzak's

"See the second reference in footnote l9,

[See (A10).] In the case of double-magnon processes
we have correspondingly E:J» and E 'J». Thus we

have order-of-magnitude-wise for the ratio and double-
to single-phonon processes:
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results, "we write this ratio as follows:

dpp&'& i m 1

dppo & ~IIp 3E 9m'

placed by J» provided Q& gets multiplied by

1
-', (is.e)'(is a')'

M' 2(o 2'�'

du u'n(u)
I V» I'(&Qp"'(jj')))

77'

(G6)
and Qr by

(M
=36(lpT)'I —

I I I

»' (610)
km i &A's'i

du u
I
V„ I &Q,"(j))

Qr'"(j) =
(ev —1)(1—e 7) whence

1 A r 3'(2')
(is e)'—— 3&T-

M 2(u m L Aes'i
(611)

Q"'(jj') =
vv'(e& —1) (e&' 1)—

v+ v'
(S„+pp )

d00 (~)

(i) 5d00 magnon
du uPIZ» I'(Qr'™)

du u'pf(u)
I
Egg I'((Qp'"'))

1
(G12)

where

7—7'
+ (~, +~ .), (GS)

e ~' —e

where

+
Q

(m)

(e&—1)(1—e-&)
(613)

y =App, (a )/IpT, y' =Ap&,' (pr')/KT,

8~~= pI(k —k'Wpr+pr'+ K,),
|I„=pp (k—l 'a pr~ pr'y K,).

(69) Q, (m&

7'—7
(p1 -+~- ), (61&)

(e&—1)(e&'—1) e &' —e p'

The four 8 functions in (GS) correspond to the four
possibilities: Two creations, two destructions, a creation
and a destruction, and a destruction and a creation. The
average over Q&" is over all directions of k—k for a
given I

k —k
I

magnitude. The double-average over Q "&

is first an average over the overlap region of the e and
pr' spheres in Fig. 1, and second an average over k—k
directions for a given

I
k—kI magnitude. The pr's can

approach zero for Umklapp processes here with no
trouble.

To convert this to the magnon case, we replace the
right-hand side of (G2) by X 'J'»' and the right-hand
side of (G1) by E **J'» . Thus in (G6), V» gets re-

PP In reference 19, Eqp. (4.5) and (4.6) give dppn~ and dppP ~.

p=App(pp)/ppT, p'=App(pp )/IpT. (613)

The ratio of integrals in (G12) will at low temperatures
not be greater than 1, and the smallness of the effect of
doubLe-magnon processes is assured by the 1/3prP factor
in (G12).

The reason why the double-phonon processes at high
temperatures are as important as even 1 jo is because of
the extreme anisotropy of the phonons. This is seen
from the factor y '(y') ' in (GS) (in the high-tempera-
ture limit), these p "s having extremely large values
even for the Umklapp processes. For magnons, however,
the Qp factor is cut down by a factor yq' Lsee (G10)j,
and at low temperatures, the exponentials cause a
drastic numerical alteration.


