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nor, is replaced by (esp+X„/k'r„). The form of the
attenuation constant is not altered, but an additional
term given by

eX„(8 —8~)'

a 0
Cy

I

0.4
1

0.6
1

OA3

I

I.O—/SEc
H

I

1.2
l

l.6

be shown that the recombination rate will be given by

de/dt = (—1/r„)P(ts —Np)+X„e(8 —6,)j,
where N„ is a reduced density of states given, in terms
of the density of states at the Fermi level in the conduc-
tion and valence bands, by E, '=E, '+E, '. If we
use this recombination rate in Eqs. (Sa) and (Sb), the
amplitude of I—ms is altered and in Eq. (7) the factor

Fxa. 1. Plot of bracketed term in Eq. (12) for the following
values of parameters: D=1 cm'/sec, r,=10 sec, k=10' cm ',
s= 10' cm/sec.
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Dk/Dk+ (1/kr, ))—(Ec/H) $(Ec/H) sJ—X—
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is now present and should be added to that given in
Eq. (12). a' is similar to the expression given by Hop-
6eld if diffusion is ignored. Because of the term

Dk[D—k+(1/kr, )j, n' can be negative corresponding
to amplification for Ec/H slightly less than s.

The ratio of the two contributions to the attenuation
constant is approximately given by n/n' —r,e&tlk'/X,—r„Epljk' where Ep is the average Fermi level in the
valence and conduction bands. For sound waves with
small k it is clear that the recombination which caused
term n' will dominate the attenuation, whereas the
transport term e will dominate at higher values of k.
The value of r, which enters the ratio o/n' is presently
unknown, although it is thought to be large ( 10 ' sec)
since recombination employing phonons should be
negligible at temperatures at which amplification
should be observed and scattering by impurities
between states far apart in momentum is highly
improbable.
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The physical mechanisms which can produce second-order dielectric polarization are discussed on the
basis of a simple extension of the theory of dispersion in ionic crystals. Four distinct mechanisms are de-
scribed, three of which are related to the anharmonicity, second-order moment, and Raman scattering of
the lattice. These mechanisms are strongly frequency dependent, since they involve ionic motions with
resonant frequencies lower than the light frequency. The other mechanism is related to electronic prpcesses
of higher frequency than the light, and, therefore, is essentially flat in the range pf the frequencies of optical
masers. Since this range lies an order of magnitude higher than the ionic resonances, the fourth mechan-
ism may be the dominant one. On the other hand, a consideration of the linear electro-optic effect shows that
the lattice is strongly involved in this effect, and, therefore, may be very much less linear than the electrons.
It is shown that the question of the mechanism involved in the second harmonic generation of light from
strong laser beams may be settled by experiments which test the symmetry of the effect. The electronic
mechanism is subject to further symmetry requirements beyond those for piezoelectric coeKcients. In many
cases, this would greatly reduce the number of independent constants describing the effect. In particular,
for quartz and KDP there would be a single constant.

'HE recent observation by Franken, Hill, Peters,
and Weinreich' of second-harmonic light gener-

ation in quartz raises the question of the physical

'P. Franken, A. Hill, C. Peters, G. Weinreich, Phys. Rev.
Letters 7, 118 (1961).

mechanism involved in nonlinear dielectric polarization
effects at optical frequencies. The purpose of this paper
is to discuss brieQy the possible types of mechanism, and
to point out the special properties of one mechanism
which may permit it to be experimentally separated
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from the others. It is understood that the region of the
spectrum of interest is that available to optical masers
near 104 cm '.

We begin by considering the linear theory of dis-

persion in ionic crystals, which is based upon equations
of the form

B'ro/Bts = btrto+brsE,

P=bsrto+ bssE.

Here E is the electric field, m represents an ionic dis-

placement in the crystal, b» is a restoring force coefFi-

cient, b12= b21 is an effective charge, and 622 is the high-

frequency polarizability. The physical ideas are most
clearly introduced by considering the quantities in (1)
as just magnitudes rather than vectors and tensors. The
same equation can be used to discuss classically the
electronic as well as the ionic contributions to the dis-

persion. In any case, the underlying physical ideas are
the following: (a) An energy function U(w, E) exists for
the crystal in an electric field, such that

P= BU/BE—B'w/Bt'= BU—/B7o, (2)

and (b) there exists a mechanism independent of to

giving a polarizability essentially independent of fre-

quency in the frequency range of interest. The inde-

pendent mechanism gives rise to b» in (1).The energy
function, second order in (w, E), leading to (1) is

Pk P,;d';; sE,E——;, (5)

where, without loss of generality, we set d',;k——d', ,k.

There are in the most general case 18 independent
coefficients d';;k, which may be conveniently written in
the condensed notation5 for piezoelectric constants

second harmonic component and introduces this com-
ponent into zv. The second-harmonic component of m

then is introduced into I'.
It is important to notice that the frequencies v of

present optical masers lie roughly an order of magnitude
below the frequencies of the strong electronic transi-
tions and an order of magnitude above those of the ionic
motions. The f4 mechanism, therefore, is entirely differ-
ent in its dispersion from the ionic mechanisms. The
latter should fall off with increasing frequency as some
power of (1/v'), while the former should be essentially
fiat with frequency. It seems reasonable4 to suppose
that, if the absorption of light by the lattice is negli-
gible, the ionic mechanisIns for nonlinear polarization
are also negligible. The f4 mechanism, on the other
hand, does not imply absorption and may be the
dominant mechanism in very transparent crystals such
as quartz4.

As pointed out by Franken et al. ,
' second-order

polarization can only occur in crystals of suitable sym-
metry. Regardless of its mechanism, the second-order
polarization can be written in full coordinate form,

U"' (w, E) = ——,
'

(bt tw'+2btswE+bssE') (3)
d 11k ~1k j ~ ~ ~ jd 12k ~6k. (6)

We may now generalize Eq. (1) to include second-order
polarization by adding third-order terms to U as
follows:

Uis) (to,E)= 3'(f,w'+3fs—B)'E/3f WE'+- f4E'), (4)

where f,, ,f4 are coefficients characteristic of the
medium. The equations of motion are easily obtained
from Eq. (2) and will not be given here.

There are four mechanisms represented by the coeS.-
cients f&, . . . ,f4, which can produce second-order polari-
zation. The separate terms in Ui" (to,E) may be char-
acterized briefly in the following way: f& represents
anharrnonicity in the restoring force; fs represents
second-order electric moments, such as give rise to in-
frared absorption in diamond type crystals'; fs repre-
sents the Earnan scattering interaction; and f4 represents
the nonlinearity in the independent mechanism Areason-.
able assumption would be that, w, f&, fs, and fs refer to
processes essentially ionic, while f4 refers to relatively
high-frequency electronic processes such as the intrinsic
absorption of the crystal. To see how second-order
polarization comes about consider, for example, f&. The
coordinate m contains a component at the frequency of
E, and, therefore, the anharmonic force frw' contains a

2M. Born and K. Huang, The Dynamical Theory of Crystal
Lattices (Oxford University Press, New York, 1954), Chap. $$.,
Sec. 7, 8, Appendix V.' M. Lax and E, Burstein, Phys. Rev. 97, 39 (1955).

The requirements of crystal symmetry on d;, are the
same as for piezoelectric coefficients. Unless f4 is the
dominant mechanism there are no further symmetry
requirements, and the d;; will be frequency dependent.
On the other hand, if f4 is the dominant mechanism an
additional symmetry must be satisfied. Consider the
third-order energy function associated with f4, which in
full notation may be written

Uis) (E)= ,'Q;, gd',;sE,E;Eg. —- (7)

The coefficients in Eq. (7) are the same as in Eq. (5),
since Eq. (5) is obtained from Eqs. (2) and (7). Clearly
the coeKcients in Eq. (7) may be chosen symmetric
with respect to any rearrangement of indices. There-
fore, in the most general case there are 10 independent
coefficients as follows:

dll d12 d13 ~14 ~15 d16

d16 d22 d23 d24 ~14 d12

d15 d24 d38 d28 d13 d14.

It is understood that this matrix operates on a 6-com-
ponent column vector E1', E2', E3', 2E2E3, 2E1E3,
2ErEs. It should be emphasized that Eq. (8) applies
only to the f4 mechanism.

P. Franiren (private communication).' "Standards on Piezoelectric Crystals, "Proc. Inst. Radio Enj,rs.
46, 764 (1958).
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constant matrix u is expressed as a linear function of
electric field through an electro-optic matrix r,

ttj=ttj +Za&jAc

Here, a is arranged as a column matrix of six compon-
ents in the usual convention', and r;, is a 6 g 3 matrix.
The r, , can be expressed in terms of the d;;, but the
general case is too complicated to be of interest here. If,
however, d has the form (8) and components are re-
ferred to the principal axes of e&'), the relation reduces to

(10)r;;= —4xA;dg,

where A ~= a~ "&' . . ; A6 ——a~&"a2&'), and the a;(') are the
principal inverse dielectric constants.

The above discussion shows that by consulting the
literature for the electro-optic constants of various
crystals, it can be determined whether f4is the dominant
mechanism for this effect. Since the data" for quartz,
rochelle salt, and ADP are in disagreement with (10)
and (8), we conclude that the usual linear electro-optic
effect is not due to the f4 mechanism, and probably
involves ionic motion in an essential way. This view is
strongly supported by the fact that r&3 for KD2P04 is
over twice that for KH2PO4 (KDP) or RbH2PO4. This
is not at all surprising, since the frequency of the applied
field is well below that of the lattice vibrations. This
does show that lattice polarization is inherently less
]inear than electronic polarization in crystals. Some
question remains, :herefore, as to the true mechanism
for second-harmonic light generation, and it is suggested
that the symmetry properties (8) of the electronic
mechanism may prove helpful in answering this
question.

The author is grateful to J. A. Giordmaine for
generously giving of his time in many discussions, and
to H. Jaffe and P. Franken for critical considerations
and comments on the ideas here presented.

"AmericanInts ctnte of Ph, ysccs Handbook (McGraw —Hill Book
company, Inc. , New York, 1957), VoJ. 6, p. 97.

When Eq. (8) is combined with the requirements of
crystal symmetry, considerable simplification often
results. Crystals with point symmetry D4 (guanidine
carbonate') and De are forbidden from exhibiting
second-order polarization by the f4 mechanism. In
crystals with symmetry Dz (rochelle salt' ), D& (quartz),
and D,d (KDP'), the matrix Eq. (8) reduces to a single
independent constant.

It should be quite feasible to carry out experiments
which would test these predictions, and, thereby,
determine if f4 is the dominant mechanism. In the case
of quartz, symmetry requires that all components d;;
(referred to crystallographic axes in which 3 is the optic
axis and 1 is a binary axis) vanish except tE]r dr2
=—d26 and dI4 ———d25. The second harmonic observed

by Franken et ct.' was entirely due to d~~. According to
Eq. (8) dr4 must vanish, since dse ——0 and d&4

———dr4 by
symmetry. Therefore, it is proposed that the plane-
polarized focused laser beam be made to pass through
an X-cut quartz crystal plate as an extraordirIary roy
making an angle y with the optic axis, where 0(q (90'.
If d&4/0, a second-harmonic ordinary ray will appear
proportional in intensity to d&4' sin'2p. By means of an
analyzer, this ray may be compared with the second-
harmonic extraordinary ray proportional to d~~' sin'q.
To avoid difhculty with the optical activity, the plates
should be considerably thinner than 1 mm.

It has been recognized7 that second-harmonic genera-
tion is a related phenomenon to the linear electro optic-
effect, ' which is the change in birefringence proportional
to an applied electric field. We consider whether these
effects arise from the same mechanism. In the standard
theory of the electro-optic effect" the inverse dielectric

' J. Donnay and W. Norvocki, Crystal Duto (Geological Society
of America, New York, 1954).' H. Jaffe (private communication).' F. Pockels, Lehrbnch der KrcstatloPtjc (B.G. Teubner, Leipzig,
1906).' G. H. Billings, J. Opt. Soc., Am. 39, 797 (1949). G. N. Rama-
chandran and S. Ramaseshan, in Hcndblch der I'hysik, edited by
S. Fliigge (Springer —Verlag, Berlin, 1961), Vol. 25, Part 1, p. 191,


