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must be satisfied; if thermal diffusion is predominant,

ld(InT) P&(nT) PBd(InT)/dx?
) : <1 (A9)
dx dx? d(InT)/dx

must be satisfied.
To test whether terms containing f2(E,x) can be
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neglected in a particular case, it is necessary to evaluate
the various derivatives in inequalities (AS5), (A8), and
(A9) from the computed solutions and see if the
inequalities are satisfied. For scattering mechanisms
with an energy-dependent mean free path, the condi-
tions will remain essentially unaltered with / evaluated
for the average electron energy &7
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Theory of Superconductivity. I. Electron-Lattice Interaction
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The electron-lattice interaction responsible for electrical resistivity in perfect metallic crystals is shown
to be a form of Jahn-Teller effect. It does not occur in the Born-Oppenheimer (adiabatic) approximation
even when the electron-electron interaction is taken fully into account. The matrix elements that describe
corrections to the Born-Oppenheimer approximation are derived by a general argument that can be applied
to metals with arbitrary electronic energy band structure, and the case of monatomic metals is worked out
in detail in the effective mass approximation. Two types of physical phenomena are attributed to these
matrix elements. The first is ordinary electrical resistivity due to electron-phonon scattering. The present
derivation leads to the same formal structure as the usual theory, but should give quantitatively different
results when applied to specific metals. The second type of physical phenomenon is a modification to the
stationary states of the electron-lattice system that can significantly alter the total energy spectrum at low
energies, and mixes states of electron excitation and lattice excitation. An effect of this kind can account
qualitatively for the disappearance of electrical resistivity at finite temperatures in superconductors. Other
special properties of superconductors should follow from consideration of the stationary states modified by

the Jahn-Teller effect.

I. INTRODUCTION

HE theory of superconductivity' developed by

Bardeen, Cooper, and Schrieffer and by Bogoliubov
successfully accounts for the thermodynamic behavior
of superconductors at low temperatures, the depend-
ence of critical temperature on isotopic mass, and
other properties dependent upon the existence and
magnitude of an energy gap for electron excitations.
However, the Meissner effect (expulsion of the magnetic
field) follows from an argument that has been the
subject of considerable controversy? and cannot be
said to be an immediate intuitive result of the theory.
The phenomenon of superconductivity itself (vanishing
resistivity at a finite temperature) is not explained by
the theory.? The theory is based on a highly simplified
form of the Hamiltonian, which, although representing
the most important terms in the complete Hamiltonian,
leaves out most of the structure both of the phonon
frequency spectrum and of the electronic energy bands.

1 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957); N. N. Bogoliubov, Nuovo cimento (10) 7, 794
(1958); J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 58 (1958); N. N.
Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, 4 New Method
in the Theory of Superconductivity (Academy of Sciencesof U.S.S.R.,
Moscow, 1958).

2 M. R. Schafroth, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1960), Vol. 10,
Pp. 293-498.

It has been pointed out by several authors® that the
electron-lattice interaction must be thought of as a
correction to the Born-Oppenheimer or adiabatic
approximation, and that this must affect the theory
of superconductivity. Matrix elements for transitions
described as electron-phonon scattering are unchanged
to first order from those of the Bloch theory.® However,
matrix elements also occur between nondegenerate
Born-Oppenheimer states. The present paper will
derive these matrix elements in more detail than did
the authors cited, in order to establish a basis for
discussion of the stationary (or metastable) states of
the interacting electron-lattice system. This leads to a
reformulation of the theory of superconductivity that
includes a more realistic description of the phonon
energy spectrum and the electronic band structure
than is possible in the Bardeen-Cooper-Schrieffer
theory. Since the field-theoretical formalism does not
lend itself to a detailed discussion of the degeneracies
that occur, which are qualitatively very important
in treating the electron-phonon interaction, the present
analysis will be carried out in terms of the Schrodinger
wave functions of the system.

The exact nonrelativistic Hamiltonian for a metal

3J. M. Ziman, Proc. Cambridge Phil. Soc. 51, 707 (1955);

H. Stumpf, Z. Naturforschung 1la, 259 (1956); A. Haug, Z.
Physik 146, 75 (1956); B. Goodman, Phys. Rev. 110, 838 (1958).



I. ELECTRON-LATTICE

contains three types of terms: H,, the kinetic energy
and mutual Coulomb repulsion of the electrons; H,,
the kinetic energy and mutual repulsion of the nuclei;
and H,. the Coulomb attraction between nuclei and
electrons. In the theory of molecular structure, of which
the theory of solids is a special case, the first stage of an
ab initio calculation of the molecular energy levels
would consist of calculation of the low-lying electronic
wave functions as eigenfunctions of the partial Hamil-
tonian, H.+H ,., for each set of values of the nuclear
coordinates. The eigenvalues of this Hamiltonian are
electronic energies, but they are parametric functions
of the nuclear coordinates. The corresponding electronic
wave functions are also parametric functions of the
nuclear coordinates. In the Born-Oppenheimer approxi-
mation,? each electronic state leads to a potential energy
hypersurface in the nuclear coordinates when the
Coulomb repulsion between nuclei, part of H,, is added
to the electronic energies. The nuclear Hamiltonian
for each electronic state is obtained by adding the
kinetic energy part of H, to this. In general the potential
energy hypersurface for a bound state has a well-
defined absolute minimum. The nuclear motion is most
conveniently described by coordinates measuring dis-
placement from the potential minimum, transformed to
normal coordinates by diagonalizing the quadratic part
of the potential energy function of the displacement
coordinates. Except for the degrees of freedom describing
rotation or displacement of the entire system, this
leads to a vibrational spectrum of energies describing
the nuclear motion, added to the potential energy at the
minimum point of the potential hypersurface for each
electronic state. The wave function is a product of the
nuclear wave function and an electronic wave function
that is parametrically dependent upon the nuclear
coordinates.

This wave function is not, however, an exact eigen-
function of the original Hamiltonian, Hn+4H,=H ..
Corrections to the Born-Oppenheimer approximation
arise from the action of the nuclear Hamiltonian H,
on the nuclear coordinates that occur parametrically
in the assumed electronic wave function. It has been
shown by Born,® and in a more recent article by
Bratoz,® that an interation between wave functions is
introduced in the form of matrix elements of H,
between electronic wave functions that describe
different states in the Born-Oppenheimer approxi-
mation. Ordinarily these effects are small, in the ratio
of the electronic mass to the nuclear mass, but they
cannot be ignored when there is a degeneracy or
near-degeneracy between different electronic states. In
such cases the interaction between these states is

4 M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).

5 M. Born, Nachr. Akad. Wiss. Gottingen Math. Phys. KI.,
No. 6, 1 (1951).

6S. Bratoz, Collog. intern. centre natl. recherche sci. Paris 82,
127 (1958).
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described as a dynamical Jahn-Teller effect, and leads
to special vibronic states of the system.”

The argument of the present work is simply to apply
the above analysis to the case of electrons in metals,
interacting with the lattice vibrations. Because of the
degeneracy or near degeneracy of the low-lying elec-
tronic states, there are interactions physically described
as scattering of electrons by lattice excitations, that are
a form of the dynamical Jahn-Teller effect. Since these
interactions do not occur in the Born-Oppenheimer
approximation (adiabatic approximation), they have
nothing to do either with the parametric dependence of
the Born-Oppenheimer electronic wave function on the
nuclear coordinates, or with the question of electron
correlation. On the contrary, the electronic wave
function in the adiabatic approximation can in principle
be calculated exactly, including correlation, as a smooth
parametric function of the nuclear displacement
coordinates. One must distinguish clearly between this
dependence on nuclear coordinates, which does not
describe anything corresponding to a physical scattering
phenomenon (a statistically irreversible transition
between distinct states), and the more subtle dynamical
Jahn-Teller effect, which does describe scattering in the
physical sense, and must be identified with the effect
responsible for resistivity in perfect crystals of ordinary
metals.

In addition to the interaction between degenerate
electron-lattice states, there will also be a systematic
change in the nature of the eigenstates of the system,
which become linear combinations of the Born-Oppenhei-
mer electron-lattice states. Electron excitations of finite
wave vector are mixed with the lattice zero-point
oscillations. The electric current vector due to this
admixture of electronic states is found to be finite for
each lattice mode, when there is an external electro-
magnetic field. In agreement with Bloch’s theorem, the
net electric current density vanishes in the absence of an
electromagnetic field. This electric current density
provides a qualitative explanation of the Meissner
effect and of the absence of electrical resistivity at
finite temperatures in superconductors, which will be
discussed in more detail in separate papers.

II. ADIABATIC APPROXIMATION AND THE
JAHN-TELLER EFFECT

For each set of values of nuclear coordinates, there
will be a complete set of electronic wave functions.
In particular it is convenient to consider this complete
set for the nuclear coordinates corresponding to the
minimum of the lowest potential energy hypersurface

7H. A. Jahn and E. Teller, Proc. Roy. Soc. (London) A161, 220
(1937); A. D. Liehr and W. Moffitt, J. Chem. Phys. 25, 1074
(1956); W. Moffitt and A. D. Liehr, Phys. Rev. 106, 1195 (1957);
H. C. Longuet-Higgins, U. Opik, M. H. L. Pryce, and R. A. Sack,
Proc. Roy. Soc. (London) A244, 1 (1958); W. Moffitt and W.
Thorson, Colloq. intern. centre natl. recherche sci. Paris 82, 141
(1958); A. D. Liehr, Revs. Modern Phys. 32, 436 (1960).
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(electronic energy plus Coulomb repulsion between
the nuclei). Then the electronic wave functions for
displaced positions of the nuclei can be expanded as
linear combinations of this particular complete set.
As far as the electronic wave function is concerned this
potential minimum has no special properties—it is
determined by the balance between the electronic
energy, which in general has no minimum at this point,
and the repulsion between the nuclei. Hence, a Taylor
expansion of both electronic energy and wave functions
should be possible, with the nuclear displacements or
normal coordinates as variables. For low excitations,
where anharmonic contributions to the nuclear potential
surfaces can be neglected, it should be sufficient to
expand the electronic wave function to first order in the
normal coordinates.

If ¥, is an electronic wave function at the potential
minimum, the corresponding wave function for general
values of the normal coordinates g, will be

Y, (n)=2, V%, Uu(gs), 1)
or up to linear terms in the normal coordinates
Y, (n)=¥,+3_, Zf V08, (f)qs- (2)

Here U,, is a unitary matrix, which can be expressed as
(expiS),, where S is an Hermitian matrix of the form

Sw=2r Sw(Ngrt---, &)

expanded in the normal coordinates, if states » and p
are not degenerate.

Now if all of the wave functions ¥, (%) were known,
as a result of solving the electronic Schrédinger equa-
tion, including correlation of the electrons, the coefh-
cients S,.(f) could be evaluated. This would give a
complete description of the adiabatic change of the
electronic wave function, following the nuclear motion.
It does not describe scattering from one electronic state
to another due to this nuclear motion, because the
electronic wave function is inherently dependent upon
the nuclear coordinates. The function of Eq. (1)
describes a single electronic state only.

The scattering phenomenon that occurs as a correction
to the Born-Oppenheimer approximation arises from
the commutator of H, with the electronic wave function
of Eq. (1). Since

Hu=% 2, (pspr* i 9:95%), (4)
it follows that

LH Y (n) 1=22, 2, OSu(N)hps*. ©)

The electronic part of the interaction matrix element®
between two electron-lattice states that are uncoupled
in the Born-Oppenheimer approximation, to first order
in the normal coordinates or momenta, is just the
coefficient of ¥, in Eq. (5),

(Hu)w=22; Sw(N)hps*. (6)

NESBET

This will have nonvanishing matrix elements only
between lattice states that differ by a single quantum
in just one normal mode. Hence, the scattering theory
is formally the same as is usually assumed,® but the
normal mode momentum replaces the corresponding
coordinate, and the matrix element S,,(f) occurs in
place of the matrix element of the scattering potential
of the usual theory.

Since matrix elements of this kind occur between
electron-lattice states that are not degenerate in the
Born-Oppenheimer approximation, there will be correc-
tions to the energy spectrum and stationary state wave
functions of the electron-lattice system, in addition to
the phenomenon of scattering between degenerate
states.

It is clear that the form of the interaction matrix
element of Eq. (6) is not dependent upon any approxi-
mate description of the electronic wave function or of
the spectrum of electronic excited states. However, to
estimate the coefficient S,.(f), it is helpful to make
several simplifying assumptions. In particular, the
electronic correlation energy can be expected to be
insensitive to small displacements of the nuclei, and it
should be adequate to describe the electronic ground
state by the Hartree-Fock approximation, and to
approximate to the low-lying excited states by simple
replacement of occupied Hartree-Fock orbitals by
unoccupied orbitals. This is the description of these
states postulated in the band theory of metals, and in
the application of Fermi-Dirac statistical mechanics
to the electrons.

There will be a different Hartree-Fock electronic
ground-state wave function for each value of the nuclear
coordinates. This implies that the effective one-electron
Hamiltonian depends parametrically on the nuclear
coordinates. Since there is no reason for a singularity
to occur at the potential energy minimum, this effective
one-electron Hamiltonian can also be expanded to
first order in the normal coordinates

se(n)=5Co+2, V(Ngsrt---. ™)

The operator 3Co is the Hartree-Fock effective Hamil-
tonian for the electronic ground state at the equilibrium
nuclear configuration. The electronic states are ap-
proximated for each nuclear configuration by the
collection of Slater determinants, for N electrons,
constructed from any IV of the Hartree-Fock orbitals
¢i(n), eigenfunctions of 3C(x). These orbitals can be
assumed to form a complete orthonormal set for each
nuclear configuration.

The relationship between the orbitals ¢;(7) and the
Hartree-Fock orbitals at the equilibrium nuclear
configuration, ¢;, will be given by a unitary trans-
formation analogous to Egs. (1) and (2). To first

8 A. H. Wilson, The Theory of Metals (Cambridge University
Press, New York, 1953), 2nd ed.
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order in the normal coordinates,

di(n) =i+, 2, diis;i(fgs+-- -, ®)
i(n)=2_; djuji(n) =2, ¢;(expis) i, 9)
sii=2_; Si(f)gs+- -+, (10)

if orbitals ¢; and ¢; are not degenerate.

This unitary transformation of the Hartree-Fock
orbitals induces a unitary transformation of the Slater
determinants constructed from them, which will be
an approximation to the unitary transformation, Eq.
(1), of the electronic wave functions. For example, if
® is the Hartree-Fock ground-state wave function,
the perturbed function to first order is

Do(n)=Po+2, 200 i (Saig) -+, i<N<a, (11)

where ®;2 is a Slater determinant obtained from &, by
replacing an occupied orbital ¢; by an unoccupied
orbital ¢,. Comparing this with Eq. (2), the coefficients
Sy differ from zero only when &, differs from ®, by the
change of a single orbital (¢, replacing ¢;), and are
equal to s, in this case.

If the coefficients V (f) of Eq. (7) are known, then,
by first-order perturbation theory,

5ai( ) =1V ai(f)/ (€a—€s). (12)

This formula must be modified to account for the
degeneracy when ¢, and ¢; approach each other, unless
Vai(f) vanishes. In describing the ground state, this
degeneracy only occurs at the Fermi surface.

The analysis up to this point is compatible with the
band theory of solids. If the coefficients V(f) could be
estimated the formalism could be applied to systems
with arbitrary band structure. In particular, the
separation between valence electrons and electrons in
ion cores does not have to be made in this argument.
In the following sections, more restrictive assumptions
will be made, in order to examine the implications of
this formalism in more detail.

from

where

III. MATRIX ELEMENTS IN THE EFFECTIVE
MASS APPROXIMATION

If the idea of ion cores of charge Ze and mass M is
introduced, with only the conduction electrons con-
sidered in detail by the band theory, then the perturbing
part of 3¢(n), Eq. (7), represents the change in effective
potential due to displacement of the ion cores from
equilibrium. This will consist of the change in potential
due to the ion cores themselves reduced by the screening
effect of the electrons, since 3C(%) is the self-consistent
field acting on the electrons. In the region outside the
ion cores, the net perturbing potential can be assumed
to be the derivative of a screened Coulomb potential
due to charge Ze at each ion, screened by a factor
exp(—M7). If the electronic orbitals ¢; at the equi-
librium nuclear configuration are represented simply
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as plane waves, normalized in volume V,

¢;=V" exp(i0;-X), 13)

then the matrix elements of the coefficients of Eq. (12)
can easily be evaluated to be

Vv ) +Ko) (VM) i al (14)
ai =1&: (x « R A

(N=1&- (x;+Ko) (VM) oK 7

where x;=0,—0;—K, and K, is a reciprocal lattice
vector. Here &; is a polarization vector, and «x; is
restricted to values as indicated that lie in the first
Brillouin zone. N is the number of ion cores of charge
Ze in a crystal of volume V. This form is clearly limited
to monatomic lattices, and the assumption of Eq. (13)
limits this expression except for qualitative purposes
to the alkali metals. For discussing low-temperature
phenomena, it is convenient to neglect Umklapp
transitions, and thus to consider only the terms with
K.=0. This is partially justified by the occurrence of
| x+K,|?in the denominator in Eq. (14), if the empirical
parameter A is not too large. If the unit polarization
vectors & for each normal mode are chosen so that one
is parallel to x; and the others orthogonal to it, the
latter do not occur in Eq. (14) except for nonvanishing
K.. Hence, neglecting the Umklapp transitions has the
effect of limiting the electron-lattice interaction to
longitudinal lattice modes only. This reduces Eq. (14) to

dnZe\N
Vai(x)=ix(NM )—%( 2-!-)\2)—1;’ (15)

where x=0,—0;, in the first Brillouin zone.

The screening constant A is to be considered as an
empirical parameter. Its value can be estimated by an
argument due to Bohm and Staver,® quoted by Bardeen
and Pines,’ who show that the argument is consistent
with both the earlier self-consistent field derivation of
Bardeen and with a more sophisticated field theo-
retical derivation that takes the electron correlation
into account. The argument of Bohm and Staver leads
also to a relationship between the electron velocity at
the Fermi surface, v, and the velocity of longitudinal
acoustic waves, s, found to be empirically reasonable
even for polyvalent metals.

The argument, as given by Bardeen and Pines, is to
consider the dynamics of the ion cores, oscillating about
their equilibrium configuration with the plasma fre-
quency for classical particles of charge Ze,

QR =4xZ2EN/MV, (16)

in interaction with the density fluctuations of a perfect
Fermi gas through a scattering potential with Fourier
components g«_‘pc, Where p, is a Fourier component of

® D. Bohm and T. Staver, Phys. Rev. 84, 836 (1952).
10 J, Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).
11.], Bardeen, Phys. Rev. 52, 688 (1937).
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the electron density. The Thomas-Fermi equation
establishes a linear relationship between the perturbing
potential and the perturbation of electron density.
Hence the increment to p, is proportional to the nuclear
displacement ¢, since the net perturbing potential is
proportional to ¢.. This then contributes to the term
linear in g, in the equation of motion for the ion cores,
and amounts to a renormalization of the frequencies of
the normal modes. By this argument, the net perturbing
potential acting on the electrons is the sum of the
potential vg, due to the displacement ¢, and, from
Poisson’s equation, the potential due to the induced
change in electron density, of the form

vPqe= (4me?/k*)8py. 17
But the Thomas-Fermi equation implies that
UeQx = (Uxi—’—vx”)qx = — (Zey/3n0)5p,(, (18)

for orbitals near the Fermi level, e measured from the
bottom of the conduction band, if there are 7, conduc-
tion electrons per unit volume. Equations (17) and (18)
can be solved for the screened interaction coefficient

3 47r82’no -1 .
5=\ 14— ) 2%
2 Klep
The renormalized lattice frequencies corresponding to
this are

(19)

K2
wl=P4—a1_l9,. (20)
4me?
For a pure Coulomb potential, following the derivation
of Eq. (15), we have

vi=ik(N/MV)}(dnZe/2). (21)
Then from Eq. (19),
ve=ik(N/MV)4aZe/ (14N2), (22)
with
N =3 (4ne’n/er), (23)

determining the constant A? in Eq. (15). This can also
be expressed in terms of the electron plasma frequency,

wr=4me*ny/m, (24)
and in the effective-mass approximation becomes
A2=3w?/v?, (25)

where w is the plasma frequency for the effective mass,
not the true electron mass, and v is the electron velocity
at the Fermi surface. In terms of these constants, from
Eq. (20),
wl=0%2/ (K+N?)
O (k2/N) =2 (Q20?/3?), (26)
for small k. This is of the form w,®=«%? determining a

constant velocity s for longitudinal acoustic waves. The
empirical relationship checked by Bohm and Staver

R. K. NESBET

then follows as

/=10 =3mZ/M, (27)

using the fact that NZ=mn,V for electrical neutrality.
Again, m is the effective mass of the electrons at the
Fermi surface. Thus the specific form, Eq. (15),
postulated for the perturbation to the electronic
self-consistent field is part of the same general argument
that leads to the empirical relationship of Eq. (27), and
the corresponding value of the parameter A? is that of
Eq. (23) or (25).

The matrix elements that lead to corrections to the
Born-Oppenheimer approximation are of the form?®

© (@ (m)x ({ne}), HE, (n)x ({nc}5)), (28)

where the vibrational wave function x is determined
by specifying the number of quanta, #,, in each normal
mode. Combining Egs. (6), (11), (12), and (15), to the
approximations involved in these equations, the only
nondiagonal matrix elements involving the electronic
ground state, with arbitrary phonon excitation, are of
the form

@0 (- - me=1++), HBGX(-+mer+)

drZe* N

=—lic(NM) 3 (ea— ;)"
KNV

nx'—l"'lP~x|"'nx"')

AnZe* N
= — (ndicon/ 2N M lik(eg— €)™t —,
KNV

if |

X(

(29)

o.=0;+x.

There is a similar matrix element between states
&2 (n)x (- ny--+) and ®o(n)x(---n_—1--+), substi-
tuting #_, for #, in the last line of Eq. (29). The apparent
singularity as e,— ¢; will be considered in the next
section.

IV. SCATTERING NEAR THE FERMI SURFACE

The resolvent operator formalism of Van Hove and
Hugenholtz®? can be used to develop a rigorous pertur-
bation theory for the electron continuum. For the
one-electron problem, this formalism becomes similar
to the more familiar Brillouin-Wigner perturbation
theory, except that sums of products of matrix elements
occurring in higher order terms are combined wherever
possible into a simpler form. In the lowest orders, the
most important effect is a change in the energy de-
nominators of the perturbation formulas. It should be
noted that the perturbed wave functions correspond to
metastable states, not to true stationary states, in the
limit of infinite volume. This must be taken into

121, Van Hove, Physica 21, 901 (1955); 22, 343 (1956); N. M.
Hugenholtz, ibid. 23, 481 (1957).



I. ELECTRON-LATTICE

account in the theory of transport processes based on
the present formalism, but will not be discussed here.

Following Van Hove and Hugenholtz, it is convenient
to define the operator G(z), diagonal in the unperturbed
basis, as the sum of all possible products of matrix
elements connecting a given unperturbed state with
itself in the perturbation formulas. The unperturbed
energy e; is replaced by a complex variable z. The
imaginary part of G(z) will be called §(z) here. Then the
perturbed wave function is expressed in terms of a
complex diagonal operator D(z). To the lowest non-
vanishing order, the formula corresponding to Eq. (12)
is

5ai(f)= lim Du(z)ivai(f)=iVai(f)/(fa“§i)7

z—r€i+10

Dy(z)=[ea—2—G.(2) ],
fo= lim [2+G.(z) [=2e;+ids.

z—ei+10

(30)
where

and

The index a of G.(z) can be replaced by 4, since
G.(e;) is evaluated by integration of the second-order
perturbation formula along a contour just below the
real axis of energy, and is determined primarily by
the residue at {;. The imaginary part is found to be
finite and has the important effect of making sq:(f) a
continuous bounded function (presumably analytic) of
the energy e,. The real part has no qualitative effect,
representing a small shift of the energies in the
continuum, and will be neglected. Since the magnitude
of e;—¢;1s small, it can be neglected in the denominator
of the second-order perturbation formula. Then the
imaginary part is given by the formula

di=—TIm(ei~{)=Im X.] g |2 Vil / (ej— ),

where ¢;= ¢4, and the sum is replaced by a contour
integral in the complex variable e;, passing below the
singularity at e;.

To make it possible to derive a definite result, §; will
be calculated taking into account the zero-point motion
of the lattice only. Thus the terms |g,|? will be replaced
by their zero-point mean values, %/2w,. However, the
normal mode coordinates ¢, which multiply the coeffi-
cients calculated by Eq. (30) are retained as dynamical
variables, leading to the basic formulas of Egs. (6) and
(29). These should be valid for low-energy processes
under this approximation.

Replacing |¢c|? by the zero-point mean value for
each %, and using Eq. (15) for the matrix element
V,;i(x), Eq. (31) becomes

31

+ p*(p*+a?—2popu)}
d;=Ar Res/ du , (32)
= J 1 (p*—0?) (pP+ 0> +N—2pop)*
where
A=4mN 22/ WM Vs. (33)

Here o is the magnitude of e, p is the magnitude of
¢;, and p is the direction cosine between these two
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vectors. Then
(34)

The limits of integration should limit « to the first
Brillouin zone, but this does not affect 8;, which depends
only on the residue at p=o.

Now, estimating the inner integral by the formula

2= p*+a>—2pou.

+1
f(w)du=2£(0), (35)
-1
8.V2r Ac?/ (202 +N2)? (36)
s V2a\M o oSV
=—f——— , 37
v (202+N2)2 6m2NZ

from Egs. (23), (27), and (33). For monovalent metals
the last factor, evaluated at the Fermi surface, is

ar'V/6mN=1%, (38)

since this is just the ratio of the volume of the Fermi
sphere to that of the first Brillouin zone. Hence in
general the ratio 8;/e¢; is of the order s/v, since the
screening constant A is comparable in magnitude to o .
The final result for the scattering matrix element is
Eq. (29), with the denominator e,—e; replaced by
€a— €;—18;. This matrix element characterizes an inter-
action between the electronic ground state, in the
lattice state such that 7, phonons are in the longitudinal
normal mode %, and a state in which an electron has
been excited from orbital ¢; to orbital ¢, with only
nx—1 phonons remaining in mode x. If these Born-
Oppenheimer states are degenerate, with

(39)

th = €q— €,

this matrix element results in a finite rate of transition
between the two states. The transition is described
physically as the scattering of an electron from o; to o4,
with absorption of a phonon of longitudinal mode «.
There is an analogous process with emission of a phonon
of mode —«x. Since they occur between nondegenerate
Born-Oppenheimer states as well, the scattering matrix
elements will also modify the stationary states of the
electron-lattice system.

Equation (29) is valid in exactly the same form for
matrix elements between any electronic excited state
in which orbital ¢; is occupied, and another state in
which orbital ¢; is replaced by ¢,. For states near the
ground state, the change in the denominator is approxi-
mated by —i8;, from Eq. (37), and with this the
formula of Eq. (29) describes the electron-lattice
interaction in all states of importance at low
temperatures.

V. DISCUSSION

The quantum theory of the electrical conductivity
of metals is reviewed in detail in the book by Wilson.?
One conclusion that can be drawn is that even for the
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monovalent metals the quantitative agreement between
theory and experiment is poor. Part of this discrepancy
can be corrected by a more consistent treatment of the
departure from thermal equilibrium of both electrons
and lattice, as in recent work by Hanna and Sond-
heimer.®* However, it is clear that the form of the
electron-lattice interaction, on which detailed calcu-
lations have been based, must be modified as indicated
in the present paper. This interaction, as developed in
the classical paper by Bardeen,' and used for calcu-
lations of electrical resistivity,* is attributed directly
to the matrix elements of Eq. (15). This is incorrect,
since these matrix elements describe only the adiabatic
changes in the electronic wave function, following the
lattice motion, not the Jahn-Teller effect that describes
a physical scattering phenomenon.

Since ¢, occurs in one equation and p, in the other,
the ratio between the correct matrix elements, Eq.
(29), and those used in the usual theory is

Tiwse/ (€a— €5—185). (40)

As a result of the energy conservation condition, Eq.
(39), this ratio is unity for scattering matrix elements
unless e,— €; is small. When e,— ¢; is small, however, the
magnitude of the ratio given in Eq. (40) can become
smaller than unity. This can be expected to have a
significant effect on the quantitative results of calcu-
lations of electrical resistivity due to the electron-lattice
interaction.

It should be pointed out that there is a close relation-
ship between the present derivation and the field
theoretical derivation by Bardeen and Pines.?® Following
Frohlich”® and Nakajima,'® Bardeen and Pines carry

31, I. Hanna and E. H. Sondheimer, Proc. Roy. Soc. (London)
A239, 247 (1957). .

14 7. Bardeen, J. Appl. Phys. 11, 88 (1940).

15 H. Frohlich, Proc. Roy. Soc. (London) A215, 291 (1952).

16 S. Nakajima, Proceedings of the International Conference on

Theoretical Physics, Kyoto and Tokyo, September 1953 (Science
Council of Japan, Tokyo, 1954).
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out a canonical transformation of the electron and
electron-lattice Hamiltonian (H,+H,. here), using a
unitary operator that depends on both coordinates and
momenta of the lattice modes. The transformation
removes the electron-lattice coupling term and modifies
the nuclear Hamiltonian and electron-electron inter-
action. They include an electron-electron Coulomb
interaction as a separate term, and conclude that its
effect should be small. Their transformation cannot be
carried through exactly, and terms arising from de-
generate states are omitted. The physical scattering
responsible for electrical resistivity is attributed to
these terms and is not treated in detail.

The present treatment can also be considered as a
canonical transformation of H,+H,, but with a
unitary operator, given by Egs. (1) and (2), that
depends on the normal mode coordinates only. The
electron-electron interaction is included in H,. Effects
that arise from the normal mode momenta are evaluated
by perturbation theory, after the original canonical
transformation. The physical scattering of electrons
by lattice vibrations can be examined in detail, and
leads to the matrix elements of Eq. (29).

The additional phenomena peculiar to super-
conductors at low temperatures, that follow from the
development of Bardeen and Pines, must also be
expected to follow from the present formalism. Such
effects will be examined in later papers, where the
modification of the stationary states of the electron-
lattice system due to the electron-lattice interaction
of Eq. (29) will be investigated.
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