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Electromagnetic Radiation from a Nuclear Explosion in Space
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The p rays from a nuclear explosion in space Compton-scatter electrons near the surface of the device or in
a surrounding material shield. The scattered electrons leave the surface and are accelerated back toward it
by the positively charged matter. Provided they are asymmetrically distributed, the accelerating electrons
radiate an electromagnetic signal. The electron motions are analyzed, the electromagnetic signal is estimated,
and its detectability is discussed, For a typical nuclear explosion, the electromagnetic signal is independent
of the yield and contains frequencies up to 10 to 100 Mc/sec and thus will penetrate the ionosphere. Taking
into account dispersion by the ambient interplanetary plasma (=10' electrons/cc), the peak electric field
strength at a distance R kilometers from the explosion is =10'R & v/m. The pulse length is =10 "R sec.
If only background cosmic noise limits detectability of the signal, the maximum detectable range is about
106 km.

I. INTRODUCTION

~~URING the technical discussions at the Geneva
conference on the nuclear test ban, it was sug-

gested that a nuclear explosion in space might radiate
a high-frequency radio signal. A number of different
mechanisms were considered, but the magnitude and
spectrum of the signal were only conjectured at the
time. More recently a particular mechanism, due to
the asymmetric emission of x rays from the explosion
causing an asymmetric acceleration of the ambient
charges in the low-density medium surrounding the
explosion, has been quantitatively considered by
Johnson and I.ipp mann. ' The maximum detection
range of the signal which they estimate is about a few
times 10' km from an explosion producing one megaton
of x-ray energy; the frequency of the signal is less than
10 Mc/sec.

In the present discussion a quite different mechanism
is considered. This mechanism, based on the emission
of p rays from the explosion rather than x rays, produces
a signal of greater magnitude and with higher fre-
quencies. An estimate of this signal will be given here
and the possibility of observing it will be discussed.

II. GENERAL CONSIDERATIONS

During the course of a nuclear explosion, p rays are
produced, both directly in the fission process and
indirectly by inelastic scattering of neutrons in the
materials of the device. These p rays, while moving
through the device or any ambient matter, can
Compton-scatter electrons. If the scattered electrons
are produced sufficiently close to the surface of the
matter, they can leave it and start to move into the
surrounding space. As the electrons leave, the matter
becomes positively charged and accelerates the electrons
back towards it. Provided they are asymmetrically
distributed, the accelerating electrons radiate. There
are at least two possible ways by which such an asym-

M. H. Johnson and B. A. Lippmann„phys. Rev. 119, 827
(1960).' This mechanism was discussed by O. I. Leipunski at the 1958
Geneva Conference of Experts (unpublished).

metrical distribution of electrons might be generated:
(1) Because of the design of the device, the p-ray flux
at the surface may be asymmetric, or (2) the y rays
may be emitted isotropically, but there may be an
asymmetric material shield. '

It is the electromagnetic radiation generated by the
Compton-recoil electrons from the device or from an
external shield which we wish to estimate. Some of the
essential quantities determining this radiation, however,
depend upon the design of the specific device; we shall
use an idealized and simplified model of the explosion
device and typical values for the relevant parameters—
thereby obtaining only an order of magnitude estimate
of the intensity and detectability of the radiation
generated by the Compton-recoil mechanism.

III. SOURCE OF THE SIGNAL

During the course of the nuclear explosion the p rays
will be assumed to be produced at approximately an
exponentially increasing rate. If t= 0 is the time at which
the explosion starts, then the number of p rays produced
up to time t is given by e ', where, typically, 0. is about
10' sec '. As the explosion proceeds, the generation of

rays continues to increase exponentially until a
substantial fraction of the full yield has been produced,
at which time the rate of generation of p rays reaches a
maximum. The generation from then on proceeds at a
considerably slower rate than the buildup. For sim-

plicity, we shall assume the generation increases
exponentially at the rate ne"' until time T and then
decreases to zero exponentially at the rate oPe ~" r&+"r

(n&)P, o & 1).About 0.03% of the total yield is assumed

to be produced as p rays. These p rays have an average
energy of about 1 Mev, and there are 7.5&(10"p rays
produced per kiloton (4X10"ergs) of yield; thus,

(1+a)e"r= 7.5X10"Ir (1)

'Such shields have been proposed to reduce the x-ray Aux
radiated in a given direction from the explosion and thus make
more dificult long-range detection of x rays. The shield might be a
Oat plate or a hemisphere a few meters from the device so oriented
as to shadow the explosion from possible x-ray detectors.
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where I' is the total yield of the explosion expressed
in kilotons.

The p rays Compton-scatter electrons within the
device or in a surrounding shield, if one is present. The
resultant recoil electrons will be distributed both in

energy and direction, but will move predominantly in

a forward direction with a mean energy of about 4 Mev,
corresponding to those electrons produced at a depth
of one-half the electron range R, (R,=0.1 g/cm') from
the surface of the device or the shield.

The total number of electrons emitted per unit area
up to time t is

e(f)= e ', for i&2',
2) „4m a'

R, 1
e L1+a.—o.e e" &j, for f) T, (2)

2) ~ 4mu'

where a is the radius of the nuclear device or the distance
from the source of p rays to the surface of the shield, and

is the mean free path for Compton scattering
(X~= 15 g/cm'). If the thickness of the matter in which

the Compton-scattered electrons are produced is less
than R, the electron range, then R. in Eq. (2) should be
replaced by the thickness of the matter and the mean

energy of the electrons is increased. The limiting mean

energy for small thicknesses is about —,
' Mev.

For simplicity we shall henceforth consider only the
problem of a thick hemispherical shield of radius a
centered about the device. This problem also provides
an estimate of the radiation from a Rat-plate shield or
from a spherical device of radius a whose p-ray asym-
metry is roughly equivalent to a distribution wherein p
rays escape predominantly into a hemisphere. 4

As electrons leave the surface of the hemispherical
shield it becomes positively charged and the electrons
are accelerated back towards the shield. Assuming the
electrons are all emitted in a direction normal to the
surface (and that they do not move far from the
surface'), a dipole moment normal to the surface is

generated. From symmetry the dipole moment is
uniform over the hemisphere and has a strength per
unit area given by

Z(f) = —e Q; x;(t)rf(x;(t)), (3)

where r)(x) =0 if x &0, r)(x) = 1 if x)0, and x;(t) is the
distance of the ith electron from the surface. The sum
includes all electrons which are emitted from the surface
in the unit area considered.

The acceleration of the dipole moment is found by
summing the accelerations of the individual electrons

4 More generally, it is equivalent, in erst order, to any asym-
metry in which the electrons are distributed in angle approxi-
mately as Fp(8,@)+Frs(8,&).

'From the solution of Eq. (5), it is easy to show that this.
approximation is valid.

x,= —(e/m)E(x; t). (5)

Provided x; is much smaller than the dimensions of the
shield, ' the electric field, E(x,,t), is determined by the
local surface charge density only. Thus

E(x;,f) = 2n.e g, [1—t) (x,—x;)]+2s.e Q, r) (x;—x;)
=4s.e P, r) (x,—x,). (6)

For a constant electron emission rate it is possible
to obtain an exact solution of Eqs. (5) and (6) for the
average motion of the electrons and of Eq. (3) for the
(time-independent) dipole moment. This steady-state
solution is presented in Appendix 1.

To determine the average motion of the electrons for
a time-dependent electron emission rate requires
treatment of the complicated self-consistent-field prob-
lem expressed by Eqs. (5) and (6). Rather than attempt
an exact solution, we will estimate the solution for
times t&T by two independent approximations, one
accurate at early times and the other accurate at late
times. In the first case, the screening of the electrons

by one another will be disregarded. That is, each
electron will be assumed to move in a constant ac-
celerating field equal to the field at the emission surface
at the time of the electron's emission At the v. ery early
times during which the emitted electrons are moving
only outwardly, the no-screening approximation is
exact. As electrons emitted at an earlier time begin to
return to the emitting surface, screening becomes
important and the no-screening approximation provides
only a semiquantitative description of the electron
behavior. In order to obtain a more accurate description
for the late-time behavior of the electrons, a second and
independent approximation will be made. Namely, the
electron motions will be assumed to be quasi-static.
That is, at each instant the electrons will be assumed to
be in that collective steady-state motion corresponding
to the instantaneous value of the emission rate. The
validity of this approximation will be discussed below.

6 All these e6ects are less than a few percent.

outside the surface and including a contribution due to
the flux of electrons in and out of the surface, namely,

Z(t) = —e Q, Lx,rf(x,)+up'5(x, )+v,sh(x;)], (4)

where vo and v„are the speeds of electrons leaving and.

returning to the surface and 8(x) is the delta function.
Strictly, Eq. (4) should be averaged over the spectrum
of electron energies. However, for the present order of
magnitude estimates, it is sufhcient to assume that all
electrons have the same energy, namely, their mean
energy. Quantitatively, this assumption is unimportant.
However, it introduces certain artificialities into the
behavior of the dipole moment which will be discussed
and treated below.

If we neglect magnetic and retardation effects, as
well as relativistic effects, ' the acceleration of the ith
electron is given by
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Finally, with the aid of the results derived for 3& T, the
solution for t& T will be obtained.

1. No-screening Approximation —t & T

When screening is neglected, Eqs. (5) and (6)
reduce to

(7)

1.2—

I.O

c40
OI E

., Approximation of fq.(25)
I

f4o-screening
approiimation

where X(t,) is the number of electrons per unit area
outside the surface at time t;, which is the time that the
ith electron is emitted. The motion is parabolic, and
the ith electron returns with the initial speed vp at the
time

t, (t~) = t,+moo/2m. e'.V (t,).
For times before the 6rst electron returns,

X(t)= N(t), t&tp+1/n,

and for times after the first electron returns,

(8)

t'V(t) =n(t)— (10)

Equations (8)—(10) cannot, in general, be solved
analytically for X(t), but can be solved numerically.
In Fig. 1 we show X(t) versus n(t —to) obtained numeri-
cally for early times.

IXIO

where n(t) is given by Eq. (2). Here to is the time at
which the 6rst returning electron is emitted, and is
found by differentiating Eq. (8) with 1V(t) =0(t):

2X~ mvpn
e '&=4mu'

E.g 27M

.2

O i I

4
l i I f t t 1 . t t

-2 -I 0 I 2 5 4
a (t-to)

Fxo. 2. Dipole moment per unit area as a function of time.

The qualitative behavior of 1V(t) for early times is
simply explained. Until time to+1/n no electrons have
returned, so X(t) just increases exponentially as e(t)
At to+1/n, there is a sudden flux of returning electrons
which momentarily exceeds the emission rate, causing
X(t) to decrease. Electrons emitted during this period
will have a decreased acceleration and will return at a
slower rate, which shows up as an increased N(t) at a
later time. This oscillating behavior persists, but the
time between discontinuities decreases as 1V(t) increases.
That X(t) increases is expected since the emission rate
is increasing.

The magnitude and frequency of the oscillations
about the mean growth rate of JV (t) depend on to and
hence on the initial velocity vp. Since there is actually
a distribution of electron velocities instead of a single
one, it is clear that in the actual case the oscillations
will be substantially averaged out and only the smooth
growth of cV(t) will remain.

From the solution for Ã, (t), Eq. (7) can be integrated
for the electron motion. Equation (3) then determines
Z(t), the dipole moment per unit area. Namely,

IXIO

Z(t) = —e d~ ri(r)
t&(~))t)r

2Ãe

04 0o
cu, &

IXIO

X eo(t —~) — -E(~)(t—g)' . (12)

For times before t= to+1/n, Z(t) is given simply by:

Z(t) = —(mao'/2m e)e"" '»(1—-', e"&' "'j,
n(t —to)& 1. (13)

lO I & I s I i I i I & I s I

-2 -I -0 I 2 3 4 5
a (t-to)

Fzo. 1. Number of electrons per unit area outside
surface as a function of time.

Thus, as is easily shown, Z(t) reaches a maximum and
starts to decrease before any electron has returned. Its
maximum occurs at n(t —to) =ln2. For later times Z(t)
is shown in Fig. 2 where one expects again that in the
real case the oscillations will not be present.

For large t, we can obtain an asymptotic expression
for $(t) by using the fact that the time between
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emission, t&, and return, t„, is very short compared to
1/a and t. Thus

X(t)=n(t)-n(t, )
= (myon/2ore')e~ ' "'[1—e ~" "']
~(myoid/2n. e')e &' "&n(t—t&) (14)

to within a factor of 23 and both predict essentially no
radiation at late times. This close quantitative agree-
ment suggests that in fact the no-screening approxi-
mation is actually quite good and can be expected to
provide a rather accurate estimate of the over-all
behavior of the electron motions.

t—t, =mvo/2ore'~V(t, )=e=«-'o&/n'(t —t )

Finally, then,

~(t tq)~e ~(& &o&lo—

and

cV(t)~(mvpn/2~e')e~~' "' '. (16)

This asymptotic limit for Ã(t) is also shown in Fig. 1.
In this limit we find for the dipole moment per unit

area
Z(t) —(mvo'/127re)[1+~e ''~~' "&]

which has the very small acceleration

(17)

Z(t)~ —(mvo'/2ve)(n'/. 96)e ~" "'" . (18)

The results, Eqs. (16)—(18), for )V(t) and Z(t) are
easily seen to hold for times t such that ea" ") '))1;and
we note that the undesired oscillations have implicitly
been omitted.

2. Quasi-static Approximation —t & T

The no-screening approximation, Eqs. (16)—(18), is
not expected to be accurate at late times when screening
becomes important. However, at late times an alterna-
tive approximation becomes valid. Namely, if the
electron emission rate changes slowly compared to the
time between an electron's emission and return, that
is, if

(ri/n)(t„—t,) =n(t, —t,)«1,
then we may assume that the electron motions at a
given time are in that state of steady motion corre-
sponding to the instantaneous emission rate.

From Appendix 1 we find the exact solution for a
steady state to be

X„=n(t„—t~) = (rimvo/ve') &.(19)

Assuming that n(t„—t&)((1, we obtain a good estimate
of E(t) and Z(t) by substituting the slowly changing
rate n(t) from Eq. (2) into Eq. (19).Thus

&7» (t)~ (mv ~/'t/2 y'e') e"&'

n(t,„t,) v2e &' 'o—&", -—
Z (t) —myo'/8v e.

(2o)

(21)

(22)

From Eq. (21) it is deduced that the quasi-static
solution, Eq. (22), is accurate for late times t such that
ga (t—tp) /2))]

A comparison of Eqs. (17) and (22) shows that the
no-screening and the quasi-static approximations agree

3. Solution for t& T

In view of the behavior of Z(t) for t&T, it is clear
that for t& T, Z(t) will be small until t))T. Therefore,
in order to estimate Z(t) for t& T, we can for convenience
arbitrarily assume that at t= T the electrons are in a
state of steady motion (using the results of the quasi-
static approximation). In view of the accuracy of the
no-screening approximation, this approximation can be
used to determine both the steady motion at t = T and
the subsequent time-dependent motion for t& T. Using
Eq. (12) and the results of Appendix 2, it readily follows
that Z(t) P' for t&T. However, from Eqs. (13) and
(17), Z(t) a' for t&T. Since (P/n)'«1, the radiation
at late times t& T is small compared to that at early
times t(T. In addition, it consists of lower frequencies
which, as can be shown from subsequent results, are
more difficult to detect at great distances. Accordingly,
the radiation at times t& T may be neglected.

Combining the results of Secs. 1—3, we conclude that
the dipole moment will increase almost exponentially
to a maximum value, decay somewhat more slowly
to a steady-state value, then increase again slightly and
finally decay slowly to zero. The important times t,
during which radiation is emitted, are in the neighbor-
hood of o». (t—to) equal to the order of one or a few.

For convenience in subsequent order of magnitude
calculations an approximate expression for the dipole
moment will be used. This expression was chosen to
give the qualitative behavior of the dipole moment as
well as correct values for its maximum and quasi-steady
state. Namely, we shall use

Z (t) = —(myoo/16v. e) (1+ tanh[a (t—to') ]
+8 sech[a(t —to')]), (23)

where toto' ——cyto+ln2. For comparison this function is
shown in Fig. 2 along with the more exact results.

IV. THE NEAR RADIATED SIGNAL

The electromagnetic field radiated by the Compton
electrons is composed of a coherent and an incoherent
part. The coherent part arises from the mean-time
behavior of Z(t) given by Eq. (23). The incoherent part
arises from the fluctuations in the mean variation of
Z(t). In Appendix 3 an upper limit on the magnitude
of the incoherent radiation is determined. Compared
to the coherent part, even this upper limit on the
incoherent part is quite small and, therefore, the in-
coherent, I'@di@t&op may be neglected.
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E(R,t) =—
c'R

N (oo) = [1—(p),/p))']l,
= —Z[((d&/p)) —1]' (o ((L)

where

(29)
(25)

where
Z(t) = d(d e*"'Z(p))

The coherent part of the electric 6eld radiated to a attenuation of the lower frequencies will be essentially
distance R from the explosion is7 complete, while the higher frequencies will be greatly

dispersed and the character of the signal considerably
altered.

(t(oZ p) Q) d re' e~ The refractive index of the interplanetary medium
is given by

X(e Xeii), (24)

p)„'=4ire, e'/m (3o)
defines Z((p). The second and third integrations in Eq.
(24) are carried out over the radiating surface; t,.i is the
retarded time from the observation point to the element
of area at the point r. e is a unit vector in the direction
of the dipole moment at the point r, and eg is a unit
vector parallel to R. For a hemisphere of radius a with
a radial dipole moment, we find

and n, is the electron density in space. The electric
field at great distances from the explosion is

2~a Ji(p)~o)
E(R t) —

(Ep) em ie iran (u) B/cZ (—(o)(oo (31)
cR CO

27/ 8
E(R,t) = d e' &' &'Z( ) 'J, sir9), (26)

c

where the contour for the co integration runs below the
real axis and so asin8—/—c.

The integral in Eq. (31) can be evaluated by the
method of steepest descents for times such that

where 0 is the angle between the axis of symmetry of
the hemisphere and the direction to the observer. The
electric field is polarized in the plane containing these
two directions.

For Z(t) given by Eq. (23) the Fourier transform of
Z(t) is

Z(p)) = —(m i/)p3o2 eiar)e
~io'

X[8 sech(7r(p/2n) —i csch(harp)/2n)]. (27)

io„(t—tp' —R/c) & 1.

The points of steepest descent occur at

~„
f

t—tp'/
GO= &- = &M&XO.

[(t—t, ')' —R'/c']'

Noting that Z(—(d) = [Z((p)]*, we find

(32)

(33)

From this result we conclude that frequencies much
larger than o. are sharply reduced. Moreover, as can be
seen from Eq. (26), the finite size of the hemisphere,
expressed by the factor Ji(&pa sin8/c)/p), tends to cut off
frequencies above about 1/rp ——c/asin8. For n=10'
sec ', and a=10 m, the radiated signal will therefore
contain frequencies only up to about 10 to 100 Mc/sec.
From Eqs. (23), (26), and (27), the maximum signal
strength is about

E,„=(mvo'/8eR) (na/c)'=10'(Ri, ) ' v/m, (28)

for —', mao' ——~ Mev; the signal duration is =10 ' sec.

V. THE DISTANT RADIATED SIGNAL

To determine the signal radiated to great distances
it is necessary to take into account the fact that inter-
planetary space is not empty, but filled with a low-
density ionized plasma, containing from 102 to 10'
electrons per cm', which has a characteristic frequency
of 105 to 3X10' cps. For these low densities, collisions
can be neglected, and the effect of the plasma is to
attenuate signals below the plasma frequency and
disperse those above. Since we are concerned with very
great distances (10' km or greater) for detection, the

VThe e8ect of dispersion by the ambient medium is treated
in the next section.

This represents a rapidly oscillating electric field whose
amplitude rises from nearly zero at t=tp'+R/c to a
maximum and then decays as t ' for late times. The
maximum amplitude, using the approximation for
Z(p)) given by Eq. (27), occurs at xp=n/p)„, that is, at

t t()' R/c = (id „/n—')R—/c (35)

and is approximately

a n' na s1118)ts'vpE,„(R)= (2ir) l —Ji
c~R'*&p„c 1 5ire

(36)

Assuming a=10' cm, o)„=6X10' sec ' (corresponding
to an electron density of 10'/cc), n= 10' sec ', i2mi)p' ——i~

Mev, it is found that

E,„(R)=10'(R), ) & v/m,

and the signal duration is approximately

At= t tp' R/c=10 "R),~ sec.— —

The bandwidth is 10' to 10' cps.

(37)

(38)

2 (27r) ta c
E(R,t) = p)„' ~o(xo' —1)Vi((o„roxo)

cR co„R

XRe(e'~"e'"i" "')'*oZ(cp„xo)). (34)
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VI. DETECTABILITY OF THE SIGNAL

Since the frequencies in the signal extend up to about
10 to 100 Mc/sec, the signal can penetrate the iono-
sphere, and can be observed from the surface of the
earth, provided background noise is not too great. We
shall estimate the maximum detection range of the
signal assuming that the only interfering noise arises
from background cosmic noise. Thus, it will be assumed
that the receiver can be effectively shielded against man-
made disturbances.

In the frequency region from 10 to 100 Mc/sec
the background cosmic noise is characterized by an
effective temperature of about 104 'K. That is, the mean
cosmic noise Aux per cycle over the frequency range
of the signal is

C

e=—A
4m.

dh[E(R, t) j'

4~'Au'

cE.

/No sln8
~Z(~)

~

. (44)
c

For the approximation to Z(co) given by Eq. (27),

Clearly, optimum detection results when e equals the
signal bandwidth and r equals the signal duration
time. Due to the dispersive effects of the interplanetary
medium the signal duration depends upon distance from
the explosion. An estimate of the signal duration is
given by Eq. (35).

From Eq. (31) the total received signal energy is

$~=47rkT/X'=1. 7X10 "(T/X') w/m' cps
= (1.7X10 "/X') w/m' cps. (39)

I SiIlg (45)

If the detection receiver has a bandwidth cr cps, the
average cosmic noise power received will be

Pier =o'5+ ——(1 7X 10 is/X~) o w/mm (40)

The signal radiated by the explosion has a peak
intensity of

&~ma, x ~ X10
w m.

(R~-)'
(42)

For distances greater than 10' to 10' km, the peak.
signal power is less than the mean noise Aux. For
detection, however, the peak signal power need not
exceed the mean noise power. By suitable circuit design
of detectors the mean noise power can be biased out
leaving only the fluctuations of the noise. It is sufficient
for detection that the total signal energy exceed a
threshold level determined by the requirement that
the probability for a noise fluctuation to exceed the
threshold is less than some acceptable value. A reason-
able threshold for detection is ten times the dispersion
of the total noise energy during a time equal to the
signal duration time.

In Appendix 4 it is shown that for a receiver with
negligible internal noise, having an effective antenna
area A m', a frequency bandwidth 0. cps, and which
integrates the noise power for a time period 7- sec, the
dispersion in the received energy is

t orA Vq-: 4&kT

&2~i
/arA.

=0.7X10 22~ T joules. (43)

For a band width o = 10' cps and lI, =10 m (correspond-
ing to a frequency of 3X10' cps)

Pier=10 "w/m'.

where

I[(2oa/~c) sin8j =7.9 for (2na jxc) sin8= 2.12
= 12.0 for (2na/~c) sin8= 1.06
=46.5[(2no,/m c) sin8]'

for (2na/m c) sin8((1.

Clearly, the signal energy e is a rather insensitive
function of the angle 0, except when 0 is very small.
Moreover, detailed evaluation of the integral of Eq.
(44) indicates that nearly all the signal energy is
contained in a bandwidth 6&o=gn/~, or o =4n/m'
=4X 10' cps for o.= 10'. Using this band width o 4n/7r='

and an integration time r= (~„/cr)'R/c, the maximum
detection range (corresponding to a signal equal to
N times the dispersion of the noise) is given by

A a )' m'no4n orA'A2)l 47rkT
I=iV

32vr' Ri e'c 27r

4n co~' R A ) '*
4m kT

(46)

or
g4yg4po 8o 3/2 jr2A —& ~ 5

R, =—
8m. N'(u, '(k T)'ce4

(47)

For u='A=10 m, co =6X105 sec ', A=10' m' T=104
'K, X=10, and I= 10, we find

Xmas= 1 3X10 km. (48)

We note that the detection range is independent of the
explosion yield. This result is valid so long as e" ))e ".

VII. DISCUSSION

In treating the propagation of the explosion signal,
effects of the earth's ionosphere were ignored. To
justify neglecting ionosphere effects, we note that the
dispersion of the signal depends approximately only
on the total number of electrons per cm' along the
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propagation path. For distances greater than about
10' to 10' km, the total number of ionospheric electrons
is small compared to the total number of interplanetary
electrons. Second, we note that the cutoff frequency
of the ionosphere ( 6 Mc/sec) is small compared to
the signal bandwidth ( 40 Mc/sec). Consequently,
only a few percent of the signal energy cannot penetrate
the ionosphere.

The key uncertainty in this method of detecting
nuclear explosions is the feasibility of eliminating all
sources of background noise except cosmic noise.
Removing this uncertainty will require experimental
detector studies.

Note added in proof We w. ere recently informed by
Dr. Richard Garwin that in an unpublished Los Alamos
report which appeared about 10 years ago, he had
considered the effect of Compton electrons from the
device case in producing electromagnetic signals from
nuclear explosions in the atmosphere.

and the time between emission and return is

t,—t, =2t= 2(v,/A)-:. (1.8)

The total number of electrons outside the emitting
surface is then

or
N„=rip(t„—ti) = 2no(vo/A) ~,

N„= (ripmvp/pre') *.

The dipole moment is

Z(t) = —e dx p(x)x.

Z(t) = —emvop/8v e'.

APPENDIX 2. SOLUTION FOR t& T

(1.10)

Substituting from Eqs. (1.2) and (1.5) and observing
that the integration extends from 0 to the maximum
displacement vpt/3A', we find

APPENDIX 1. STEADY-STATE MOTION
For a constant emission rate no and using the no-

screening approximation, Eq. (7) gives for the motion
of an individual electron

For a constant emission rate, the electron motions
approach a steady state. In this steady state the
electric field distribution is independent of time and is
given by x (t) = —(4pre'/m). Vo, (2.1)

dE(x)/dx = —
47rep (x), (1 1) where Ã0 ——n07. and v is the time interval between

emission and return of the electron. Thus, if the electron
is emitted at t= to,

x(t) = —(2pre'/m)No(t —tp)'+vp(t —tp). (2.2)
p(x) =2np/v(x), (1 2)

From this result,
where v(x) is the velocity of the outward moving
electrons at x. (The inward moving electrons have an
equal and opposite velocity. ) From the electron
equation of motion, Eq. (5),

r =mvp/2pre'1Vo=lVo/rio (2 3)

(2 4)No= Pomvo/2pre']'*.

where p(x) is the electron density at a distance x from
the emission surface. p(x) is related to the emission
rate no by

x= v(x)dv(x)/dx= —(e/m)E(x). (1.3)

Differentiating Eq. (1.3) with respect to x and using
Eqs. (1.1) and (1.2), we find that

d'v'(x) 16pre' rip

dx2 m v(x)
(1 4)

A straightforward solution of this equation gives for
the velocity of the outward moving electrons

where
v(x) = Lvp& —3A-'*x]1,

A =4prrioe'/m.

(1.5)

x = 3A lLvol —(vol —A lt)']. (1.6)

The path of the outward moving electrons is obtained
by integrating Eq. (1.5), namely,

Assume now that Eq. (2.4) is valid for t& T and that
for t) T, ri(t) =rip e(' r' Then from Eqs. (2) and (10),

N(t) = (np/p) (1—e e" ')—rip$ti(t) —T]
for T—t&ti(t)& T

—
(rip/p) (e

—e[4(o—rl e
—e(i—r))

for ti(t)& T, (2.5)

where ti(t), the time of emission of an electron which
returns at time t, is given by

t = ti(t)+-
2 e'N(ti(t))

(2.6)

Eqs. (2.5) and (2.6) can be solved approximately in
two limits —P[t—ti(t)](&1 and PLt —ti(t)]»1, where t
and ti(t)))T. In the case that P/t —ti(t)]&(1, t)&T and
ti(t)))T, Eq. (2.5) gives

We observe that the time between emission and maxi-
Jnum displacement is

N (t) =n, e
—e('-'~ Lt—t, (t)].

Substitution of Eq. (2.7) into Eq. (2.6) leads to

(2 7)

t= (vo/A)', (1.7) N(t) = (mvorio/27re')le e~' r'". (2 8)
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In the case that P[t—t~(t)]))1, t))T and t~(t)))T, Eq.
(2.5) gives

1V(t) = (rio/P) exp( —P[t (t) —T]).
Substitution of Eq. (2.9) into Eq. (2.6) gives

(2 9)

X(t) = (2.10)
2prep p(t —T)+in(mvpp'/2preprip)

Sx e'
P=—a2iV p

—X2

3 c' 4+82
(3.1)

where x is the acceleration of each electron as given by
Eq. (2.1) and Xp is the number of electrons outside
the emitting surface as given by Eq. (2.4). Then

1287' 8 a RMp ' 1P=- Qp

3 m2c' 2xe2 4+E2
(3.2)

where, using Eq. (1),
Eeoc. 7.5X10"

np= — Y.
2X, 4ma2

Using a=10' cm, we obtain

APPENDIX 3. INCOHERENT RADIATION

We will show here only that the incoherent part of
the radiated field is small compared to the coherent
part. For this purpose it is sufhcient to overestimate the
intensity of the incoherent field. For an overestimate,
it will be assumed that each electron radiates in-
dependently at all frequencies. The no-screening
approximation will be used and it will be assumed that
the electrons are in a steady state corresponding to a
constant p-ray flux over a time 1/n=10 ' sec. In this
case, the total power per unit area radiated to the
distance R is

5X10 2Y'
((~'))*'=

~km
v/m. (3.4)

Comparison of Eq. (3.4) with Eq. (28) establishes that
the incoherent radiation is negligible.

kT T
Sh = 4pr = 1.7X10 ''-—w/m' cps, (4.1)

where T is in degrees Kelvin and X in meters.
If a receiver with an antenna area A m' and band

width 0- cps integrates the received noise power for a
period of ~ seconds, the total received energy will be,
on the average,

e=SorA = 1.7X10 "T(A/7v')err joules. (4.2)

The Auctuation of the mean noise energy is given by
the Ructuation of the radiant energy contained in a
hohlraum of volume Acr and temperature T. For the
band width 0., this Quctuation in received energy is

8~h2 p4~ h, v/ It:T~

((p—p)'). =Acr
cp (ehv/hT 1)2

(4.3)

For the case of radio waves, hv((kT, and

((p—$)') =Ar(gprpP(PT)'/cP)g
=Ara (lh'/2pr)Sh'.

Thus, the dispersion of the mean received noise energy is

APPENDIX 4. NOISE FLUCTUATIONS

Cosmic background noise is generally described by
specifying an equivalent "noise temperature" for the
frequency band of interest. This equivalent temperature
is related to the average cosmic noise power per unit
area per cycle per second at wavelength X by

7X10-
F"* ergs/crn' sec. (3 3) [((p—p)'). ]i= (~rAX'/2pr)~Sh

=0.7X10 "T(orA/X')~ joules. (4.5)


