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The problem of transient space-charge-limited currents in insulating and conducting crystals is treated
mathematically. With a number of simplifying assumptions, solutions are derived for the time-dependent
current and space-charge distribution following the onset of injection, the latter taking place via an ohmic
contact under an applied voltage-pulse. Exact analytical solutions are given for the two limiting cases of no
trapping and fast trapping. For flow in an insulator under slow trapping, approximate expressions are de-
rived which are valid or trapping-times larger than twice the transit time. For shorter trapping times the
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equations of flow are solved numerically and the solutions presented in graphical form.

I. INTRODUCTION

HE mechanism of space-charge-limited currents
(SCLC) in solids has been first proposed by Mott
and Gurney! who have given a simplified analysis of
space-charge injection into an ideal insulator devoid of
traps. These studies have been extended by Shockley
and Prim? and Dacey?® for the case of injection into a
semiconductor by means of a p-z junction, taking into
account the diffusive contribution to the current but
again omitting trapping effects. Although a rigorous
analytic solution to this problem could be obtained,
its range of applicability in practice is rather limited
since in most solids, trapping levels play a dominant
role. The pioneering work of Rose,®®> Smith® and
Lampert,” whose primary concern was the effect of
trapping on SCLC, has turned the latter into a powerful
tool for studying defect levels in solids. A number of
workers have since investigated SCLC problems, both
theoretically and experimentally.®
Aside from a few experimental observations on the
transient response,$®1 most of the work reported on
SCLC has been confined to steady-state conditions.
Recent work in this laboratory, on the other hand,
has shown that a detailed study of transient SCLC can
yield valuable information on transport, trapping, re-
combination, and photogeneration processes in solids.
In this paper the theory of transient SCLC in solids,
in the presence of trapping, is presented. The analysis
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covers both an insulating and a conducting crystal. In
the latter case, however, space-charge effects are
significant only for low-conductivity materials for
which the dielectric relaxation time is not too small
compared to the transit time of an injected carrier. A
single-carrier flow through a plane-parallel crystal
provided with an ohmic (injecting) contact is con-
sidered. Solutions are sought for the time-dependent
SCLC and charge distribution along the sample
following the onset of injection, the latter arising, e.g.,
from an applied voltage pulse. A number of simplifying
assumptions are introduced. First, the diffusive contri-
bution to the conduction current is omitted. If this
term is not neglected, the analysis is most difficult;
even for the much simpler case of steady-state flow
in a trap-free insulating crystal the solution is quite
complicated.? The error incurred by this procedure,
however, is much the same as that for steady-state
conditions where, as has been discussed by Lampert’
and Wright,? it is usually small under normal operating
conditions. Regarding the traps, we shall assume that
they are all situated at one discrete energy level, and
that the density of trapped carriers is always small
compared to that of the unoccupied levels at thermal
equilibrium. As will be discussed below, this is not too
serious a limitation as the treatment of the general case
may often be reduced to that of the simpler one as-
sumed here, over a considerable range of the current
decay. With these assumptions, exact analytical
solutions are obtained for the two limiting cases of
no trapping and fast trapping. Approximate solutions
are given for an insulating crystal characterized by
slow trapping. These solutions are shown to be valid
for trapping times larger than about twice the transit
time. For shorter trapping times, the equations of flow
must be solved numerically. Results obtained in this
manner are presented graphically for various trapping
times.

A partial analysis of transient SCLC for the ideal
case of an insulating solid devoid of traps, together
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with some preliminary experimental results obtained
on iodine have already been presented previously.!!
Similar work on anthracene has also been reported.?
In both cases a very good agreement has been obtained
between those features of the theory and experiment
which are not markedly affected by trapping. In the
following paper,’® more detailed results on iodine, with
particular emphasis on trapping, are presented and
compared with the theory discussed here.

II. GENERAL FORMULATION OF THE PROBLEM

In this section the problem of the time-dependent
flow of mobile charge carriers injected at one electrode
into the bulk of a solid, in the presence of trapping, will
be mathematically formulated. A single-carrier system
will be assumed throughout. The neutral sample under
thermal equilibrium has, except very close to the elec-
trodes, uniform densities 7o and 7 of free and trapped
majority carriers, respectively. Under an applied
voltage, majority carriers are injected from the ohmic
contact into the bulk, the position- and time-dependent
free and trapped majority-carrier densities under these
conditions being denoted by #(x’,#') and n.(x,t'),
respectively.

The carrier flow in the crystal is governed by the
law of conduction, the continuity equation, Poisson’s
equation, and a system of equations relating the free
and trapped carriers. For planar geometry, these
equations are, respectively:

Jo(o',t)) = qun (' ) E(«' ') — qDan(x',t) /9%, (1)
aJ (&', ¥)/0x' = —q[an(x',t) /3’ +n.(«' ') /ot ], (2)
OE(x',t') /02" = (47 q/k)[n (') — not+ne(x',t) — neo ], (3)

g2 ,)/ 0t =C{n(x ¢ )[Ni—n.(x',t")]
—6o(Ni—ns)ne(x',t)}. (4)

Here J.(«',f) is the conduction-current density,
E(x',t") the electric field, ¢ the carrier charge, « the
dielectric constant, and p and D the carrier mobility
and diffusion constant, respectively (cgs units). The
signs of ¢ and p should be taken positive for hole
conduction and negative for electron conduction.
Equation (4) expresses the trapping kinetics between
the free carriers and a discrete set of localized levels
present with a density N, and having a capture proba-
bility Cn.. The second term in the curly brackets
represents the rate of carrier release from the traps into
the conducting band ; 6y as determined from the principle
of detailed balance is given by

00'—"%0/%:0: nl/ (Nz—’ﬂto), (5)
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where n, is the free-carrier concentration when the
Fermi level coincides with the trapping level. For the
general case of several sets of levels present, Eq. (4)
should be replaced by a system of equations, each of
identical form to (4).

Obviously, the solution of Egs. (1)-(4) for the
general case is a formidable task. A few simplifying
assumptions will therefore be introduced. For Eq. (1),
we shall neglect the diffusive contribution to the
conduction current, as discussed above. Equation (1)
is then replaced by

Jo (') = qun(a' V) E(x,1). (1)
Regarding Eq.- (4), we shall require that the filling of
the trapping levels at any time be small compared to
the empty levels at thermal equilibrium:

(2 1) — 10 &KN o— 1. (6)

This condition is certainly fulfilled up to a sufficiently
small time interval following the onset of injection. It
is often met in practice over most of the range of
interest. The total space charge injected into the sample
is proportional to the applied voltage. Since usually N,
is of the order of 10%-10'® cm™ or larger, condition (6)
for levels lying at or above the Fermi level will not be
violated up to considerably large applied voltages.
With the use of (6), Eq. (4) reduces to

on, () /0t = (1/T)[n (2 ,t') —Oone(2,1') ],
where T, is the trapping time, given by

T=[Ca(Ni—mnw) ™ (7

#)

It should be pointed out that Eq. (4') may easily be
extended to cover the more general case, for which
several sets of trapping levels are present in the crystal,
provided that the trapping rate at each set is large
compared to the release rate. The latter condition
usually holds for deep traps for which 6,<1, and
enables one to neglect the second term on the right-
hand side of Eq. (4") over most of the decay range of
n(x',t"). In this form, Eq. (4') would be valid for the
general case, with #:(«x’,#) and ., representing the
total trapped carrier densities, and T'; the trapping time
due to all sets of levels.

It is convenient to obtain the solutions in terms of
dimensionless distance, time (trapping time), field
strength, charge density, and conduction-current density
variables, %, ¢, (7), ¢, p, and 7., respectively, defined as
follows:

x=a'/L, t=V/te, T=Ti/te, e=E/(Vo/L),

p=qn/(Vo/4nL?), je=Jo/(kuVo/4xL?), (8)

where L is the length of the sample and ¥V the applied
voltage; fo=1L12/uV, is the transit time of a carrier in
the absence of space-charge effects. The charge densities
po, peo, pe are defined similarly in terms of #,, 74, and
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ns, respectively. Equations (1), (2), (3), and (4) then
become

Je(x,0)=p(x,D)e(,0), )
dje(x,0)/dx=—(8/0)[p(x,0) +pe(x,0)],  (10)
de(w,1)/dx=p (@) +p:(2,t) — po—pio, (11)
pe(,2)/0t= (1/7)[p(2,8) —Oope(,8) 1. (12)

We shall now discuss the boundary conditions for
Eqgs. (9)-(12). At x=0 an ohmic contact is assumed,
near which a large reservoir of majority carriers is
available. Its magnitude is sufficiently large to ensure
for any voltage and at all times, the presence of a
“virtual cathode” near the interface where the electric
field vanishes. The separation of the virtual cathode
from the interface is of the order of the Debye length,
characteristic to the sample material. For trap concen-
trations of the order of 10" cm™3 or larger, this distance
is very small (10~* cm or smaller) and may usually be
neglected compared to the sample length L. Hence, the
virtual cathode will be taken to be at x=0. Similar
conditions are assumed to hold at the opposite electrode
so as not to obstruct the current flow.

An ohmic contact may be brought about by the
special nature of the metal-crystal contact, as is the
case, e.g., for an indium or gallium electrode on cadmium
sulfide.’ Alternatively, the reservoir characteristic of
an ohmic contact may be obtained in certain cases by
photogeneration of hole-electron pairs near or at the
surface.™™ Such a generation is effected by an illumi-
nation of one surface, through a transparent electrode,
by highly absorbed light. For sufficiently intense
illumination, a majority- and minority-carrier charge
separation takes place under an applied voltage until
the field vanishes at some point near the interface
(the ““virtual cathode”). The charge separation is
effected within a relaxation time associated with the
photogenerated carrier conductance, and for the
intense light assumed, takes place a very short time
following the voltage pulse, i.e., effectively at {=0. At
t=0 no charge redistribution has yet taken place,
except very close to the interface (x=0), and hence in
the bulk of the sample the field is given by V¢/L, and
the free- and trapped-carrier concentrations still retain
their values at thermal equilibrium. Finally,

SOLE(x' {)da' =V,

at all times following the pulse onset.

From the physical considerations discussed above,
the boundary conditions may be expressed in terms of
the dimensionless variables, defined by Eq. (8), as

4 R. W. Smith, Phys. Rev. 97, 1525 (1955).
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follows:
€(0,H)=0, £~0
e(x,0)=1, x>0
! (13)
/ e(x,)de=1, £0
0
p(%,0)=po
. a>0. (14)
pt(xuo) =P

Equations (9) and (10) are expressed in terms of the
conduction-current density j.. A much more significant
variable is the total-current density j which is the sum
of the conduction- and displacement-current densities.
According to Kirchhoff’s law, jisa function of time only
and is given by

7@ = Fe(x,0)+0e(x,t)/0t. (15)

This may also be verified by eliminating p(x,f)+p:(x,t)
from Eqgs. (10) and (11) and integrating with respect
to x. By integrating Eq. (15) with respect to x and
making use of Eq. (11) and the boundary conditions

(13), we obtain
1

].(t)::%fz(l,l)‘i“/?o‘i—pm“fp;(x,t)e(x,t)dx.

0

(16)

Equations (9)—(12) constitute a system of hyperbolic
equations for the flow in the crystal. The characteristics
of this system are the lines = const and the carrier-flow
lines x(z) :

dx(t)/dt=e(x,t). 17

Equations (9)-(11) may be combined into one equation
for p and another for e containing derivatives along the
flow lines «(z) :

dp(x(t),t)/dt=—p(p+pi—po—pi) — (1/7) (0—B0p), (18)
de(x(t),t)/dt= j()+ (pi—p10—po) e(x(2) 1). (19)

The derivation of Eq. (18) is as follows. From Eq. (17)
it follows that:

dp(x(2),1)/di= (9p/9x) e-+0p/o1.

As j(#) is independent of =, it follows by the use of
Egs. (9) and (15) that

=0=—e¢

a7t dp de 0 (66)
dx dx .

- p—t—( —
Jdx  0t\ox

Use of Egs. (11) and (12) then leads to Eq. (18).

Equation (19) is similarly derived by the use of Egs.

(9), (11), and (15).

Equations (17)-(19) have a simple physical meaning
and can be written down from first principles. Equation
(17) states that we are moving along the crystal with a
front of advancing carriers. Equation (18) states that

the rate of decay of free charge-density along such a
flow line is composed of two terms, the first represents
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the attenuation with time along a flow line due to
Coulomb repulsion between the free charge density (p)
and the total charge density (p+p:—po—pw) at that
point, while the second term represents the net rate of
free-charge trapping. Equation (19) states that while
moving along with a front of carriers the total current
density j(f) is composed of a displacement current
(de/dt) and a conduction current in the opposite
direction due to the localized charge density p;— p:0— po,
which moves in the opposite direction relative to the
advancing front, with a velocity —e. Finally, Eq. (12)
is already in normal form, only a derivative along the
line #=const appears.

Equations (12) and (17)-(19) are equivalent to
Egs. (9)-(12). They can be solved analytically for
the two limiting cases of no trapping (r— «) and
fast trapping (7— 0). Both cases lend themselves to
the same mathematical treatment and will be discussed
in detail in the next Section. In Sec. IV an approximate
solution will be given for the case of flow under slow-
trapping. The general case can be treated only numeri-
cally by finite difference methods. Almost any method
suitable for one-dimensional flow of a compressible
fluid in hydrodynamics can be applied to the problem
at hand. Numerical solutions are presented in Sec. V
for various values of the trapping time (7) and equi-
librium density (po).

III. CARRIER FLOW IN A CRYSTAL WITH NO
TRAPPING OR WITH FAST TRAPPING

We shall first show that the two limiting cases of
no trapping (r— ) and fast trapping (r— 0) are

mathematically equivalent. For the former case

p:=pi=—const and Egs. (18) and (19) reduce to
dp/dt=—p(p—po), (20)
de/di= j(1)—poe, (21)

the derivatives being taken, as before, along the flow
lines defined by Eq. (17). For the case of fast trapping
(7— 0), all sets of trapping levels are assumed to be
in very intimate contact with the conducting band, so
that the condition p=#6p; is established in a time short
compared to any significant time interval. This condi-
tion is effectively realized whenever 7 is very short
compared to the transit time, ie., 7<<1. If p’=p+p;
= (14-6¢7%)p is taken as an effective free charge density,
then Egs. (10) and (11) reduce to their form without
trapping. Equation (9), however, should then be

replaced by
jo= (07 e, ©)

If finally, an effective mobility u’= (14651 "u is also
defined, and the dimensionless variables are altered
accordingly, the case of fast trapping reduces completely
to that of no trapping. The latter case will accordingly
be assumed to hold throughout this section.

Equation (20) may easily be integrated to give the
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dispersion of charge along a flow line. For an insulating
crystal (po=0), one obtains

e =pd1+pc(t—1a) 7,
while for a conducting crystal (po20),

je

Pa=Po

P(lf)=po|:1— EXP[“Po(i'ia)]]_~ (23)

Pa

These equations express the decay (along a flow line) of
p with time from its value p, at any given prior time #,.

(a) Small-Signal Case

Although we are primarily interested in this paper
with carrier flow under space-charge limitation, it
may be useful to discuss first the much simpler case of
the flow of a small majority-carrier disturbance for
which the external field applied to the sample is not
appreciably distorted. Such a disturbance may be
obtained, for example, by a low-intensity flash illumi-
nation of one electrode in the presence of a steady field
of the proper polarity. Under these conditions, a short
pulse of optically generated majority carriers is injected
into the crystal. It is easy to see from Egs. (22) and (23)
how this pulse is propagated along the crystal. Since
the disturbances in carrier concentration Ap is assumed
small, Ap<K1, it follows that the field is approximately
constant e(x,f) =1. To this approximation every carrier
in the injected pulse drifts with the same uniform
velocity [Eq. (17)]. For an insulator we then obtain
from Eq. (22), neglecting Ap, compared to unity, that
Ap(f)=Aps=const and the pulse drifts solidly down
the crystal as shown by the dashed curves in Fig. 1(a).
The current arising from such a drift is given by the
total space charge (the area of the dashed curves)
multiplied by the average drift velocity (~1). It is
therefore a constant up to the transit time (t=1),
thence it falls sharply to zero (the width of the pulse is

o
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F1c. 1. Propagation of a small pulse of injected majority
carriers and the resulting current, for an insulator (e¢) and for a
conducting crystal (b), in the absence of trapping. The dashed
curves correspond to the approximation which neglects dispersion;;
the solid curves illustrate the effect of charge dispersion.
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taken as small compared to the sample’s length).
Actually, as seen from Eq. (22), some dispersion of
charge takes place, as illustrated by the solid curves in
Fig. 1(a). As long as the carriers remain in the sample,
however, the total charge is constant, giving rise to an
approximately constant current. The only effect of the
dispersion on the current is a slight rounding off of the
drop near t=1, as shown by the solid curve in Fig. 1(a).

The situation is markedly different for a conducting
crystal. We shall assume that the excess charge density
Ap=p—po is not only small compared to unity but also
compared to po. Equation (23) then reduces to

Ap=A2pa exp[—po(t—1ta) ].

To the approximation that e(x,f)=const, the injected
pulse preserves its shape but its area (the total space
charge) decays with the relaxation time 7r=1/po. This
is illustrated by the dashed curves in Fig. 1(b) where
7r has been taken as 0.5. As for the insulator case, a
slight dispersion of charge will actually take place
(solid curves). The excess current will be a decaying
exponential with a sharp drop at {=1. The effect of
the charge dispersion would again be to round off the
drop near {=1. This situation illustrates well the
physical meaning of the relaxation time rz. It is the
average time required to expel from a crystal a small
space charge introduced into it. The process of charge
expulsion is effected via the free carriers present in the
neutral crystal at thermal equilibrium, and hence is
faster the larger po is. One can immediately see, also,
why it is pointless to inject majority carriers into a
highly conductlng sample. Consider, for example, an
extrinsic germanium sample at room temperature.
Here 7p is of the order of 1072 sec. Hence an injected
pulse of majority carriers and the resulting excess
current would disappear (by carriers leaving the other
end of the sample) in a time short compared to the
experimental resolution time.

(b) Flow in an Insulating Crystal

From now on we return to the original problem, as
formulated in Sec. II, in which, for £0, the cathode
continuously injects carriers into the crystals, in amounts
prescribed by space-charge limitation only.

For po=0 and p;(x,£) =ps0, Eqs. (16) and (19) reduce

to
j=3e1,),

de(x(d),t)/dt=j () =3(1,0).
By the use of Egs. (11) and (17) we have

(24)
and
(25)

de(x(2), t) de(x,t) dx ae(x 7)
dt ox dt ot ( )
=p(x,)e(z, t>+—’—— 1 (1),
at
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Fi16. 2. Flow lines for a trap-free insulator.

and, at =1,

dei(t)/dt=3e(t)—p1(D)er (1), (26)

where e () =¢(1,£) and pi() =p(1,8). Now p(x(2),?) is
known explicitly along a flow line [Eq. (22)]. Hence,
if we know which flow line arrives at x=1 at time ¢
we can calculate p;(f). We then have in Eq. (26) a
simple ordinary differential equation for e;(f) from
which j(f) may be calculated.

The first step is thus to obtain a characterization
of each flow line. The flow lines defined by Eq. (17)
and calculated below are plotted in Fig. 2. The diagram
is divided into four zones which will be discussed
separately.

Zone I. This zone includes all flow lines originating
from x>0 at t=0. For an insulator, no carriers flow
along these lines since at {=0 carriers are present only
at the interface x=0. Zone I is bounded by the flow
line originating from x=0 at {=0 which corresponds to
the first front of injected carriers. Let # denote the
transit time for this leading front. Then for £<{,,
p1(®)=0 and the solution of Eq. (26) subject to the
boundary conditions (13) is

a()=(1-3)7,
JO=3(1-3)72

From Poisson’s equation it is evident that at any time
in this interval the field in the region between the
position of the leading front and x=1 is constant and
given by Eq. (27). This is also just the field under
which the leading front drifts. Hence, introducing the
value of €(f) from Eq. (27) into Eq. (17) we obtain

} 0< <1y, 27)
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for the flow line of the leading front,
t
x‘(t)=/ a()dt'=—21In(1—%5), 0<i<t;. (28)
0

This flow line is represented in Fig. 2 by the heavy
curve separating zones I and II. The transit time ¢ is
obtained from Eq. (28) by putting «!(¢;)=1:

hi=2(1—e 1) =0.787. (29)

Zone II. The diverging flow lines in this zone all
originate from =0 at {=0. Each line may be charac-
terized by the field €¢(0+), which the corresponding
front feels just as it emerges from the injecting elec-
trode, i.e., at a vanishingly short time following {=0.
For the leading-front flow line ! (¢), ¢(04) is unity while
for the following lines it diminishes progressively, until
for the last flow line to leave the injecting electrode at
t=0, €(0+)=0, as shown in Fig. 2. If we define the
functions:

xo= [ jwt, (30)
L(t)=/ K()dt, (31)
then we obtain from Eqgs. (17) and (25)
e(x(),0)=€(0+)+K (1), (32)
() = e(0-)+L(0). (33)

As the charge density at the interface is infinite, we
obtain from Eq. (22) for p along any flow line in zone II

p(x(®),0)=1/t. (34)

Now at any time £ in the interval £, <#<{,, where 2, is
the arrival time of the last flow line in zone II, p1(Z)
originates from a front moving along that flow line
in zone II whose transit time is ¢. Hence, we have also

p()=1/t, t<t<t,. (35)
Equation (26) now becomes
dei(f)/dt=%e>— €1/t (36)

By substituting for e;:

()= —20() / / (),

Eq. (36) is transformed into
dw/dt+(1/t)w=0,
which may be integrated to give
a()=[(B—2 )],

where B is a constant of integration. Its value can be
determined from the requirement that e (#) be con-
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tinuous at {=#;. With 8 thus determined [using Eqs.
(27) and (29)] we have

e(t)= (et /H)[1— (et —1) In(t/i) T,
J(O)=3e(t/)[1— (et—1) In(t/t1) 12,

Using Egs. (36) and (37) one can evaluate the funétions
K () and L(¢), and thus the flow lines in zone II:

}tls <ty (37)

K(@)=K(t)+ / i
=K(11)+€1(1)—61(¢1)+/ ‘e‘l‘f,l—)dt', (38)

and by further integration it may be shown that

2() =14+[e(0+)—1Tt4-2(@t/t,) exp[—1/ (2 —1)]
XIF(1/ (et~ 1)} —F{1/(et=1)—In(s/1:)} ],

where
F{u} :/
1

This function is available in tabular form.!®

The time of arrival of the last flow line in zone II,
x211(#), may be calculated either from the condition that
x(¢)=1 for ¢(0+)=0, or from the requirement that
the field e(x(9),) along x™(f) be equal to e (¢) at the
instant of arrival #,. After some manipulation it is
found that

(39)

7
expu
du’.
Ml

1=1.915¢=1.51. (40)

Zomne I11. The flow lines sweeping this zone originate
at =0 at various times ¢, following the onset of
injection (¢=0). Each line may accordingly be charac-
terized by the value of ¢, (Fig. 2). From Eqgs. (22) and
(26) we obtain

de(t)/dt=%er () — e (t)/[t—ta(®) ],

where £,(f) corresponds to that flow line which arrives
at x=1 in time {. In other words, {—£,(f) is the transit
time of a carrier arriving at the anode at time ¢. From
the condition:

2(t)=1=L(#)— L(ta) — (t— 1) K (ta),

one obtains by differentiation [using Egs. (25), (30),
and (31)]:

(41)

dto/dt= (t—1a) " [K()—K (o) 1/3e2(ta).  (42)
K (¢) is defined by Eq. (30) or by
dK ()/di=%e2(t). (43)

Thus the problem in zone III reduces to the solution
of three ordinary differential equations (41)-(43) for
ei(t), t.(4), and K(f). No analytical solution could be

16 £, Jahnke and F. Emde, Tables of Functions (Dover Publi-
cations, New York, 1945).
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found for these equations. Fortunately, however, such a
solution is of little practical interest since at f=t¢,
(treated for zone II), e(f), p(x,f), and 7(¢) are already
very close to their steady-state values. For example,
j(t2)=1.11 whereas the asymptotic value is 1.125
[Eq. (44) ].

Zone IV. The flow lines in this zone correspond to
steady-state conditions and are accordingly all parallel.
These conditions are established within a few units of
time. We then have from Eqgs. (9) and (11)

J(®)=je(©)=p(x,)e(w, ) =}[de*(x,=)/dx],
and by integration
e(x,0)=(27)%t.
Using the condition fg'edx=1 we obtain
J(0)=9/8, e(x,»)=(3/2)x% p(x,0)=(3/9)x7}, (44)

which are the well known steady-state expressions.!

(c) Flow in a Conducting Crystal

The treatment in this case is similar to that for an
insulating crystal. Analytical solutions have been
obtained only for zone I and the asymptotic zone IV.

For po#0 and p:(x,) =ps0, Egs. (16) and (19) reduce
to

J@O=3e()+po,

de(x(2),0)/di= j (1) = poe(x () 1).

By the use of Egs. (11) and (17) we obtain for the
fieldatx=1:

dei(£)/dt=3%e2()+po—p1(2) e1 (). (46)
In zone I (¢<14y), p1(£)= po, and we obtain by integration

(45)

e1(t) =po—a cot(3at— @), cosp=1—p,
=g <2;
) assing, pS2
=po—p coth (36i+), coshy=po—1,
B=sinhy, po=>2.

The flow line of the first front of injected carriers is
given by
sin(3al— ¢)
21 (£) = pot—2 ln( ), pe<2;
—sing

sinh (38t+y)
=pol—2 In<—————), po>2.
sinhy

(48)

The transit time is obtained by solving the trans-
cendental equation x*(¢;)=1.
For zone II, Eq. (46) may be linearized by the

transformation
e1 () = (du/di)/u.
One obtains, using Eq. (23),

d*u Po du
+ —+3poue=0.

F (49)
. 1—exp(—pol) di
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This equation does not seem to have a solution in terms
of elementary functions.

For the flow in zone III, a set of ordinary differential
equations may be obtained as for the insulator case.
This zone is again of little interest. The steady-state
behavior (zone IV) can be obtained by analytic
methods and has been treated by Lampert.”

IV. FLOW IN AN INSULATING CRYSTAL
UNDER SLOW-TRAPPING

As has been shown in Sec. III(b), j(#) and p(2)
reach their steady-state values in about ¢=2¢. In the
presence of slow trapping (7>t;) we have a quasi-
stationary behavior, with 7(¢) and p(¢) decaying slowly
with time. For {2241 we may accordingly neglect
de(x,t)/0t and 97.(x,f)/dx. To this approximation we
have from Egs. (9), (10), and (15):

6(x7t) = E(.')C),
p(x,t) +pl(x7t) = f(x>7
i@O=j.O)=p(xe(x), (51

where f(x) is a function of position only. It represents
the free-charge distribution at ¢=~2¢ [as given by
Eq. (44)7], before any appreciable trapping takes place.
The solution of Eq. (12) is then:

(50)

p(xh)=f@)[(1—n) exp(—t/7)+n],  (52)
pe(x,) =g (x,0), (53)
where
n=0o/ (14+00), 7'=7/(1+00), (54)
gO)=L(A—n) exp(—t/7)+n]"—1.
Equation (11) can now be written as
de(x)/dw=[1+¢ () Jo(x,1),
and thus [Eq. (9)]:
JO=3[1+¢(® I'[de(x)/dx]. (55)

Integration with respect to x and the use of the
condition Jple(x)dx=1 yields:

7@ = (9/8)L(1—n) exp(—t/7")+n]. (56)

It is thus seen that j(#) decays exponentially from -
9/8 to the steady-state value of (9/8)8y/(1406y).
Although this approximation has been derived for
1224, it may be extended to shorter times by taking
into account the exact shape of 7,(¢) (the current in
the absence of trapping) in this region as given by
Egs. (27) and (37). Equation (56) should then be
replaced by

O =7jo(O—(9/8) A—m)[1—exp(—t/7)] (57)

For t22t1, j..(£)=9/8, and Eq. (57) coincides with (56).
As will be shown in the next section, Eq. (57) is found
to be a very good approximation for £>{; even for a
trapping time as short as 7=2.



TRANSIENT CURRENTS

For the region 0</<{; (zone 1), one can estimate 7(f)
by assuming that the field is not yet appreciably
changed by trapping. It can then be shown that

Jo)— )= (1/7){0.47t40.1524-0.22¢
4+0.58[t(1—3)+2 In(1—%5)7}.

The approximations derived here are for one set of
trapping levels. If several such sets are present, they
are usually characterized by markedly different values
of 7 and 6. Under these conditions the analysis can
fairly easily be extended to cover this more general
case.l

(58)

V. PRESENTATION OF ANALYTIC AND
NUMERICAL SOLUTIONS

In this section, we shall present in graphical form
some of the results of the preceding analysis together
with numerical solutions for cases which could not be
treated analytically.

Figure 2 shows flow lines for an insulator in the
absence of trapping, and has been discussed previously.
Figure 3 is a similar diagram, but for an insulator in the
presence of trapping, with 7=0.5 and 6,=0. The flow
lines here have been computed numerically. The
diagram is again divided into zones, with ¢(04) and ¢,
characterizing the flow lines in zones II and III,

3.0 1 1 y 1 L ! 1 1 1

F16. 3. Flow lines for an insulator in the presence
of trapping, with 7=0.5 and 6,=0.
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respectively. In contrast to the case of no-trapping, the
separation of the flow lines increases with time, until
finally no flow lines leave the injecting electrode. This
is obviously due to the accumulation of charge in traps
which, for the case of §o=0 being considered, eventually
blocks the current completely. For 6,>0 (not shown
here), the flow lines in the steady-state region (zone IV)
would be equidistant as for the case of no trapping, but
with a separation (1/6,) as large.

Figure 4 illustrates the injected charge-density
distribution along an insulating crystal at two times
following the onset of injection: ¢=0.4(a¢) and
£=0.787(d). The dashed curves are for the trap-free
case, and are calculated from Egs. (28), (34), and (39).
For t=0.4 the leading front reaches approximately half
the length of the sample, while for ¢=¢,=0.787 it
arrives at the opposite electrode. The solid curves are
computed numerically and represent the free and
trapped charge, in the presence of trapping, with 7=0.5
and 6o=0. It is seen that the leading front slightly
lags behind that for no trapping, and that due to

1
0 02 04 06 08 10
X

F16. 4. Space-charge distribution along an insulating crystal
at two instants following the onset of injection; (a) ¢=0.4, (b)
t=0.787. The dashed curves are for a trap-free insulator. The
solid curves correspond to the free and trapped charge-densities
for an insulator with traps (r=0.5, 6,=0).
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Fic. 5. The time dependence of the SCLC density for in-
sulating crystals characterized by various trapping times, and
00=0.

trapping more of the total charge is concentrated near
the injecting electrode.

Figure 5 represents the SCLC density vs time for
an insulating crystal characterized by various trapping
times 7. The upper curve corresponds to the case of no
trapping (7= ) and is given by Egs. (27) and (37).
Its general shape can be understood from the following
physical considerations. At the onset of the injecting
voltage pulse (¢=0), a certain amount of charge
p(0+), flowing along the lines in zone II, is allowed to
enter the crystal, and gives rise to the initial current
density 7(0). It is easy to see why j(0)=3€(1,0)=3.
The amount of space charge allowed to enter the crystal
at =0 1is just that required to maintain €(0,0) =0 under
the applied voltage-pulse. From Poisson’s equation, we
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Fi16. 6. The time dependence of the space-charge-limited excess
current density in conducting crystals characterized by various
equilibrium densities (po). All curves are for 7= except the
bottom curve for which po=1, r=1, and 6y=0.
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thus have p(0+)=¢(1,0)=1. Now the field €(0+)
acting on the carriers just after they have emerged from
the interface, varies from O to 1, hence its average
value is 4. Thus 7(0)=p(0+)3¢(1,0)=3%. For ¢>0,
more space-charge is being continually injected (along
flow lines in zone III) and the current rises [Eq. (27)].
This process continues up to ¢=¢;, when the leading
front reaches the opposite electrode (x=1). At this
point the crystal contains the maximum amount of
space charge and 7(0) attains its peak value. Thereafter
7@ decays toward its steady-state value, as more
space charge leaves the crystal than is being allowed
to enter it, and the space-charge distribution at ¢=¢,
relaxes towards its steady-state configuration. The
relaxation time is that associated with the conductance
of the total injected charge and is therefore proportional
to 1/Vy, i.e., it is of the order of #;. Finally, one can also
understand the slight dip in 7(¢) below the asymptotic
value, before the latter is attained. This is due to the
fact that at ¢=1¢ the crystal contains more space charge
than it can hold under steady-state conditions, since the
conditions at 0<¢<¢, are the most favorable ones for
injection. Hence, in the vicinity of = #;, correspondingly
less space charge is allowed to be admitted into the
crystal. This situation gives rise to an undershoot in
7(?) before it finally attains its asymptotic value. It is
probable that the current exhibits an oscillatory
behavior, but the amplitude is so strongly damped that
only the first cycle is of significance.

The lower curves in Fig. 5 correspond to flow under
trapping, with 6,=0, and have been computed
numerically. The current decays faster the lower 7 is,
as is to be expected. At the same time, the transit time
¢y becomes slightly longer. This follows from the fact
that for decreasing 7, increasingly more charge is
trapped near x=0, giving rise (since Jo'edx=const=1)
to a correspondingly lower field €(1,/) under which the
leading front moves. The points (triangles) on the curve
for 7=2 at £>¢, have been computed from the approxi-
mation given by Eq. (57), while the circles at ¢ <{; have
been obtained from Eq. (58). It is seen that the fit is
quite good so that these approximations may be em-
ployed for 72 2.

Finally, in Fig. (6) is plotted the excess current
density 7(f)—po in a conducting crystal for various
values of po. The upper curves correspond to no-
trapping. The portions of the curves up to ¢; (zone I)
have been computed by use of Egs. (45), (47), and (48),
the rest numerically. The bottom curve is for flow under
trapping, with po=1, =1 and 6,=0.



