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exhibited by most samples, in both transient and steady-
state measurements, sets iodine apart from any known
nonmolecular insulator. The large value of 0 ( 10 ' at
room temperature) is to be contrasted, e.g., with the
10 quoted for CdS. Preliminary measurements on
anthracene' suggest a similar behavior. ' It is quite possi-

r R. W. Smith, RCA Rev. 20, 69 (1959).' M. Silver, M. Swicord, R. C. Jarnigan, A. Many, S. Z. Weisz,
and M. Simhony, J. Phys. Chem. Solids 24 (1962).

'Note added in proof: Studies of SCLC in anthracene have also
been reported by P. Mark and W. Helfrich [J. Appl. Phys. 33,
205 (1962)j.

ble that such a behavior is typical for molecular
crystals.

In conclusion, it is believed that measurements of
transient 8CLC, especially when combined with steady-
state measurements, constitute a powerful tool for the
study of electronic processes in solids. This is particu-
larly the case for materials characterized by low
mobilities. At the same time, transient measurements
under space-charge-free conditions seem promising in
yielding information on such processes as surface recom-
bination and carrier photogeneration in these materials.
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The electron spin exchange interaction between colliding molecules is examined as a possible relaxation
mechanism for the hyperGne structure of free-radical molecules in solution. An expression is derived which,
under suitable conditions, relates the frequency-dependent susceptibility to a single parameter g, which
can be interpreted as the frequency of spin exchanges. For large values of q the absorption narrows to a
single line of width o /g, where o is the mean square width of the unperturbed spectrum. For small values
of q the widths of the individual hyperfine lines are found to depend upon their relative intensities. These
results are compared with some recent experiments.

I. INTRODUCTION
'

j~ LECTRON paramagnetic resonance spectra of
many free radicals exhibit hyperfine splittings due

to magnetic dipole coupling between the unpaired elec-
tron and magnetic nuclei within the molecule. This
coupling consists of two contributions; the ordinary
dipole-dipole interaction which is dependent upon the
molecular orientation, and the "contact" interaction,
ttl S, between the nuclear spin I and the electron spin
S, with the coupling constant a proportional to the
electron charge density at the site of the magnetic
nucleus. Typically, the hyperfine splittings are ob-
served bydissolving the radical in a diamagnetic solvent,
which reduces the intermolecular exchange and inter-
molecular dipole-dipole interactions to the point where
the hyperlne structure is resolved. At sufFiciently high
temperatures, molecular tumbling averages the orienta-
tion-dependent part of the hyperfine coupling leaving
only the contact interaction. If, in addition, the Larmor
frequency due to the external magnetic field is much
larger than the coupling constant g, then the electronic
and nuclear spin can be separately space quantized and
it is thus possible to treat the hyperfine coupling as a
small increment to be added to the external magnetic
field.

*Supported in part by the U. S. Air Force through the Air
Force Once of Scientific Research.

Our purpose in this paper is to examine in some detail
a possibly important relaxation mechanism for these
systems, namely, exchange interaction occurring during
collisions between the free radical molecules. We will
then attempt to apply our conclusions to some recent
experimental results.

One method of attack on this problem would be to
treat it as an application of a general theory of motional
narrowing, as has been formulated, for example, by
Kubo and Tomita. ' One would. then treat the hyper6ne
interaction as a perturbation which is modulated by the
(time-dependent) exchange interaction. The "motional"
Hamiltonian would then commute with the Zeeman
Hamiltonian and also with the total electron magnetic
moment and thus would obey the criteria for the
applicability of motional narrowing theories. This ap-
proach would enable one to calculate the over-all second
moment of the spectral intensity and in the case of
strong motional narrowing ("fast motion") should
represent the observed line shape quite well. It would
not be of any use if one wished to study the various
hyperfine lines individually. In this case the Zeeman
and hyperfine interactions would have to be treated
as a single unit which is perturbed by the exchange
interaction. In the region intermediate between good
hyperfine resolution and strong narrowing neither

'R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).



1996 JAMES D. CURRIN

method holds much promise. This "pincer" approach
to the problem has been carried out by Kivelson. '

Our method will have the advantage of resulting in a
single analytic expression with which the entire range of
situations, from good hyperfine resolution to extreme
narrowing, can be described. We will use a Hamiltonian
consisting of two parts; an unperturbed part which
describes the interaction of each molecular electron
with the external magnetic field and with the local field
due to the hyperfine coupling, and a part which de-
scribes exchange interactions between pairs of mole-
cules. By treating the hyperfine interaction as if the
electron were interacting with a classical magnetic field,
we will be assuming that the external field is much
larger than the hyperfine coupling constant, and also
that the relaxation times of the magnetic nuclei are
long compared to electron relaxation times. The motion
of the molecules will be treated classically by having
the various exchange integrals be time dependent. We
will use the correlation function method as described,
for example, by Kubo. '

II. CALCULATION OF THE CORRELATION FUNCTION
A1VD FREQ'UENCY SPECTRUM

We write the Hamiltonian for iV molecules as

system. ' Thus we write

5+(,)
i&j lit, v

i& j&It, p, v, X

~, , pv)5~5 yS ).+.. . (2 5)

where the Greek superscripts can assume values which

correspond to the spin operators S;+, Si, 5,'=—Si, Now
the trace operation can be factored into a product of
traces over the spin coordinates of the individual mole-
cules. Therefore if we substitute Eq. (2.5) into Eq. (2.4)
and remember that the trace of any single spin operator
5,& vanishes, and that the trace of 5;&5," vanishes unless

p, = —v, we get

P(t)=2+, a,+(t) Tr{5,+S; }/Tr{1}=g,a~+(t). (2.6)

Thus the only coeflicients in the expansion (2.5) that
we shall need to calculate are the a;+(t). If we now sub-
stitute Eq. (2.5) into Eq. (2.3), multiply both sides of
the resulting equation by S~ and take the trace of both
sides, we obtain

(d/dt) a,+(t) =i td tat+ (t)

+ 2- sJt-(t)Lbt-+P(t) —b-t~(t)] (2»)
mal

X(t) =P tp,S,,+P J,, (t)S,"S;, (2.1) By the same method except that we multiply by
S~ 5~', we get

(d/dt) b, „+P(t)
=i~ bt-+'(t)+iJt-(t) Lat+(t) —a-+(t)j

+ E.--:J -(t)LC -+-(t) —c- -"'(t)3
+ 2-lJ-(t)Ã-' '(t) —C --' '(t)l (27b)

where J,;(t) is the time-dependent exchange interaction
between the ith and jth molecules, cubi is the l,armor
frequency of the ith molecule, including the contribu-
tion of its hyperfine coupling, and S, is electronic spin
angular momentum operator of the ith molecule. The
quantity which we will calculate is the correlation
function, which we will define as4

It is clear that by continuing this process one would
obtain a coupled system of equations that could in

principle be solved for all the coe6cients in the expan-
sion (2.5). What will be done here is to assume the
conditions of a dilute solution, i.e., that the spins in-
teract only in pairs, at any given time. Under these
conditions Eqs. (2.7) can be solved independently for
each pair of interacting spins, by assuming initial
conditions which apply at a time just before the inter-
action takes place. To illustrate, we suppose that the
/th and mth molecules interact during an interval
tt (t (ts. Equations (2.7) will then involve only the tth
and neth molecules and will then read

G(t) =—v'-/4Re{4 (t)},
it (t) =Tr{ oLS+(t)5 (o)+5 (0)5+(t)3},

where y is the electron magnetic moment. Here S+(t)
obeys the Heisenberg equation of motion (with ttt=1):

dS+/dt= aiPC(t), 5+(t)], (2.3)
with

5+(0)=Q; S,~, 5+=5,.+iS;„.
We shall assume that the temperature is high enough
that the density matrix po may be taken simply as

pp
——1/Tr{1}, (d/dt) at+ (t) = icptat+(t)

+(i/4) Jt-(t)Lbt-"(t) —b-t (t)j,
(d/dt)a +(t) =i pp a +(t)

—('/4) J -(t)Eb -+'(t) —b-t+'(t)7,
(2.7')

(d/dt)bt„+p(t) =itptbt„+p(t)

+iJt„(t)[at+(t) —a +(t)g,

(d/dt) b„t+'(t) = imp„b „t+'(t)
—iJt„(t)Lat+(t) —a +(t)j.

' U. Fano, Revs. Modern Phys. 29, 74 (1957), Sec. 6.

so that we may write

f(t) = 2 Tr{$+(t)$ (0)}/Tr{1}. (2.4)

The solution of Eq. (2.3) can be expressed formally
as a linear superposition of basis operators for the

s D. Kiveison, J. Chem. Phys. 55, 1094 (1960).
s R. Knbo, J. Phys. Soc. Japan 12, 570 (1957).
4 One can easily show that this is equivalent to the more usual

deimition G(t)=(y'/2) Trpp(S, (t)S;+SS;(t)g, wherei d'or y, by=
substituting for S and S their definition in terms of S, and S„.
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~ g so we letf the interaction

(2.10a)

(2,10b)

~ JA)) F((g,—~m) J)
iy—i~f(P,pi~ =

G(~,—~~i Jlmg(pA

'
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=J) tg(t(t2
=0) t2 (t.

s. (2.7') give for ai+(t~

=" "-""(f(P,~-) 't g, -
+'(t )+g (p ~-+f'(PA i-)&i-

where

l sin(p'+pi ')'*,
f(P,4i

+i4i (p'+Pi
l sinp sin(p'+pi ~ l,lm lm ' S Lm

f'(p, yi,„)= (i/2) sin

g i — '
(p'+pi ') '* cosp sin(pg'( Ai-)=( i/2)p-

P= Jh/2,

m„=((oi—cu„)6/2,

«+(t+m)

C(J,E)dJdh bt (1+iv&i +1 i(oi5t) a)+(t)1—(X—1)

J,d, dJdh ai+(t)Qe(J,L)F(~, ~; J,a—
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tions over the index m include a term for nz=l. We to be
then have

—a1+(t) =iM, a1+(t) —XLN —g P(M1—M )]a1+(t)
to=1

X"(M) =
I

&kZ' p

G(t) cosMtdh

+Xg G(M1—M„)a„+(t). (2.11')
m=1

We can greatly reduce the complexity of the system of
coupled equations by grouping all molecules which have
the same particular Larmor frequency, ~„. In order to
do this we define the partial sums,

0-=2«1"(t)~(M1,M-),

~

Re P, f (t)e ' 'dk

&8kT)

+~
~

Re P. P.(t)e' -'dt . (2.15)
(SkT p

The second term in Eq. (2.15) will always be small and
slowly varying in the resonance region and will be
dropped. Thus we write

and by multiplying Eq. (2.11') by 5(M&,M ) and summing
over / we get

(d/dt)P (t) =iM P (t) —71NL1 —QP PPF(M, —Mp)]P (t)
+XNP. QP G(M MP)pe(—t), (2.12)

where

x"(M) = (v2M/8k&) Re{2-4-(iM)}, (2 16)

p (t)e s'dt

where p = N /N and where the N are the populations
of the various hyperfine structure levels. We now have
a system of coupled equations with the same multi-
plicity as the hyperfine structure of the molecule.

In terms of the real quantities

8M =Im{XN Qp ppF(M —Mp)},
P&ce

Q —=XN(1 —p„)—Re{l1N Pp ppF(M —Mp)},

Q p=XNp G(M.—Mp),

Eq. (2.12) can be written in the simple form

From (2.13) we find that P (5) is a solution of the
system of linear equations

Nt. + Zp Q-A~(5')
Pga

e.(~)=
S+Q. i (M.—+Re.)

(2.17)

Thus, assuming knowledge of the parameters Q, Q p,
and 6~, one may compute the spectral absorption in a
straightforward manner. In order to get an indication
of how these parameters enter into the results we shall
solve a simple system consisting of just two hyperfine
levels with equal populations. In this case one can
easily verify that

—4-(t) = ( -+~ -)4-(t) —QA-(t)+ Z Q-8 (h) (2 13)

The correlation function is, by (2.6) and (2.2),

G(h) = h"/4) Re 2-0"(h).
Putting

(2.14)

The absorptive part of the linear susceptibility has, at
high temperature, been shown by Kubo and Tomita' we find that

Q1=Q2—=Q

Q12 Q21 Q

Sly =8G02= 5M.

M1 ——Mp+» —Ro,

M2=Mp —60+5M»

NLi(M —
Mp) +Q+Q']

CO 2 CO

8( —.)+e+'(»' —e")~]L'( — )+e-'(»'-e")']
p (t)+p (t)=(N/2){p1 —ie'(»' —Q") '] exp/i o Q+i(8&—' Q")**]h-

yL1+ie'(»2 —Q") l] expLiMo —
Q

—i(»2 —Q")']t}.

(2.18)

(2.19)

For positive values of (»2—Q"), Eq. (2.19) repre-
sents the sum of two exponential decays, each with
a decay constant Q and of frequencies Mp+(» —Q' )'
and Mp —(602—Q")', respectively. For (502—Q") nega-

tive the decay constants are Q
—(Q"—»2) '*and

Q+ (Q"—»2) *
and the frequency Mp. It is quite similar

to an expression derived by Anderson' and others to
describe an oscillator which switches randomly between
two distinct frequencies. In fact if we take Q=Q' the
expressions are identical in form. We now proceed to
specify the conditions under which it is permissible to
take Q=Q'.

' P. W. Anderson, J. Phys. Soc. Japan 9, 316 (1954).
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Let us suppose that the magnitude of the exchange and
interaction J is the same for all collisions and further
that

J&)((e —(u p)

1
C (S)A

2

sin (JA/2) —cos(Jd/2) cos(JtI(/2)dh.
J~/2

for all values of the hyperfine structure frequencies co

and &ut). Next we rewrite Eq. (2.8) for f(P,&t ) and
g(p, g~ ) correct to first order in p ~)/p as

f(p,pt„) =cos'p+i(g~„/p) sinp cosp,
2.8'

g(p, ~ .) =

We also will assume that the distribution function for
6 is appreciable only for times 6 such that

(~,—~„)a/2(=y(„)(&1.

Working then to first order in gt, , we find that the
functions F(~~—co ) and G(&u~ —cv ) used in Eq. (2.11)
are

F((di —co )

Thus 8~ is proportional to the separation of co from
the "center" of the pattern and to a quantity XXr,
which is of the order of magnitude of the fraction of
time that each molecule spends in collision with its
neighbors. We therefore expect it to cause a very small
proportional "stretching" of the spectrum about the
mean. From now on we will absorb it into cv by writing

Q» =(d»+ t)N».

We can now write Eq. (2.13) as

(dldt)4' (t) =iflA' (t) y4(t)+qp Zp A(t) (2 13 )

or, integrating and summing over n,

P(t)[=Q. P.(t)]=XP.p.e""-'-"

4 (6) cos'(JA/2)dh+(i/2)(~~ —
a& )

+q Q p ~( o»f—q) (t r)P(r)dr —
(2 22)

e (s)s
sin (JA/2)

JZ/2

Thus we have succeeded in obtaining an equation which
—cos (JQ/2) cos (JQ/2) dg dePends uPon just one Parameter, q. For our two-

frequency example, Eq. (2.19) becomes

G((d~ —cu ) = 4 (6) sin'(JA/2)dh,

where we have also put

C (J',d) =M(J' —J)C (6).

It is then clear that Q and Q t) are related by

Q-= (1—p-) Q-s/p-
=(1-..)q,

where

(2.20a)

Also Ro may be written

q=Q t)/p =XIV C (6) sin'(JA/2)dh. (2.20b)

0 (t) = (&/2)([1—i(q/2) (~~'—q'/4) ']
Xexp[i(uo —q/2+i(t) 0'—q'/4)'*]t

+[1+ i (q/2) (0 f1'—q'/4) —l)
&& exp[i(vo —q/2 —i(t) Q' —q'/4)'*]t}. (2.19')

This is identical with the result of Anderson with q/2
playing the role of the frequency-switching rate. The
spectral intensity corresponding to Eq. (2.19) is plotted
in Anderson's paper' and shows that the two sharp lines
at coo&50 merge together as q is increased, until for
large values of q there is just one sharp line at ~0. We
now proceed. to show that this behavior is characteristic
of the general case by examining our results in the
limits of large q and small q.

Equation (2.22) can be solved by taking its Laplace
transform, which gives

where

t)(u» =X1V Q t) ((u» (at))pt) r. —
=Xg ((u.—((0))r„ (2.21)

Ã P. .p(/5 ift.+ q)—
~(5)=

1—
q P.p./(S —iQ.+q)

(2.23)

For large q we expand numerator and denominator

p f 1—(S iQ )/q+—(5—iQ )'/q'+ }
0(5)= (&/q)

1—Q. p.(1—(S iQ.)/q+ (5 i 0.)'—/q'+—
The expansions are convergent for

~

5—iQ
~

&q. Work- we obtain after considerable manipulation
ing consistently to order (5—iQ )/q and using

2- p-=1, 2 .fl.=&f1), Z- p-(fl. —&fl))'=",
O(5) =

5—i&0)+o'/q
(2.24)
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and solving by successive substitution, we get

lt'(S) =2- p./(S —s(2-+q)

-2 0 (~-ru )/Sn
I

0"'(S)=2- {L1+qp-/(S —s(I-+q) lp-/(S —sf'-+q) )

+2q P {p /(S —iQ, +q))

X Pp {ps/s(~. —coii)). (2.26)

The second term in Eq. (2.26) leads to an antisymmetric
contribution of order g to each hyperfine component and
will be of no further interest to us. The first term can be
written to order q as

lt'"(S) =XP p /LS —iQ +q(1—p )]. (2.27)

The absorption is then

x-(-)-~ Z. {p.q(1-..)/
«'(1—p-)'+ ("—")'j~

i.e., a sum of Lorentzian lines whose intensities are their
statistical weights p, and whose widths are q(1—p ).
This is just as we should expect since the width of each
hyperfine component is caused by collisions of molecules
of that species with molecules having different Larmor
frequencies (an exchange interaction between molecules
of the same Larmor frequency commutes with their
magnetic moment), and. the fraction of the molecules
of a species other than cr is just (1—p ).

The absorption then is proportional to

Xo'/q
x"(~)-

-'/q+( —((I))'
(2.25)

Thus we have shown that, for large q, the absorption
narrows into a single Lorentzian line centered at the
mean of the unperturbed spectrum and whose width is
narrowed by a factor o/q times the unperturbed second
moment, 0., about the mean. This result is, of course,
to be expected in general for motionally narrowed
systems where the correlation time for the perturbation
is short compared with the periods associated with the
perturbation.

We next investigate the line shape for small q.
Writing Eq. (2.23) in the form

k(S) =I:2-p-/(S —sIl.+q))LI+qlt(S) j,

FIG. 1. Absorption vs frequency for a system of 6ve lines whose
intensity ratios are 1:4:6:4:1.(a) g/BB=0. 1; (b) q/60=0. 25;
(c) g/su=0. 5; (d) g/80=1; (e) q/50=2. 5; (I) g/b0=5 Note that.
in (a) and (b) the less intense lines are the broadest, as was pre-
dicted by Eq. (2.28).

q=),Ã 4(d) sin'(JA/2)dh (2.20b)

Now AÃ is the collision rate for a single molecule and,
following Pake and Tuttle, we express it in terms of the
diffusion coefficient D as'

31V =4mDa, Ã„ (3 1)

where a, is some effective range of the exchange inter-
action and. E, is the volume concentration of the free
radical. Taking the diffusion coefficient as

D= k T/6rra, rt,

r G. E. Pake and T. R. Tnt tie, Phys. Rev. Letters 3, 423 (1959).
s J. G. Powles and M. H. Mosley, Proc. Phys. Soc. (London)

78, 370 (1961).' S. Chandrasekhar, Revs. Modern Phys. 1S, 1 (1943), Chap. III.

III. COMPARISON WITH EXPERIMENT

The narrowing of the entire resonance pattern in the
limit of rapid motion has been observed by Pake and
Tuttle' for a system of diphenyl picryl hydrazyl in
toluene, and by Powles and Mosley' for the biphenyl
negative ion in tetrahydrofuran and also in diethylene
glycol dimethyl ether. In order to compare our results
with the brief analysis given by Pake and Tuttle, let
us again consider the quantity q defined in Eq. (2.20b) as
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The quantity in square brackets is dimensionless and is
of the order of magnitude unity. Pake and Tuttle
estimated q from the measured width of the narrowed
line and using the known values of E„T, and g, ob-
tained an estimate for the bracket of about 10 '. By
similar methods Powles and Mosley found values of the
bracket in the neighborhood of unity and decreasing
with increasing T and decreasing g. In order to obtain
a rough theoretical estimate of the size of the bracket,
let us put (somewhat arbitrarily)

C (6)= (1/r, )e al"— (3.4)

where v. is some average correlation time for the ex-
change interaction during a collision. We will then have

E„kT 2 pa.
q= —

~

— e sin'(Jr, x/2)dx
I 3&a,

(3.5)

Here the bracket decreases monotonically with decreas-
ing r., and has a maximum value of sru, /a, . If we make
use of

r,= 6rrrlu, s/k T

for an estimate of v.„we find that the bracket indeed
decreases with increasing T and decreasing g.

Finally, we wish to discuss brieAy the behavior for
small q predicted by Eq. (2.28). Schreurs, Blomgren,
and Fraenkel" have studied the saturation of the reso-

'0 J. W. H. Schreurs, G. E. Slomgren, and G. K. Fraenkel, J.
Chem. Phys. 32, 1861 (1960); J. W. H. Schreurs and G. K.
Fraenkel, ibid 34, 756 (1961).. These authors have also examined
linewidths of the peroxylamine disulfonate ion, which has three

where u, is the equivalent Stokes' law radius of the
molecule and p is the viscosity, we can write q as

&V„kTi 2 u.
q=

~

—— 4'(2) sin'(Jh/2)dh . (3.3)
3 a.

nance of p-benzohydroquinone ion and have found that
the various hyper6ne components, which arise from
couplings with four equivalent protons, saturate at
different rates. From this they infer that the hyperfine
components must have different unsaturated linewidths
with the widths increasing symmetrically as one moves
outward from the central component. In the apparent
absence of any intermolecular relaxation mechanism to
account for this effect, they ascribe it to an intramolecu-
lar one, namely, anisotropic dipole-dipole coupling be-
tween the unpaired electron and the magnetic nuclei.
Equation (2.8) shows, however, that the intermolecular
exchange interaction does provide, in general, different
linewidths for the various hyperfine components, and
that for a symmetrical pattern the variation of the
linewidths is symmetrical. In fact, for hyper6ne coupling
with four equivalent protons the statistical weights of
the hyperfine components have the ratios 1:4:6:4:1.
Equation (2.8) then gives their widths as 15'/16:
12'/16: 10'/16: 12'/16: 15'/16. In Fig. 1 we have
plotted the spectral intensity for this case, using
Eq. (2.23) to calculate the intensity, for several values
of q. Of course, for well-resolved hyperfine structure
other sources of line broadening may be present in equal
or greater amounts than this incipient exchange, so that
in practice we might not expect such pronounced varia-
tions in the linewidths as the values above would indi-
cate. Nevertheless, if care is taken to eliminate extrane-
ous broadening e6ects, especially those sects caused
by dissolved oxygen, the variations in linewidths should
be observable under favorable conditions of concentra-
tion, viscosity, and temperature.
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hyper6ne components of equal intensities, and have found no
variations in the linewidths of the three components. This is in
agreement with our theory, which predicts linewidth variations
only among hyperflne components of different intensities.


