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The electron current in a semiconductor at uniform lattice temperature 7'y, with a nonuniform electric
field distribution (e.g., a barrier layer), consists of terms arising from conduction, diffusion, and thermal
diffusion. The first two terms involve the mobility and diffusion coefficient which are functions of the electron
temperature 7" or, more generally, depend on certain averages over the nonequilibrium, field-dependent
electron energy distribution function. The third term is due to the electron temperature gradient and is
analogous to conventional thermal diffusion of a gas in a temperature gradient. In conventional theory,
which neglects electron heating or cooling, the mobility and diffusion coefficient are material constants and
thermal diffusion is absent. Contrary to the case of uniform fields, T is not a unique function of the local
field; it also depends on the current and can only be determined by a simultaneous solution of the equations
for current flow and conservation of energy with boundary conditions for a particular structure. As an ex-
ample, a one carrier metal-semiconductor contact rectifier has been analyzed in detail including a discussion
of the Peltier effect. In the barrier region 7' is greater than T (i.e., hot electrons) for a reverse bias but less
than 7 (i.e., cold electrons) for a forward bias. Computer solutions have been obtained for a Schottky
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barrier and electron scattering due to acoustic phonons only.

1. INTRODUCTION

HE drift velocity of electrons or holes in a semi-
conductor, under the influence of a uniform elec-
tric field, is proportional to the field strength F only in
the limit when F tends to zero. In practice, an appreci-
able deviation of the carrier mobility, at room tempera-
ture, from its zero field limit requires a strong field. For
example, in #-type germanium at room temperature, the
electron mobility is halved for a field of about 3X10?
v/cm.! (In the rest of this paper electrons will be con-
sidered specifically although the discussion applies
equally well to holes.) The variation of the mobility
arises from an increase of the average electron kinetic
energy above the zero field, thermodynamic equilibrium
value $£7, (k is Boltzmann’s constant and 7% is the
lattice temperature ; only nondegenerate semiconductors
will be considered). Thus if the field dependent average
kinetic energy is expressed as &7 (F), then the electron
temperature? 7'(F) is greater than T, and tends to it in
the limit as ' tends to zero. The difference between T'
and T is determined by the condition that, in a steady
current carrying state, the rate at which energy is
supplied by the electric field to the electrons must be
equal to the rate at which energy is transferred from the
electrons to the lattice with electron lattice collisions.
The electron mobility will be a function of F through its
dependence on 7. This is known as the hot electron
effect.?

The electron temperature has a precise significance
only if the spherically symmetrical part of the electron
distribution function in momentum space ( f,) retains its

* A preliminary account of some of this work has appeared in
Bull. Am. Phys. Soc. 6, 107 (1961).

1 W. Shockley, Bell System Tech. J. 30,990 (1951); E. J. Ryder,
Phys. Rev. 90, 776 (1953).

2This concept was first introduced by H. Fréhlich, Proc. Roy.
Soc. (London) A188, 521 (1947).

3 For reviews on this topic see J. B. Gunn, in Progress in Semi-
conductors, edited by A. F. Gibson (John Wiley & Sons, New York,

1957), Vol. 2, p. 246; and S. H. Koenig, J. Phys. Chem. Solids 8,
227 (1959).

Maxwellian shape when a field is applied. In general this
will not occur and the detailed shape of the distribution
function (fo) is required for calculations. In the re-
mainder of this section the distribution function will be
assumed to have a Maxwellian shape; the more general
case will be discussed in Sec. 2.

Most of the existing experimental and theoretical
work is concerned with the hot electron effect when a
uniform electric field is applied to a homogeneous
semiconductor. The current density is then proportional
to the density of electrons and their drift velocity in the
applied field. However, in structures which involve po-
tential barriers, there will be an additional contribution
to the current density, namely the diffusion current,
which involves the spatial gradient of the electron
density. In the usual theory, where the hot electron
effect is neglected and the electron temperature is as-
sumed to be equal to the lattice temperature (this will
be referred to as the thermal equilibrium approximation
or TEA), the current density 7 is given by

j=enuF-eDdn/dx (1)

in one dimension where # is the electron density, u is the
mobility, D is the diffusion coefficient, —e is the charge
on the electron, and j is in the positive x direction. In
the TEA and for nondegenerate semiconductors it can
be shown quite generally* that D and p are connected by
the Einstein relation,

D/M=kT0/6. (2)

The question now arises: Is the TEA valid when Eq.
(1) is applied to a barrier problem where the internal
electric fields are comparable in magnitude to the uni-
form fields for which there is an appreciable hot electron
effect? It has been argued in the past that since u is
already known as a function of F from the hot electron
studies, all that is required is a similar relation between

4P, T. Landsberg, Proc. Roy. Soc. (London) A213, 266 (1952).
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D and F.5:® However, as pointed out by Avak’yants,”
this is an incorrect approach since when j is zero, the
electron temperature must everywhere be equal to the
lattice temperature and p and D must be equal to their
thermal equilibrium values, i.e., independent of the local
value of F. In fact, just as in the uniform field case u,
and also D, are functions of 7. However, in a barrier
region, 7 is not a unique function of the local value of F
but is determined by the condition of conservation of
energy in such a way that 7" tends to T when j tends to
Zero.

In Sec. 2 it will be shown that the current density is
actually given by

j=enu(T)F+ed[nD(T)]/dx, 3)

where u(T) and D(T) are known functions of T, de-
termined from the Boltzmann equation, for particular
electron scattering mechanisms. [ The general form of
Eq. 3 also applies for a non-Maxwellian form of the
distribution function’ fy; D and p are then defined in
terms of integrals involving f, cf. Egs. (16) and (17).]
The Einstein relation, Eq. (2), is generalized to

D(T)/u(T)=kT/e, 4)
so that Eq. (3) can also be written as
j=enuF+ukTdn/dx+enDTdT/dx, (5)
where
D7= (k/e)u[1+d(Inw)/d(InT)]. (6)

The last term on the right hand side of Eq. (5) is then
analogous to thermal diffusion or the Soret effect arising,
in this case, from the electron temperature gradient.
Turning now to the evaluation of the electron temper-
ature, let #B(T') be the rate at which the electrons lose
energy to the lattice by electron phonon collisions and
S(T) be the flux of energy in the positive x direction.
Then the conservation of energy for the electrons re-
quires that
JF=nB(T)+dS(T)/dx, (7
where
S(T)=—«x(T)dT/dx— (5/e)d(T)kT. (8

k(T) is the thermal conductivity of the electrons and
8(T)kT is the average kinetic energy transported per
electron arising from the current flow. (Here we are
concerned with a one-carrier system and do not consider
any effects due to carrier generation, recombination or
trapping.) In Sec. 2, B(T), «(T), and §(T") will be de-
termined by deriving Eqgs. (7) and (8) from Boltzmann’s
equation [cf. Egs. (21), (23) and (24)]. Equation (8)
has the same form as the equation describing heat flow
due to a lattice temperature gradient and a current in
the TEA. The quantity «(7) is the usual electron
thermal conductivity and §(T) is the coefficient of the
energy transport term which enters into the formula for

5G. V. Gordeev, Fiz. Tvergdogo Tela 1, 851 (1959) [transla-
tion: Soviet Phys.-Solid State 1, 772 (1959)]

6 R. E. Burgess, Proc. Phys. Soc. (London). B66, 430 (1953).
7 G. M. Avak’yants, Zhur. Eksp. i Teoret, Fiz, 27, 333 (1954).
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the thermoelectric power,
0= (k/e)[(¢/kT0)—5(T0)], ©)

where { is the Fermi energy. It will be shown that «(7T')
and the electrical conductivity ¢(7) obey a generalized
Wiedemann, Franz, Lorenz, law:

«(T)/o(T)T = (k/e)A(T), (10)

where A(T) is a dimensionless number of order one,
derived in Sec. 2 (Eq. 24), and A(T)) is the usual result
in the TEA.

The equations set up by Avak’yants? for the hot
electron effect in barriers are also discussed in Sec. 2.
Although Avak’yants starts with the non-Maxwellian
form of the distribution function, as defined by the
solution of Boltzmann’s equation, he introduces several
simplifications which finally leave a system of equations,
equivalent to a special case of our Egs. (3), (7), and (8).

To determine T, #, and S as functions of #, for a given
j and F from the three phenomenological differential
equations [Eqgs. (3), (7) and (8)] requires three inde-
pendent boundary conditions. A fourth boundary con-
dition is then sufficient for a unique relation between j
and a potential difference derived from F. To illustrate
the solutions of these equations for a one-carrier system
a Schottky barrier, semiconductor-metal contact, with
neglect of image force for simplicity, will be considered
in Sec. 4. The analysis requires numerical computations
which have been carried out on an IBM 704 computer.

As a preamble to the detailed solutions, some formal
integrations of the equations are carried out in Sec. 3.
Integration of the energy balance equation [Eq. (7)]
over various portions of the rectifier leads to a rather
trivial generalization of the thermoelectric power but is
of some interest in showing how the energy exchanges
are distributed throughout the rectifier. Formal integra-
tion of the equation for the current (Eq. 3) enables us to
discuss two previous approaches to the problem by
Burgess® and by Landsberg® which are shown to be in-
correct. Burgess used the experimental result that the
electron drift velocity in #-type germanium is inde-
pendent of F for F in excess of several kv/cm. He then
assumed the TEA Einstein relation, leading to a diffu-
sion constant inversely proportional to F. Using Eq. (1)
he then obtained a volt-current characteristic, for an
arbitrary potential variation in the barrier, which was
equivalent to that for a Mott barrier (spatially constant
barrier field) in the TEA. This approach is invalid since
p and D cannot be unique functions of F, Einstein’s
relation in the TEA is not obeyed, and Eq. (3) rather
than Eq. (1) should be used. An adequate criticism of
Landsberg’s approach can only be given in terms of the
detailed analysis in Sec. 3.

Analytic solutions to the equations which are valid
for weak currents are presented in Sec. 4; the computed
results for arbitrary currents are discussed in Sec. 5.

& P. T. Landsberg, Proc. Phys. Soc. (London) B68, 366 (1955).
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2. DERIVATION OF THE TRANSPORT COEFFICIENTS
FROM BOLTZMANN’S EQUATIONS

The phenomenological equations stated in the previ-
ous section will now be derived from Boltzmann’s steady
state kinetic equation for the electron distribution func-
tion f(p,x) in momentum (p) and coordinate (x) space.
The necessary modification of the usual hot electron
theory for uniform fields requires calculations which are
similar to those for current flow under a lattice tempera-
ture gradient in the TEA.%? Hence, only a brief outline
of the analysis need be given here. Boltzmann’s equation
can be written as®

of P 6f+<§j> _

ot

e 0, (11)
0p, m* dx

c

where the first term is due to the field F, the second is
due to diffusion (m* is the effective electron mass in the
usual parabolic band model), and the third represents
the effect of electron-phonon collisions. In general there
will be additional terms to represent further scattering
mechanisms, electron-hole generations and recombi-
nations, etc. They will not be considered in the present
paper.

Following the usual procedure, we expand f(p) in
spherical harmonics, viz.

Fo2)= E, F(E2) P, (cosh), (12)

where 6 is the angle between p and the x axis, P,(cosf)
are the Legendre polynomials, and only the first two
terms are assumed to be important. Substituting into
Eq. (11) gives

eFpdfe  p 0fe fi(E)

m* OE m* ox 7(E)

0, (13)

for the Pi(cos) terms. [Here, terms involving fa(F,x)
have been neglected, cf. Appendix.] The particular
form of the collision term which involves the relaxation
time 7(E) only occurs for elastic collisions®! or if the
scattering matrix satisfies a certain symmetry relation.?
(Detailed expressions for 7(E) in terms of the scattering
matrix will be found in the references quoted.) In
general however, the collision term involves an integral
over fi(E) and the solution requires a variational
technique.®

Substituting for f;into the expression for the current
density,

j=—(e/m® / pof @ p=— (e/3m%) f 1D, (14)

9 A. H. Wilson, The Theory of Metals (Cambridge University
Press, New York, 1954), 2nd ed.

10 R. Stratton, Proc. Roy. Soc. (London) A242, 355 (1957);
A246, 406 (1958).

11H. Frohlich, Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd., London, 1954), Vol. 3, p. 325.

12 C. Herring, Bell System Tech. J. 34, 237 (1954).
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leads to Eq. (3) where the electron density is

5= / b, (15)
2 e ad afo o
=——— — o2t
=i aEE%dE//; foBYE
= (/w13 /d(mE) D, (16)
D= (2/3m*)(r ), )

and the angular brackets denote averages with respect
to fo, namely

@@= [ pwewes / [r@es

= / fo(E)G(E)EE / f fo(E)EYE. (18)
0 0
The Einstein relation is thus generalized to

eD © d
A=s—=— f forEME / / (3fo/OE)rEVdE
0 0

M
2 (rE)
3 (r(1+2d(In7)/d(InE)))

(19)

If we now assume a Maxwellian distribution function
for fo le 5

Jo=nl?Qem*kT)~% exp(— E/kT), (20)

where # and T depend on x but not on E, then A=kT
(Eq. 4). For a non-Maxwellian form of f,, Eq. (19)
shows that A will again be related to a suitably defined
average electron energy’ which will however in general
depend on the particular form of f; and value of 7(E).

The electron temperature T in Eq. (20) can be de-
termined by multiplying Eq. (11) by £ and integrating
over momentum space. Then we obtain the conservation
of energy Eq. (7), with

nB(T)= / E(8fo/t) 2%, (21)

S(T)= (1/m* f FEb = (1/3m¥) / FEpFp. (22)

B(T) involves only the f, coefficient and can be evalu-
ated for all scattering mechanisms, not necessarily
elastic, if fo has the Maxwellian form [Eq. (20)]. Re-
sults for electron scattering by acoustic, polar, and non-
polar optical modes of lattice vibrations have been pre-
viously derived.’®® Substituting for f; from Eq. (13)
into the expression for the energy flux S(7’), eliminating

18 R. Stratton, J. Electronics & Control 5, 157 (1958).
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F using Egs. (3), (4) and (17), leads to Eq. (8), where
8(T)=(rE?)/(rE)

and (23)
k(T)= (k/e)*ATneu,
where
(B3 [{rE))\?
an=| (=) /e e
(rE) \(7E)
is defined by Eq. (10).
In particular, for a relaxation time given by
7(E)=1o(E/kT0)", (25)
where 79 and » are constant,
3! e (T)V (T)”
b= —o| — ) =po| —
@t m* \T) A\ (0
A=b=v+5,

where yo is the mobility in the TEA. For more compli-
cated relaxation times however, e.g., when more than
one scattering mechanism is of importance, 6 and A will
depend on 7.

Removing the assumption of a Maxwellian form for fo
would require the solution of Eq. (11) for the Py(cosf)
terms. This leads to a complicated partial differential
equation for fo even for elastic collisions, when the
collision term can be written as a differential expres-
sion.® Both fo and f; must be derived directly from
Boltzmann’s equation with boundary conditions ap-
propriate to a particular structure.* Rather than deal
with this very complicated problem we will discuss
solutions based on the Maxwellian approximation in the
rest of the paper. This may be a reasonably good as-
sumption for a single, elastic, electron-phonon scattering
mechanism where previous calculations® have shown
that the mobility-field variation is not very sensitive to
the precise shape of fo. It would, however, only be a
crude approximation for inelastic scattering'® or for a
combination of scattering mechanisms.'¢ The possibility
that predominant interelectronic collisions might actu-
ally induce a Maxwellian form for f(117:18 cannot apply
in barriers, where the electron density is usually very
low.

Avak’yants starts with Boltzmann’s equation for fo
and f; and assumes a relaxation time given by Eq. (25).
By integrating these equations (with suitable multi-
plying factors) over momentum space he finds equations
similar to Egs. (3), (7), and (8) where the transport

14 T, Yamashita, [Progr. Theoret. Phys. (Kyoto) 15,95 (1956)]
has solved a similar problem, with additional terms due to electron
multiplication in a p-» junction, by separation of the variables x
and E for f,. This however presupposes that the electron tempera-
ture is independent of %, contrary to our results.

15T, N. Morgan, J. Phys. Chem. Solids 8, 245 (1959).

16 T, Adawi, Phys. Rev. 112, 1567 (1958).

17H. Frohlich and B. V. Paranjape, Proc. Phys. Soc. (London)
B69, 21 (1956).

18 T, Yamashita, Progr. Theoret. Phys. (Kyoto) 24, 357 (1960).
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coefficients are defined in terms of the integrals

X(T)=47r/ PT+2F0(P;x)dP9
0

where

Jo(pw)=n(x)Fo(p,x).

He then shows that x®/(x®)"2, calculated with the
appropriate distribution function for a strongly heated
electron gas in a homogeneous electric field, is a pure
number which depends on 7 and the scattering index .
For each value of 7 the ratio for various values of » is
close to that for »=0, the value that would occur in the
TEA for all ». The important assumption made by
Avak’yants is that each x” can be replaced by (x®)’2
times the factor x/(x®)"2 for v=0. He also sets
x®/2m equal to (3/2)kT which is equivalent to intro-
ducing the electron temperature 7" via the Maxwellian
form of fo. Thus the final transport equations used by
Avak’yants are equivalent to those based on a Max-
wellian form for fo with »=0. It is difficult to judge the
accuracy of this simplification since the derivation of the
ratio x7/(x®)"2 does not involve the correct space-
dependent function f,(p,x). However, as we have previ-
ously observed, it is not unreasonable that the solution
based on a Maxwellian form for f,is a good approxima-
tion (not necessarily with »=0) for a single, elastic
electron-phonon scattering mechanism.

3. FORMAL INTEGRATION OF THE
TRANSPORT EQUATIONS

For convenience the three phenomenological equa-
tions [Eqgs. (3), (7), and (8)7] will be rewritten in terms
of the following reduced variables:

x*=x/LD, T*= T/To, M*=[.L/Mo, n*=1’l/%0,

F*=FeLp/kTy, V*=eV/kT,,

J¥=jlenouo(kTo/eLp) 1,
BXT*)=B(T)Lewo(kTo/eLp)*]™,
S*(T*)=S(T)Lenouo(kTo/eLp)*Lp ™,

@7

where V is the electrostatic potential and the density #o
and length Lp are so far unspecified. (Subsequently #,
will be taken as the bulk density of electrons and Lp as
the Debye length, corresponding to the donor density,
for the Schottky barrier calculation.) For convenience,
the asterisks on the reduced quantities will in the future
be omitted; symbols without asterisks will refer to the
reduced quantities unless otherwise stated. Then,

j=nuF+d(nuT)/dx, (28)
jF=nB+dS/dz, (29)
S=—AnuTdT/dx— joT. (30)

These equations will now be applied to a one-dimen-
sional #-type semiconductor-metal contact rectifier. The
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formal volt-current characteristic'® will be derived from
Eq. (28) and compared with a previous calculation by
Landsberg.® The energy exchanges for the rectifier will
then be discussed in terms of Eq. (29).

It will be assumed that a plane =0 can be defined
which separates the bulk semiconductor (x <0) from the
barrier region (x>0), where

setting 7, equal to the bulk electron density. (This as-
sumption has recently been discussed by Macdonald® in
the TEA.) T differs from one by a small amount due to
the electron heating in the bulk region. If the metal
surface is at =L and the image force is neglected then

T=1 if a=L, (32)

where Vp is the reduced diffusion potential'® (cf. Fig. 1).
Here it is assumed that the electron temperature in the
metal can never differ appreciably from the lattice
temperature due to the high (degenerate) electron
density. The effect of the image force will be considered
later.

Integrating Eq. (28) and using the boundary condi-
tion [Eq. (31)] gives

= F
n,uTeXp(/ —‘dx’)—mTl
0 ] x ! F
= / o’ exp< / *dx”). (33)
0 o T

Inserting the boundary condition (Eq. 32) then gives®

n=1,

n=exp(—Vbp),

L
eXp[— VD+/ (F/T)dx]—mTl
= - NG

/;L expli/I (F/T)dx’}dx

The barrier thickness L is related to the reduced po-
tential (V 4) applied across the barrier by the condition
(cf. Fig. 1):

L

/ Fdx=Vp—Va.
0

Thus if T and F are known as functions of x, Eqgs. (34)
and (35) give the volt-current (V42— j) characteristic of
the barrier.

(35)

19 For a survey of the diffusion theory in the TEA, see the chap-
ter on unipolar rectification theories by H. K. Hemsh Rectifying
Semz Conductor Contacts (Clarendon Press, Oxford, 1957)

2 J. R. Macdonald, Solid State Electromcs 5, 11 (1962).

21 Starting with (the incorrect) Eq. (1) instead of Eq. (3) leads
to a result similar to Eq. (34), except that the factor ;7' in the
numerator is absent while there is an additional factor (1/uT)
under the first integral sign of the denominator. With the assump-
tion made by Burgess® (T'=1, u=v/F, v is constant), this gives
]=7)e‘VD(1—eVA)/(l—-eVA_VD) Apart from the coefficient v, this
corresponds to setting V= —Fx (F is constant) in Eq. (36) for the
TEA which gives the coefficient (Vp—V.4)/L.

STRATTON

In the TEA, when T=1, Eq. (34) reduces to

i=lep=Vo=11/ [ ew(1us, GO

where the zero of potential is taken at x=0. If the
integral is approximated by noting that the integrand is
large only near x=L when (Vp—V4)>>1, then

jo=F (L) exp(—Vp)[1—expVal. (36)

In the particular case of a Schottky barrier, it is as-
sumed that the space charge in the barrier layer is due
to the completely ionized uniform distribution of donors
while the charge due to the electrons is neglected. (See
reference 20 for a recent discussion of this assumption.)
If the length Lp, introduced in Eq. (27), is chosen as the
Debye length,

Lp= (ékTo/47l‘62N)%, (37)

where € is the dielectric constant and NV is the donor
density (all these variables are unreduced), then the
field and potential variations are given by

F=x, V=—(1/2)x% Vp—Vai=(1/2)L2
Substituting into Eq. (36) then gives

(38)

L
jo=Tesp(=V.0-11 / / expL(1/2)2% ). (39)
0
The integral has been tabulated in the form,

»(x)=exp(—=2) / exp(P)dl (40)

by Lohmander and Rittsten.?? Substituting into Eq.
(39) then gives

jo=exp(—=Vp)[1—expVa]/2ty((Vo—VA)?) (39)

using Eq. (38). This volt-current characteristic (first
derived by Spenke?) is illustrated in Fig. 6 for the
particular choice ¥V p=10. It will be compared with the
results obtained in the next section when the TEA is not
made. (Notice that j is positive and V4 is negative in
the reverse direction.)

For an image force barrier, the two boundary condi-
tions at the metal surface [Eq. (54)] will be replaced by
two at the plane x=L' near the metal surface which,
after Landsberg? is defined by

V(L)=Va; (41)
i.e., it is the same potential as the bulk semiconductor
conduction band edge for zero current. Then [cf.
Eq. (32)]

T=1 if x=L; (42)

2 B. Lohmander and S. Rittsten, Kgl. Fysiograf. Sillskap. i
Lund Forh. 28, 45 (1958).

2 E. Spenke, Z. Physik 126, 67 (1949).

24P, T. Landsberg, Proc. Roy Soc. (London) A206, 463 (1951).

n=1,
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so that, with Eq. (33),

expl: /0 : (F/T)dx]—mTl
j= L @)

/0 : dx expl: ﬁ ’ (F/ T)dx’:l

Landsberg® starts with Eq. (1) instead of Eq. (3) and

finds
exp[f (F/T)dx]— 1
i= : W)

/0 " g (/) exp[ ﬁ ’ (F/T)dx’:l

(He actually retains the mobility x and diffusion coeffi-
cient D as unknown quantities and does not introduce
the electron temperature 7" explicitly.)

In the TEA, setting 7'=1, both equations give

j=[exp(—VA)—1]// drexp(—7V). (44)

Although this result is formally equivalent to Eq. (36)
it corresponds to a different value of the upper limit and
of V(x). If the potential has a strong minimum in the
barrier region at x=>5, the integral can be replaced by
Laplace’s approximation,

/ dx' exp(— V) ~[ 20/ V" (8) ] exp[—V(®)].  (45)

Landsberg?4?5 has used Eqgs. (44) and (45) to derive the
volt-current characteristic in the TEA, for several types
of potential barriers, including the image force correc-
tion. He also tried to simplify Egs. (43’) in a similar
way by making the assumption that® ‘“the fractional
variation of u and D (or in our case T) in the barrier is
much less than the fractional variation of the electric
field.” Now

b/ F b4V V(d) bV
/ (—)dx’= —| —=————| —dT. (46)
o \T o T T@®) Jo T2
Landsberg states that as a result of his assumption the
last term in Eq. (46) may be neglected. It would, how-
ever, be more accurate to modify his assumption by
replacing the electric field by the electronic potential.
This is a far more stringent condition at the peak of the
barrier where dV/dx vanishes. Using Eq. (46) and

% P. T. Landsberg, Proc. Roy. Soc. (London) A206, 477 (1951).
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Laplace’s approximation then gives
L dx *F

/ — exp[ / —dx]
o uT o T

“rakre) HTe) O

so that, substituting into Egs. (43) and (43"),

) fre)

V" (b) ()
(ol [ on]
and ‘
Mb)f(b)(%)“

Xexp(—%) lexp[[f(f—i—)dx] -1 } . (48)

Landsberg then argues that since 7°(d) is evaluated at
the potential minimum, where F=0, it should be equal
to the thermal equilibrium value unity and therefore
independent of applied voltage. Thus in the reverse
direction, where the integral in Eq. (48") becomes small
with respect to one, the hot electron effect should be
unimportant. However, it has already been shown in
Sec. 1 that the electron temperature is not solely de-
termined by the electric field but will certainly differ
from the lattice temperature when a current flows. Thus
even if the approximation to Eq. (46) is valid, 7(d)
must still be calculated from the energy conservation
equation. Our results in Sec. 5 show that T actually
varies extremely rapidly across the barrier. Although
we did not include the image force in our calculation, it
seems rather unlikely that Landsberg’s assumption
would be obeyed, so that even Eq. (48) itself is probably
not applicable.

Turning now to the energy exchanges for the rectifier
(with the image force again neglected), it is convenient
to replace the mathematical discontinuity between the
semiconductor and metal at x=IL by a continuous
transition of phase from x=1, to x=L,. Then inte-
grating Eq. (29) from =0 to x= Ly, gives the total rate
at which energy is transferred to the lattice in the
barrier region,

L
H= / wB(T)dx=j(V oV ) +S(O0)—S(L). (49)

Similarly, for the transition region,

L2
o= / nB(T)dx=— j(Vp—{uttw)

L +S(L1)—Sm(L2)7 (50)
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SCHOTTKY and & =
Vo BARRIER Va=Vait+ii—o,
CONS}\’SBION = \ (cf. Fig. 1) Here {; is the reduced Fermi energy in the
2 bulk semiconductor when a current flows; it is related
— _ . 20y | FERMILEVEL_ _ | METAL to {o by
Y
SEMICONDUCTOR | CORRECTION T expfo=T1texpfi or {i=fo—3InT:,  (55)
(1a) provided the electron density remains constant. Thus
e V 4 is the change in Fermi level across the barrier region
) [T so that —j(Va+Vp) is the Joule heating for the
i rectifier. The other contribution to lattice heating is due
Vo~Va Z= to the Peltier effect, where 7, is the reduced Peltier
3 Tr \ coefficient of the metal and m; that for the semicon-
JFERMILEVEL _ _°ly ] “a \ ductor. The latter differs slightly from the usual expres-
A A EECEL sion mo in the TEA which has T, replaced by unity.
IMacE Since 7'1—1 goes to zero as j? [;cf'. Eq. (5.3)3, m; differs
(Ib) CORRECTION Cy from my by a term of order ;% in the limit of small
currents.
The final Eq. (54) could have been obtained directly
S AR and is of course independent of the boundary conditions

Fic. 1. Electron potential energy diagram for a metal n-type
semiconductor contact rectifier. (a) Zero bias. (b) Bias V 4 applied
in the forward direction.

where ¢ is the reduced Fermi energy of the metal, o is
the reduced Fermi energy of the semiconductor in the
bulk region, for zero current, and

is the energy flux in the metal, where 7' is assumed to be
unity. Finally, integrating Eq. (51) from some large
negative value of x to x=0 gives

st/ nB(T)dx=— jVz— 786(T)T1—S(0), (52)

where V g is the voltage drop across the bulk region and
the electron temperature far from the barrier tends to
T, given by _ N

P=B(T)u(T), (53)
using Egs. (28) and (29) with »# and 7" assumed inde-
pendent of x. When T, tends to one, i.e., as_j tends to
zero, B(T) is proportional to (71— 1) and u(T) tends to
the constant u(1). Thus 7 differs from one by a term of
order 72 for small j. T will differ from T, introduced in
Eq. (31), since dT/dx is not zero at x=0. This difference
will however be neglected in the next two sections since
the calculated values of d7'/dx at x=0 are actually very
small except for large currents in the forward direction.
Adding Egs. (49), (50), and (52) gives the total rate of
energy transfer to the lattice for the rectifier:

Hr=H+H\+Hy=—j(Va+Vp)— j(rn—m1),

where

7rng‘m'— 6m, 1= fl_a(Tl) T’lx (54)

at =0, Ly and L,. It is merely required that 7" tends to
T, and unity in the semiconductor and the metal, re-
spectively, far from the barrier. To evaluate the three
contributions to H r separately requires a knowledge of
the various values of .S. This will be discussed in the next
two sections.

Equations (49) to (55) also apply for the case of an
image force barrier if L is replaced by L', Ly is some
point in the metal and Vp is deleted from Egs. (49)
and (50).

4. LOW CURRENT LIMIT

The solution of the three reduced transport equations
[Egs. (28), (29) and (30)] will now be derived in the
limit of small current densities. When the current
density j tends to zero, T tends to unity, S to zero, and »
to exp(— V). Also the quantities u(7), 6(7), and A(T)
have nonzero limits of 1, §o and Ao, respectively, while
B(T) tends to zero. Thus, expanding 7, S and the
product #uT as power series in j,

T=1+jt, muT=¢"+jo,  (56)

retaining terms of the first order in j only. The coeffi-
cients ¢, s, and ¢ which are functions of the position
variable x can be determined by substituting into Eq.
(28), (29), and (30) from Eq. (56) and solving for the
terms linear in j. For the rate of energy transfer B(T)
we make the assumption that

B(T) — ¢(T—1)=jet,

S=js,

T—1, (57)

where ¢ is a coupling constant which depends on the
strength and type of electron lattice scattering. Thus,
carrying out the s 1bstitutions,

when

do/dx+Fo=1+FteY, (58)
ds/dx+cteV=F, (59)
Aoe™Vdt/dx+s=—8y, (60)
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with the boundary conditions [Egs. (31), (32) and (35)]
=0, =0 (61)
t=0, jo=eVP(1—e¥4) at z=L, (62)

Eliminating s between Egs. (59) and (60) leads to the
second order differential equation

a% dt ¢ FeV
——F———f=— ,

dx Ao Ao

at x=0;

(63)

which can in principle be solved for ¢(x) if F («) is known.
The function ¢(x) can then in turn be determined from
the solution of Eq. (58) which is

o—c” / (eV-+Fi)dz, (64)
0

while s can be determined from either Egs. (59) or (60).
Combining Eq. (64) and the boundary condition (62)
leads to the voltage-current characteristic,

j=jo[1+817,

L L
B= / Fidx / / e Vdx
0 0

and 7 is the expression for j in the TEA given by Eq.
(36). The correction term B is a function of the applied
potential ¥ 4 which can be derived once the solution for
t of Eq. (63) is known.

As an example, the case of a Schottky barrier [cf.
Eq. (38)] will now be considered. The solution of
Eq. (63) is then?s .

(65)
where

(66)

5 B0, 3; —3)
t:
2800l ®(a, §; —312)

1] ap(ad),  (67)

where
a=1—1c/Ag

and ®(a,c; x) is the confluent hypergeometric function.
Substituting into Eq. (66) gives, after some manipu-
lation,?®

Aoﬁ(ay VD— VA)

(68)

1 B(1+a,4; —31)
- ] -

2l @(1,3;—3192(a, 3; —3L)
~14-2(2a—1)/L*+5(4a%—1)/L+H0(L7%).  (69')

The dependence?? of BAg on ¢/A is illustrated in Fig. 2

26 Equation (63) can be solved by making the substitution
t=uexp($2?) and using the solution of the resulting standard
equation given by A. Erdelyi, Higher Transcendential Functions
(McGraw-Hill Book Company, Inc., New York, 1953). The
various integrals and recurrence relations required for the deriva-
tion of Egs. (69)—(73) will also be found in this compilation.

27 For a recent table of numerical values see L. J. Slater,
Confluent Hypergeometric Functions (Cambridge University Press,
New York, 1960).
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I'16. 2. The dependence of the correction term 8(a, Vp—V 4) on
¢/Ay [cf. Egs. (65) and (69)]. Curve A refers to the present
calculations and curve B to the result of Avak’yants.”

(curve 4) for the case (1/2)L2= (Vp—V 4)=10. From
the asymptotic properties of the confluent hyper-
geometric function it can be shown that 3 tends to zero
as either ¢ or Ag tend to infinity for all values of L. When
¢/Aq tends to zero, BA, tends to 1.183.

Using the solution for ¢, the other variables s and o
can be evaluated. In particular we find that the rates of
energy transfer [Egs. (49), (50), and (52)] are given by

H/ =332, 3 — 39— 10/2(a, §; —L2), (10)
Hy/j= =304+ m b 3120(1+a, §5 —312)/
(I)(d, %; _%L2)) (71)
H,/ j=[{®(a, §; —3L?)}*—1]/2a, (72)
and
Hyr=H-+H+Hs= jmo, (73)

considering only terms linear in j and setting {. ap-
proximately equal to 6, i.e., neglecting the Peltier
coefficient of the metal with respect to that of the
semiconductor (o). The fact that Egs. (70), (71), and
(72) are consistent with Eq. (73) can easily be verified2s
with the aid of the recurrence relations for the confluent
hypergeometric functions.

The dependence of (H/j), (Hs/7), and wo— (H1/§) on
¢/Aq is illustrated in Fig. 3 for the case (1/2)L*=Vp
—V4=10. For a current in the reverse direction (j is
positive), the rectifying contact as a whole is cooled at
the rate jmq (o 1s negative). The interface is cooled at a

WT T T T T 177
N N SN S Y S N |

S
S

—C/p,

Fi1c. 3. The dependence of various rates of energy transfer, in
reduced units, on ¢/A [cf. Egs. (49), (50), and (52)].
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rate in excess of jmo which varies only slightly (from
8.947 to 107) as ¢/Ay goes from zero to infinity. This
excess cooling is balanced by the rate at which the
barrier region (H) and the bulk region (H3) are heated.
The former is dominant for large ¢/A and the latter for
small ¢/Ay. If the current is in the forward direction, the
sign of j and all the other quantities is reversed. In
particular, H is then negative since the electron temper-
ature in the barrier region is then less than the lattice
temperature, i.e., “cold” electrons. Physically this arises
since the energy required by the electrons, when climbing
up the potential barrier, must be supplied by the lattice.

To determine the range of j values for which the low-
current solution is an adequate approximation requires
estimates of the second order terms in the power series
expansions of Eq. (56). This leads to a set of differential
equations which is more complicated than the original
transport equations. Thus, the range of application of
the low current solution will be determined by com-
paring with the computed solutions, for arbitrary j,
presented in the next section.

Avak’yants also considered the low-current limit but
only derived the correction to the TEA zero-bias re-
sistance. Although he specified a Schottky barrier, he
actually assumed a constant field in the barrier region
whose thickness was correctly deduced from the barrier
height. After some considerable manipulation, his final
result’ [Eq. (53)] can be rewritten as

AoB=2{1+(¢c/ AoV p)+[1+(2¢/AdV p) ]},

where Ay=3 corresponding to »=0. This result gives

curve B in Fig. 2; it deviates appreciably from our
calculated curve 4. When ¢/Ag tends to zero, A¢3 tends
to one.

(74)

5. RESULTS OF THE NUMERICAL ANALYSIS

The solution of the three reduced transport equations
[Eqgs. (28), (29), and (30)] for arbitrary values of the
current j must be carried out numerically. It then be-
comes necessary to specify a particular barrier profile
and electron lattice scattering mechanism at the outset.
As an example, computer solutions have been obtained
for the following illustrative example of a one-dimen-
sional semiconductor metal contact rectifier.

(a) Schottky barrier [cf. Eq. (38)] with neglect of
the image force correction. It will be shown that in-
clusion of the latter would considerably complicate the
procedure adopted for the numerical solutions.

(b) Reduced diffusion potential ¥V p=10. This is the
only parameter required to specify the barrier for the
numerical calculation; the value selected is typical of
experimental values quoted in the literature.

(c) Electron scattering by acoustic modes of vibra-
tion only; i.e., v=—1% in Eq. (25). Then, from Eq. (26)
and reference 10,

u=T"}

A=§=2, B=cTHT—1),  (75)
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where the dimensionless coupling constant ¢ is given! as
32 s eLp? m*s?\ / Lp\?
~sluin) a7

37!' Mo kTo kTo l
in unreduced quantities. Here s is the velocity of sound,
m* the effective electron mass and / the mean free path.
Equations (28), (29), and (30) would be considerably
more complicated for a relaxation time which is not
proportional to a power of the electron energy. For ex-
ample, although it is possible to obtain an analytic ex-
pression for B(T") when electron scattering is due to both
acoustic and nonpolar optical modes of vibrations,® the
quantities u(7), 6(T), and A(T) involve numerical

integrations.

(d) Coupling constant ¢=10 (i.e., a=—1.5). With

values of s typically about 5X10° cm sec™, the value of
¢ can be written as

(76)

¢=0.066(m*/m)(300/Ts) (Lp/1)?, (76"
where m is the free electron mass. The range of possible
values for ¢ is bounded from below by the condition
(cf. Appendix)
Fel<kT or (Lp/D>[2(Vp—VATo/ET2E, (77)
in unreduced quantities [using Eq. (38)], and from
above by the condition
u>>(2/3)eh/m*kT, (78)
also in unreduced quantities. (The latter condition,
given by Frohlich and Sewell,®® is obtained by inserting
the relaxation time into Heisenberg’s uncertainty rela-
tion.) Combining Egs. (76), (77), and (78) leads to

m*s?\ fVp—Va 24 /m*sLp T \?
24( )(————)((6((—-( ——) , (19)
kT kT T o T

F16. 4. The variation of
the reduced electron tem-
perature T through the
barrier region for various
values of the current den-
sity 7, in the reverse direc-
tion, marked on the figure.
The point x=0 (not shown
in the figure) corresponds to
the foot of the barrier, i.e.
where the bulk and barrier
regions join. The value of x
where 7'=1 at the right-
hand side of each curve (i.e.,
at the metal-semiconductor
contact) gives the barrier
thickness.

28 H. Frohlich and C. L. Sewell, Proc. Phys. Soc. (London) 74,
643 (1959).
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F16. 5. The variation of the reduced electron temperature T
through the barrier region for various values of the current density
7, in the forward direction, marked on the figure. The point x=0
corresponds to the foot of the barrier, i.e. where the bulk and
barrier regions join. The value of x where T'=1 at the right-hand
side of each curve (i.e., at the metal-semiconductor contact) gives
the barrier thickness.

or, using Eq. (37),

m* 300 VD— VA
TS
m To kT

3.3X10rm*N\2/ To\ / T \?

<<c<<——~——(——) (——)<~—> , (19)
taking s=5X10% cm sec?, e=16, and N in cm~>. The
value ¢=10 selected will satisfy these inequalities for
reasonable values of the other parameters. Some results
have also been obtained for ¢=2.5X1073 (i.e., a=1)
which would require improbably low values of the
effective mass, say less than about 2)X10=® m. (This
value of ¢ actually corresponds to n-type Ge, assuming
acoustic scattering only and taking N=10'% cm=3.) It is
nevertheless of interest to compare these results with
those for the main calculation due to the large difference
between the two values of ¢ selected.

The equations were programmed for an IBM 704
computer following the Runge-Kutta procedure.? For
convenience the rapidly varying quantities #» and T
were replaced by new variables ¢ and 6 defined by the
relations:

nmul=exp(V—¢) and T—1=Gexp(—V).

A two-point boundary problem has to be solved. Starting
at =0, the foot of the barrier, with the known values of
¢ and @ (or » and T) for a given j [Eqs. (31) and (53)]
and a guess at the value of s, the equations are inte-
grated for increasing x until =0 (or T'=1) at the metal
interface.? The corresponding values of ¢ and «, i.e., V4

2 The method is analogous to that described in reference 20. The
author is indebted to Dr. J. Ross Macdonald for the IBM 704
program.

% For currents in the forward direction, 8 decreases from a small
positive value at x=0, passes through zero to minimum and then
increases to #=0 again. It is the second position where %=0 which
gives the barrier thickness.
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and L must then satisfy the relation V4+3L?=Vp
[Egs. (32) and (38)]. By iteration the correct choice of
5(0), for a given 7, which leads to the chosen value of
V b, can then be found.

Inclusion of the image force correction would lead to
a term proportional to (L—«)~% in the expression for
F(x). Since however, the barrier thickness L for a given
7 is not known a priori, it would have to be determined
by trial and error just as s(0). The procedure would
then involve selecting s(0) and L such that when the
equations were integrated from 0 to L, 6(L)=0 and
¢(L)=V 4=V p—3%I2 Clearly, a considerable amount of
iteration would be required to find the correct solutions.

The results of the calculation are illustrated in Figs. 4
through 7. The variation of the reduced electron temper-
ature T through the barrier region, for various values of
the current j, is shown in Figs. 4 and 5. The position of
the foot of the barrier (x=0) is not included in Fig. 4 for
the reverse direction since T only deviates appreciably
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Fi1c. 6. The computed volt current characteristics (full line
curves) for a Schottky barrier rectifier (¢—In|j| vs In|Val,
b—In|j| vs V4). The dashed curves were calculated with the TEA
using Eq. (39). A straight line whose slope corresponds to the
simplified expression — j « expV 4 for the forward current has been
included in the figure for comparison with the computed curves.
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F16. 7. Linear plot of the computed Schottky barrier rectifier
voltage-current characteristic (full line curve). The dashed curve
represents jo[14+8(—1.5, 10)], the low-current solution [Eq.
(65)], where j,is the TEA solution [Eq. (30)]. The points repre-
sent the more accurate low current solution, jo[1-+B(—1.5,
10—V 4) 17, calculated only for the reverse direction by use of the
asymptotic expansion, Eq. (69).

(say by 29%) when x exceeds about 3. However, for
currents in the forward direction (cf. Fig. 5), T deviates
appreciably already near x=0 due to the higher currents
that can flow. Whereas the maximum electron temper-
ature in Fig. 4 appears to increase continuously as 7
Increases, the minimum electron temperature in Fig. 5
at first decreases but then reaches a lowest value of
0.715 for j equal to about —4X1072. The electron tem-
perature gradient becomes very large near the metal
semiconductor interface, i.e., the position where 7=1 at
the right hand side for each curve in Figs. 4 and 5. Tt is
equal to about 4 for the highest current plotted in
Fig. 4 and exceeds 100 for currents in excess of —2X 1072
in the forward direction. These large values are no doubt
connected with the discontinuity in potential of the
Schottky barrier. Inclusion of the image force correction
would lead to a more gradual variation of T near the
metal semiconductor interface.

In the Appendix it is shown that besides inequality
(77), the electron temperature must also satisfy.

(1/T)dT/d(x/Lp)<Lp/l, (80)

in unreduced quantities. With ¢=10, (Lp/l) is about
12(m/m*)?, using Eq. (76). Thus the condition is likely
to be violated for large currents in the forward direction.
Examination of the computed results reveals that for a
given (Lp/1), the other conditions given in the Appendix
will also be obeyed up to those current levels for which
inequality (80) is still satisfied. [An exception is the
third member of inequality (A9) which will not be
satisfied, for any 7, in the immediate vicinity of the
maximum and minimum values of 7'; this will not,
however, introduce any appreciable errors. ]

The computed volt-current characteristic is compared
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with that for the TEA [cf. Eq. (39')] in Figs. 6 and 7.
The zero bias resistance is increased by the factor
148(—1.5,10)=1.338 [cf. Eq. (69)] above the TEA
value. Figure 7 shows that the computed current density
7 actually differs appreciably from jo/[14+8(—1.5, 10)]
only for voltages in excess of 4 in both directions. This
can be verified by displacing the two sets of curves, in
the double logarithmic plot (Fig. 6), along the | 7| axis.
Better agreement can be obtained by using the full ex-
pression 7o/[148(1.5, 10—V 4)] derived for this low-
current region. This is exemplified by the solid points in
Fig. 7 which have been derived with the use of Eq. (69').
The wide range of application of the solution for low
currents was unexpected; its demonstration is an im-
portant result of the numerical anafysis. It seems reason-
able that the low-current solutions for barriers of differ-
ent shapes will also have a fairly extensive range of
validity although this has not been tested. This con-
jecture is supported by numerical solutions of the
transport equations with the coupling constant ¢ taken
as 2.5X1072%. They were qualitatively similar to those
for ¢=10. In particular, the low-current solution was
adequate for voltages of up to —4 in the reverse and
5 in the forward direction.

6. DISCUSSION

The analysis for a one-carrier system, presented in the
previous two sections, demonstrates that taking account
of the deviation of the electron temperature from the
lattice temperature, in a barrier region, leads to a
voltage-current characteristic considerably different
from the TEA value. Even the zero-bias resistance is
appreciably altered unless the electron phonon coupling
constant is (improbably) large. This is connected with
the fact that (T—1) is of order 7, for small j, in the
barrier region, as demonstrated in Sec. 4. However, in a
uniform field region (7'—1) is of order 72 [cf. Eq. (53)
and subsequent remarks | so that the hot electron effect
on the resistance disappears when j tends to zero.

The results of the computation described in Sec. 5
were obtained on the assumption of electron scattering
only by the acoustic modes of vibration. However, in
materials where the frequency spectrum has an optical
branch, the energy transfer from the electrons to the
lattice is predominantly via optical phonons.”® In that
case, if the coupling constant ¢ refers to acoustic electron
scattering only, the calculated difference between the
electron temperature 7" and the lattice temperature T
will be too large and the calculated voltage-current
characteristic will deviate too much from the TEA
solution. A very crude way of incorporating the effect of
optical phonon scattering into the present calculation
would be to take the velocity of sound larger than its
true value thus increasing the coupling constant ¢ and
enhancing the energy transfer. (In this connection it is
of interest that Shockley* found reasonable agreement
between the experimental mobility-field variation for
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n-type Ge and theory, involving only acoustic scat-
tering, for electron temperatures less than the optical
mode temperature and a velocity of sound equal to 3.2
times the known value.)

As emphasized in Sec. 1, it would be entirely incorrect
to incorporate the hot electron effect into barrier theory
by using some field-dependent expressions for the mo-
bility and diffusion constant in the expression for the
current density [Eq. (1)]. Rather, using the assumption
of a Maxwellian electron energy distribution, the de-
pendence of the mobility and diffusion constant on
electron temperature must be determined for the par-
ticular semiconductor under investigation. The electron
temperature itself can only be determined for the par-
ticular structure being considered by solving the equa-
tion for conservation of energy simultaneously with the
equation for the current density. Additional complica-~
tions will arise for two carrier systems (p-» junctions)
where the carrier lifetimes which enter into the con-
tinuity equations are also carrier-temperature-depend-
ent and electron and hole temperatures will in general be
different.

Space-charge-limited current flow in dielectrics or
n—1—n structures is another one-carrier problem where
the hot electron effect may be important. Dacey?® has
shown that the measured current in a #—i—#n Ge struc-
ture is in agreement with a theory which neglects the
effect of diffusion and uses the observed dependence of
mobility on field. The latter actually implies that the
divergence of the energy flux .S in Eq. (7) can be neg-
lected, as well as the diffusion term in Eq. (3), so that
the electron temperature and consequently electron
mobility are unique functions of the field and inde-
pendent of the current. However, the inclusion of the
diffusion term in the TEA has shown that there are
regions of current where it is important.® Thus a com-
plete solution for the hot electron effect on space-
charge-limited currents requires the simultaneous solu-
tion of the three transport equations in Sec. 3 together
with Poisson’s equation.
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APPENDIX

Terms involving f2(E,x) have been omitted in Eq.
(13). These arise in the evaluation of the P;(cosf), field
and diffusion, terms and can only be neglected if

[ 11l

T Sm*

29

(A1)

(230

——e
ox oE 2FE/:

31 G. C. Dacey, Phys. Rev. 90, 759-(1953).
# W. Shockley and R. C. Prim, Phys. Rev. 90, 753 (1953).
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(unreduced variables will be used throughout the Ap-
pendix). The quantity fa(£,x) can be derived by solving
for the P2(cosf) terms of Eq. (11). This gives

ZGFP(afl fl) 2p0fi fo 0
3m*\oE E/ 3m*dx 7

(A2)
neglecting terms involving f3(E,x). The relaxation time
79 can be derived from Eq. (A7) in the first reference 10
taking f»(E-¢) approximately equal to f2(E). For the
particular case of acoustic scattering,

7= lm*/p,. 7= (3/7)lm*/ p,

where / is the mean free path, independent of the elec-
tron energy E.

The condition (A1) can now be evaluated by substi-
tuting for fo, f1, and fs from Egs. (20), (13), and (A2),
respectively. This leads to a very complicated result
involving various products of higher order derivatives
of F, n, and T, with respect to x. As an approximation,
consider first that terms involving the field F are pre-
dominant while diffusion terms (involving differentiation
with respect to %) can be neglected. Then, using Egs.
(A2) and (A3), condition (A1) becomes

! 7 JEN\OE 2E/ 2E\OE 2E
Since fi(E) is proportional to exp(—E/kT), condition
(A4) will be satisfied, for arbitrary E of order kT, when

(A3)

(A4)

eFILET, (AS)

dropping numerical factors of order one. This is the only
condition® usually stated for the TEA (cf. reference 19)
where T is equal to T.

Consider next that the diffusion terms are predomi-
nant while the field terms may be neglected. Then
condition (A1) becomes

514l 2)6%*h
~ g

2 1 7 lawl (A6)

From Egs. (13) and (20) (neglecting the term due to F),

_ d(lnn)J E E\d(lnT)
fi= l[ dx '(kT 2/ dx

i an

where the first term corresponds to ordinary diffusion
and the second to thermal diffusion. Substituting into
(A6), it will be found that if ordinary diffusion is pre-
dominant, then the condition

| dn/dd| << | dn/ de| (A8)

¥ In the TEA one can easily eliminate f» between inequality
(A1) and Eq. (A2) without considering field and diffusion terms

separately. It turns out that inequality (A1) will then be satisfied
if el?dF /dx<<kT, in addition to inequality (AS).
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must be satisfied; if thermal diffusion is predominant,

ld(InT) P&(nT) PBd(InT)/dx?
) : <1 (A9)
dx dx? d(InT)/dx

must be satisfied.
To test whether terms containing f2(E,x) can be
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neglected in a particular case, it is necessary to evaluate
the various derivatives in inequalities (AS5), (A8), and
(A9) from the computed solutions and see if the
inequalities are satisfied. For scattering mechanisms
with an energy-dependent mean free path, the condi-
tions will remain essentially unaltered with / evaluated
for the average electron energy &7
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The electron-lattice interaction responsible for electrical resistivity in perfect metallic crystals is shown
to be a form of Jahn-Teller effect. It does not occur in the Born-Oppenheimer (adiabatic) approximation
even when the electron-electron interaction is taken fully into account. The matrix elements that describe
corrections to the Born-Oppenheimer approximation are derived by a general argument that can be applied
to metals with arbitrary electronic energy band structure, and the case of monatomic metals is worked out
in detail in the effective mass approximation. Two types of physical phenomena are attributed to these
matrix elements. The first is ordinary electrical resistivity due to electron-phonon scattering. The present
derivation leads to the same formal structure as the usual theory, but should give quantitatively different
results when applied to specific metals. The second type of physical phenomenon is a modification to the
stationary states of the electron-lattice system that can significantly alter the total energy spectrum at low
energies, and mixes states of electron excitation and lattice excitation. An effect of this kind can account
qualitatively for the disappearance of electrical resistivity at finite temperatures in superconductors. Other
special properties of superconductors should follow from consideration of the stationary states modified by

the Jahn-Teller effect.

I. INTRODUCTION

HE theory of superconductivity' developed by

Bardeen, Cooper, and Schrieffer and by Bogoliubov
successfully accounts for the thermodynamic behavior
of superconductors at low temperatures, the depend-
ence of critical temperature on isotopic mass, and
other properties dependent upon the existence and
magnitude of an energy gap for electron excitations.
However, the Meissner effect (expulsion of the magnetic
field) follows from an argument that has been the
subject of considerable controversy? and cannot be
said to be an immediate intuitive result of the theory.
The phenomenon of superconductivity itself (vanishing
resistivity at a finite temperature) is not explained by
the theory.? The theory is based on a highly simplified
form of the Hamiltonian, which, although representing
the most important terms in the complete Hamiltonian,
leaves out most of the structure both of the phonon
frequency spectrum and of the electronic energy bands.

1 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957); N. N. Bogoliubov, Nuovo cimento (10) 7, 794
(1958); J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 58 (1958); N. N.
Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, 4 New Method
in the Theory of Superconductivity (Academy of Sciencesof U.S.S.R.,
Moscow, 1958).

2 M. R. Schafroth, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1960), Vol. 10,
Pp. 293-498.

It has been pointed out by several authors® that the
electron-lattice interaction must be thought of as a
correction to the Born-Oppenheimer or adiabatic
approximation, and that this must affect the theory
of superconductivity. Matrix elements for transitions
described as electron-phonon scattering are unchanged
to first order from those of the Bloch theory.® However,
matrix elements also occur between nondegenerate
Born-Oppenheimer states. The present paper will
derive these matrix elements in more detail than did
the authors cited, in order to establish a basis for
discussion of the stationary (or metastable) states of
the interacting electron-lattice system. This leads to a
reformulation of the theory of superconductivity that
includes a more realistic description of the phonon
energy spectrum and the electronic band structure
than is possible in the Bardeen-Cooper-Schrieffer
theory. Since the field-theoretical formalism does not
lend itself to a detailed discussion of the degeneracies
that occur, which are qualitatively very important
in treating the electron-phonon interaction, the present
analysis will be carried out in terms of the Schrodinger
wave functions of the system.

The exact nonrelativistic Hamiltonian for a metal

3J. M. Ziman, Proc. Cambridge Phil. Soc. 51, 707 (1955);

H. Stumpf, Z. Naturforschung 1la, 259 (1956); A. Haug, Z.
Physik 146, 75 (1956); B. Goodman, Phys. Rev. 110, 838 (1958).



