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Annihilation of Positrons from the H-e+ Ground State*f
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The problem of the binding of a positron to a negative hydrogen ion has been treated by the variational
method with a four-parameter trial function. The best values of the parameters yield a binding energy of
0.228 ev against the most favored mode of dissociation into hydrogen plus positronium. Pair annihilation
from the ground state of similar bound H t,+ systems might be expected to contribute a principal component
to the radiation from the annihilation of positrons in the alkali hydrides. The theory of positron annihilation
has been suitably extended for application to the present problem. The above wave function yields a mean
life against two-photon annihilation of about four times that for singlet positronium, the difference arising
mainly out of spin considerations. The calculation of the angular correlation of the annihilation radiation
indicates a narrower peak than has been obtained experimentally by others in LiH and NaH.

I. INTRODUCTION II. THE WAVE FUNCTION AND THE
BINDING ENERGY

HAT a positron can form a bound state with a
negative hydrogen ion was first shown by Ore. '

Applying the variational method to a simple three-
parameter trial function, he obtained a binding energy
of 0.07 ev against dissociation into hydrogen plus
positronium, a result which has now been considerably
improved upon. The introduction of positrons into a
medium containing a high concentration of H ions
would presumably lead to the formation of the com-
pound H e+ in appreciable amounts. Such a medium is
provided by the alkali hydrides, and the binding of
positrons to H ions in these substances and their sub-
sequent annihilation from these bound states might be
expected to contribute a principal component to the
annihilation radiation in these solids.

Results of recent measurements' of the angular cor-
relation of the radiation from the annihilation of posi-
trons in LiH and NaH appear to indicate that models
which are adequate for the calculation of such processes
in the alkali halides are inadequate for the hydrides. It
would appear necessary in the case of the hydrides to
allow for a correlation in the motion of the positron and
the electrons and to calculate the nature of the annihila-
tion from H e+ with the aid of a wave function which
is an adequate approximation to the ground state of
this bound system.

The purpose of the present investigation has been,
first, to obtain an improved estimate of the binding
energy of H e+ and an improved wave function for the
system, and, second, to calculate the corresponding
annihilation rate and the angular correlation of the
annihilation radiation for comparison with experiment.

For the system H +e+, the hydrogen nucleus is taken
to be fixed at the origin. Then, labeling the coordinates
of the positron and of the two electrons, respectively,
with subscripts 1, 2, and 3, a state of zero angular
momentum will be specified by a function of the six
interparticle distances r1, r2, r3, r12, r13, and r23. The
choice of these six distances as coordinates, however,
leads to a quite complicated element of volume. A
simplification is achieved by choosing instead 6ve of
these distances and a suitable angle. For example, one
may take as coordinates r1, r2, r, , r12, r13, and $23, where

&23 is the angle between the planes (012) and (013).The
element of volume then takes the form

gsr rsrsr12r13tirl~r2tirstir12tir13@23.

The factor 8m' results from prior integration over Euler
angles which define the orientation of the tetrahedron
formed by the four particles. The angle $23 ranges from
0 to 2x and the ranges of the other variables are subject
to triangle inequalities.

The complexity of the geometry of the four-particle
system imposes severe practical restrictions on the
choice of a trial wave function for variation. The follow-

ing symmetrized four-parameter function was chosen:

lb(1,2,3)= expL —ctr2 —Prts —yr3 —br13$

+exp) —nrs —Prrs —yr2 —&r12$. (&)

With this choice it was possible to obtain an explicit
expression for the average of the Hamiltonian as a
function of the four parameters. In minimizing this
function, one of the parameters could be immediately
eliminated, and the remainder of the computation was
performed on a Bendix G15 computer. '

For the above wave function the minimum energy is
—1,5168 a, u. This gives for the binding energy against
dissociation into hydrogen plus positronium the value
0.0168 a. u. =0.228 ev. The corresponding values of the

3Details of the calculations are included in G. Darewych,
M.Sc. thesis, University of Manitoba (unpublished}.
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parameters in atomic units are a=0.221, P=0.472, ultimately to be performed. We introduce the Fourier
p= 1.024, and 5=0.0844. transform,

III. POSITRON ANNIHILATION IN A
TWO-ELECTRON BOUND SYSTEM

x(p) = (2~) ' &(r) expL( —i/&)p r]d'r (6)

The problem of the annihilation of a positron with an
electron in a bound atomic system has been treated by
Ferrell' for the situation in which one can take as a
wave function for the system a simple product of a
function of the electron coordinates into a function of
the positron coordinates. For the present problem the
theory must be modified to be applicable to an initial-
state wave function which is not of a simple product
form and which involves the coordinates of two electrons
with either one of which the positron may annihilate.

We consider the process of two-photon pair annihila-
tion from a state of a system of two electrons and one
positron which has a wave function of the form

Lf(rl, rs, rs)+ f(rl, rs, r2)]
Xfa(2)P(3) —P(2)a(3)]a(1)E2 ', (2)

where

1V '=
~
f(1&2,3)+f(1&3,2) ~'d'r dsrsd'rs. (3)

In the above, a and P represent "spin up" and "spin
down" spin functions, respectively.

On introducing the Fourier transform of f, viz. ,

9 (pl ps ps) (2~) f(rl rs rs)

Xexpt (—i/A)(pr rr+ps rs+ps rs)]d'rrd'red'r&, (4)

we can take for the initial state of the electron-positron
and photon fields the expression

d'prd'psd'ps p(pr) ps, ps)b'(pr, t)

XL '(P 4) '(P, t)+ '(P, l) '(P t)] o (5)

where coo is the vacuum state and u~ and bt are electron
and positron creation operators, respectively. Since we
shall be dealing essentially with low-energy particles,
the spins need not be related to the momentum direc-
tions and can be designated as above by t and g, that is,
as spin up and spin down. It is clear on inspection that
co; changes sign under exchange of the electron spins,
and it is a simple matter to verify that E is the correct
normalization factor.

For the final state of the system we wish to set up a
state vector which represents the existence in the field
of the two annihilation photons together with a system
of one electron with normalized wave function u(r)
which we take to be one of a complete orthogonal and
normalized set of functions over which summation is

4 R. A. Ferrell, Revs. Modern Phys. 28„s308 (1956)

The final state can now be taken to be

d'P' X(y')at(y', t)ct(k, er)ct(P —k, es)&os. (7)

In the above, ct is a photon creation operator, k and

p —k are the momenta of the two photons created, and
e~ and e2 their respective polarization vectors. The spin
assignment to the electron is determined by the fact
that the pair annihilation from the initial state (5) will

leave the surviving electron with spin up t.
In order to obtain an expression for the transition

matrix element between initial and final state we con-
sider the contribution of individual terms in (5). The
term bt(pr, t)at(ps, g)u (ys, t)&os can be interpreted as
contributing (in lowest order) to the two-photon an-
nihilation process through the mutual annihilation of the
positron and electron 2 from a spin state which may
be written as a linear combination of singlet and
triplet, viz. ,

t4=2 'L2 '(tl —4t)+2 '(t4+4t)] (g)

For this state the positron-electron system is singlet
only half of the time. Then, since two-photon annihila-
tion from the triplet state is forbidden, a factor of 2:
will appear in the transition matrix element to multiply
the corresponding matrix element for transition from a
pure singlet state. Similar considerations apply to the
«rm b'(pr, t)~'(ps, 4)~'(ps, t)roo. A simplification results
from the fact that the particle momenta involved are
predominantly small, so that a matrix element which
would ordinarily be a function of the momenta of the
annihilating pair can be replaced by its value for zero
momenta.

In view of the above considerations, the transition
matrix element between co, and cuf can now be written

d p'd prd psd'ps X*(p') y(y&, ys, ys)

XP'(y' —y )b'(P —Pr —y.)

+~'(y' —P )8'(P—P —P )]2 '*~(0 0) (9)

where M(0,0) is the matrix element for two-photon
annihilation from the singlet state of electron and posi-
tron with zero momenta. This expression reduces to

~=2 '&~(0,0) d'Psd'PsLx*(ps) v (p—ps, ps, ps)

+X*(P.)~(P—Ps, Ps, Ps)j
=2-'*EM(r0,0) d'Psd'Ps X (ps)t 9 (p —ps, ps, p~)

+ s (p—ys ps, ps)] (10)
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For a wave function which is invariant under rotation,
as is the function in (1), I will be independent of the
direction of p and can be simplified on replacement by
its integral over solid angle in the p space divided by
4x. Thus we have

I= (4n-) ' IdQ~

S111pr28
d'r~d'r2d'ra Lf(r2 1] r2)+g(r2, rm, r~) j*

pr23

X Lf(r3, r&,r,)+f(r&, r3, r&)j. (19)

The above expression gives the shape of the curve for
the angular correlation of the pairs of photons, the angle
between the directions of emission of two such photons
differing from ~ by p/mc for small p.

When applied to the wave function (1), the angular
correlation function (19) takes the form

smpr2gI= Pt'yd 'f28 t'3

r28

XLexp (—nrem
—Prq2 —pr2) +exp (—nr2 —pre —brq2) $

XLexp( —
nrem

—Prgs —yr3)

+exp( —nr3 —yr& —brq3)). (20)

If this is expanded as a power series in p' it is possible
in principle to evaluate each expansion coefficient as an
algebraic function of the parameters. The calculation,
however, becomes increasingly arduous with each suc-
cessive term in the series. For the present purpose only
the 6rst two terms were evaluated. This corresponds to
6tting to the peak of the curve a parabola of the form

where we have written k =p/A. Evaluation of the ratio

of the coefficients of the first two terms in the expansion
of (20) yields the value b= 5.20 A.

A comparison can now be made with the experimental
results of Stewart and March. ' The angular correlation
curves obtained by them in LiH and NaH can be fitted
by a function of the form exp( —k'/2n). The first two
terms in the expansion of this function have the form
(21) with a value of b=1.20. This corresponds to a
width of the distribution which is 4.37 times as great as
that calculated above. A qualitative estimate has been
made which indicates that the above measure of the
width of the calculated curve would not be seriously
modi6ed by consideration of higher terms in the ex-
pansion of (20).

VI. CONCLUSION

The disagreement found between the experimental
and calculated angular correlation curves might be
ascribed to a number of causes. The fact that the experi-
mental curve is intermediate in width between that
calculated in this paper and the width calculated in
reference 1 might be due to a superposition of two or
more different annihilation processes, one of them being
annihilation from the bound state of H e+. However,
the validity of the wave function (1) can of course be
questioned. A calculation of the average of r, (the posi-
tron distance from the origin) yields the result 2.73 A.
Comparison of this with the distance of 2.04 A between
adjacent Li+ and H ions in the LiH crystal indicates
that the H e+ structure described by the function (1)
could not exist as a (nearly) separate entity in the solid.
Nonetheless, the possibility remains that similar bound
systems might be formed in the solid, but they would
be presumably described by wave functions arrived at
by taking suitable account of the effect of the surround-
ing ions. Measurements of annihilation rates in the
alkali hydrides couM throw some light on this question.
The presence of a significant component with an an-
nihilation rate of approximately one-fourth of that of
singlet positronium could be taken as partial evidence
for the formation of bound H e+ structures in the solid.


