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Hence

and therefore

k dx=k (aDp/ak)dr
a&(B—Dp/8(u) dr

=coN

5=~t.

(In particular, Fermat's principle could be applied to
Sec. II but not in Sec. III of this paper; its use by
Francis, Green, and Dessler' was actually justified. )

(]$7) At any rate, the only use usually made of Fermat's
principle is in deriving Eqs. (146) and (147), and these
equations are always valid.

If the medium is time independent co is just a constant,
so 8=0 follows from 8S=0.

In more complicated problems there appear param-
eters, such as a plasma frequency co&, a collision fre-
quency cv„a viscosity v, etc., which destroy the homo-
geneity of Do and hence invalidate Fermat s principle.
We can only use Fermat's principle if the medium is
entirely characterized by a set of velocities, like the
local speed of light, or of Alfven waves, or of sound.
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e condensation of a Fermion system by forming d-type bound pairs is discussed with the help of time-
dependent, correlation functions both at absolute zero and Rnite temperatures, for the purpose of applying
this study to the case of liquid helium-3. We use essentially Gor'kov's method, suitably generalized to take
into account the anisotropy of the bound pairs and also the finite lifetime of the quasi-particles which make
up the pairs. The treatment proposed here goes one step further than the Hartree approximation in the
sense that the Rnite decay rate of the quasi-particles is introduced by means of a model spectral density for
the renormalized propagator (Green's function). This model features a single broad peak instead of the
infinitely sharp peak which characterizes the Hartree approximation. Considerable care is taken to relate
this microscopic model to the available experimental data on the scattering probability in liquid helium-3.
It is concluded that the effect of scattering on the condensation can be adequately described by a cutoff A
of the order of 1 K, limiting the domain in momentum space of the quasi-particles which participate effec-
tively in the condensation process. This entails a reduction of the transition temperature estimated previ-
ously on the basis of the Hartree approximation, down to a value of the order of 0.02—0.03'K.

I. INTRODUCTION

'HE idea of particle pairing, which is the basis of
Bardeen, Cooper, and Schrieffer's (BCS) theory

of superconductivity, ' naturally leads us to ask whether
this condensation could also obtain by forming pairs in
a finite angular momentum state instead of the s state
considered by BCS. Many authors' ' have agreed, on

* Part of this work was performed while this author was at the
Bell Telephone Laboratories, Murray Hill, New Jersey.' J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957), hereafter referred to as BCS,

2K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel,
Phys. Rev. 118, 1442 (1960).

3 V. J. Emery and A. M. Sessler, Phys. Rev. 119, 43 (1960).
4L. P. Gor'kov and V. M. Galitskii, J. Exptl. Theoret. Phys.

(U. S. S. R.) 40, 1124 (1961) Ltranslation: Soviet Phys. —JETP
13, 792 (1961)].

'P. W. Anderson and P. Morel, Phys. Rev. 123, 1911 (1961}.

theoretical grounds, that this is indeed possible pro-
vided that the interaction potential is favorable, i.e.,
produces a larger binding energy in a finite l state than
in the s state. The interaction potential between two
bare helium-3 atoms comprises a strong repulsive core
and a weak long-range attraction; consequently, the
effective interaction in the liquid is thought to be attrac-
tive for two quasi-particles in a large relative angular
momentum state. ' Actual computations' ~ showed that
this interaction is indeed the most attractive in the d
state (l= 2), although it is repulsive for l= 0 and 1. The
existence of a condensed state of liquid helium-3, stable

'L. P. Pitaevskii, J. Exptl. Theoret. Phys. (U. S. S. R.} 37,
1794 (1959) Ltranslation: Soviet Phys. —JETP 10, 1267 (1960)].

7 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040
(1958).
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at low temperature, was, therefore, predicted; Emery
and Sessler' estimated a transition temperature of the
order of 0.07'K.

However, this condensation has not been found ex-

perimentally, even though the range of temperature
investigated has been extended down to 0.008'K. This
experimental evidence led several authors' ' to suspect
that the simple Hartree approximation used previously
might be seriously inaccurate in the case of helium-3 on
account of the finite lifetimes of the quasi-particle exci-
tations of the system. Physically, one would expect the
decay of the quasi-particles to limit their eKciency for
participating in the condensation process and, therefore,
reduce the transition temperature below that estimated
on the basis of the Hartree approximation. This conclu-
sion was qualitatively born out by the theory' ' so that
we felt it would be useful to estimate as accurately
as possible the decay rate of the quasi-particles in

liquid helium-3 and to incorporate this information in
a consistent treatment of the condensation problem. In
contrast to the very detailed analysis of Kadanoff and

Martin, "we endeavored not to introduce more theo-
retical parameters than can be readily computed from
the experimental data. In view of the lack of detailed
information on the collision probability in liquid he-

lium-3, we had to restrict ourselves to the simplest
approximation, i.e., isotropic scattering probability. On

the other hand, we show by a detailed argument origi-

nally introduced by Betbeder-Matibet and Nozieres"
that the lifetimes of the quasi-particles are indeed the
same in the normal and in the condensed Quid, within
corrections of the order of the square of the gap. We are,
therefore, justi6ed to use the same spectral representa-
tion of the Green's function as in a normal Fermi sys-
tem. Following the scheme proposed in reference 11,
we approximate this spectrum by a Lorentz function
with a finite width I'& proportional to the decay prob-
ability of the quasi-particle. A detailed computation of
this probability proves that I'& is proportional to the
square of the excitation energy e& in the low-tempera-
ture limit. We derive then the gap equation at absolute
zero temperature on the basis of both the Hartree ap-
proximation used in earlier estimates and the present
model (Sec. II). We extend this treatment to the case
of finite temperatures following the method of Luttinger
and Ward. "We show that the effect of the finite life-
time is essentially to cut off the domain (in momentum

space) of the quasi-particles effectively contributing to
the condensation energy. This cutoff is at a Axed energy
A. of the order of the Fermi energy and quite inde-

A. C. Anderson, G. L. Salinger, W. A. Steyert, and J. C.
Wheatley, Phys. Rev. Letters 6, 331 (1961).

'A. Bardasis and J. R. SchrieBer, Phys. Rev. Letters 7, 79,
472 (1961).

' L. P. Kadanoff and P. C. Martin, Phys. Rev. 124, 670 (1961).
"O. Betbeder-Matibet and P. Nozieres, Compt. rend. 252,

3943 (1961),hereafter referred to as BMN.
"J.M, Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960);

J. M. Luttinger, ibid. 121, 942 (1961).

pendent of the temperature. We then derive the expres-
sion for the transition temperature (Sec. III). Lastly,
we estimate the (constant) collision probability both
from 6rst principles, using Landau's theory of Fermi
liquids, ""and from physical properties intimately re-
lated to scattering: thermal conductivity, viscosity and
self-diffusion (using the expressions derived by Abri-
kosov and Khalatnikov. "We find that the values agree
reasonably well in spite of our drastic approximations.
Thus, we estimate a value of the cutoff A. of the order
of 1'K and a transition temperature T,=0.02 to 0.03'K
(Sec. IV).

II. CONDENSED GROUND STATE OF A NONIDEAL
FERMI FLUID

Although the suitable Green's function formalism for
describing a condensed Fermion system is readily avail-
able in the literature, ""we want to derive it again and
to describe in details the steps which lead us to the
formulation of Dyson' equations; this will serve both
purposes of introducing our notation and laying the
base for the extension to the case of finite temperatures.

Basic Hypothesis of the Theory

It is well known that the difference between the
normal (Fermi) state and the condensed state is the
existence, in the latter state, of a condensed phase of
paired particles. These pairs behave essentially like
bosons and, therefore, any number of them can pile up
in a unique ground state (ground pairs). We may then
think of the condensed state q 0 as describing not a fixed
number of particles but rather an undetermined number
of pairs. In other words, all physical quantities (particu-
larly the Green's function) are unchanged, when two
particles are added to the system or, more precisely,
when one ground pair is added to the condensed phase.
In order to take advantage of this continuity, we want
to ignore the total number of particles 2V; we shall then
consider the free energy F=H—pS, instead of the
energy H (p is the chemical potential) or, equivalently,
we shall measure all particle energies relative to the
Fermi energy. According to this view, one sees that the
mean value of the interaction Hamiltonian in the con-
densed state includes the regular Hartree term

&v o Ilt (~)lt'(4)1«)&~o lit (2)lt'(3)
I v o» (&)

as well as

&«Ia(~)1l(2) I «)&«Io'(3)O'(4)
I v o). (2)

Both terms have an infinite range since each one can
be split into two independent parts representing two

' L. D. Landau, J. Exptl. Theoret. Phys. (U. S. S. R.) 35,
97 (1958) Ltranslation: Soviet Phys. —JETP 8, 70 (1959)j.

'4 A. A. Abrikosov and I. M. Khalatnikov, Reports on Progress
in Physics (The Physical Society, London, 1959), Vol. 22, p. 329,
hereafter referred to as AK.

"L.P. Gor'kov, J. Kxptl. Theoret. Phys. (U. S. S. R.) 34, 735
(1958) Ltranslation: Soviet Phys. —JETP 7, 505 (1958)g.
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unconnected processes, namely: (1) the propagation of
two particles independently of each other; (2) the merg-
ing of two particles into the condensed phase and their
subsequent emerging. Both should then be taken into
account in the Hartree approximation. Clearly, the
second term (2) is finite only in the condensed state and
appears, therefore, as the main contribution to the
condensation energy.

An equivalent way of presenting this view, using now
Gor'kov's formalism, would be to treat on the same
footing the normal propagator G:

(b)

4
'

IL

4I IIL

+ I, II'

+ Xl +
IIr' IIL

+

z~ +

G- (*—x') =i(p p(&)
I
TW.(x)0.'(x')1«P'))

and the "propagators" E and F:
F;(x—x') = i(«($)

~
TP (x)P (x')

~ p p(1V+2)),
4

F...(x—x') =i(p p(x+2) Ty.t(x)P. t(x')
~
«(X)).

Here, T is the usual time-product; x is the four-vector
r, t and the spin coordinate is denoted by IT,

' iop(Ã) and
Irrp(1V+2) are the ground states (condensed state) for
1V and (X+2) particles, respectively; we assume that
&pp(E) and «(/+2) are indeed the same state within
corrections of the order of 1/X. Note that this approach
leads us naturally to introduce only one function II'

and one Ii: we, thus, assume implicitly that there is only
one kind of bound pairs undergoing Bose condensation.
A detailed analysis carried out by Anderson and Morel'
showed that this pair state is not a pure rotational eigen-
state but a complex mixture of diRerent spherical
harmonics.

This view has been questioned by Gor'kov and
Galitskii4 on the basis of a different assumption about
the nature of the ground state. These authors assume
the existence of several condensed phases. Each phase is
is made up with pairs in pure rotational eigenstates,
with fixed angular momentum / but variable m. In the
ground state, these (2l+1) condensed phases are as-
sumed to be equally populated, thus yielding an iso-
tropic state. This assumption leads to very simple
mathematics and looks very attractive. However, it is
not clear that the concept of imdepeedeni condensed
phases has any meaning. To put it another way, a pair in
the configuration (k, —k) may not remember to which
m it belongs. As the above theory cannot be checked
by the standard Bogoliubov or BCS techniques, its va-
lidity is still an open question. For this reason, we follow
here the lines of Anderson and Morel's treatment, rather
than Gor'kov and Galitskii's theory. As a matter of
fact, this is not critical in any way, since our results
could trivially be transposed to the other scheme.

Derivation of Dyson's Equations

Let us analyze the set of all processes which lead to
the propagation of a quasi-particle (described by G) and
the absorption of a pair into the condensed phase (de-
scribed by F) (see Fig. 1). Summing up the contribu-

FIG. 1. Diagrammatic representation of Eqs. (5) and (6) (see
text). The double lines represent the renormalized propagators G
(one arrow) and Ii (two diverging arrows). The single lines
represent unperturbed propagators Go. Z& and Z:& are self-energy
diagrams. The small + and —signs refer to the particle spins.

Zp(x) =iV(x)F(x),
Zp(x) = —iV(x)F(x),

(7)

where V(x) is the renormalized vertex part representing
the quasi-particle interaction in the normal fluid (V in-
cludes no operator F). In the first order of the inter-
action, V(x) is simply the (instantaneous) potential
between two bare helium-3 atoms. In higher orders,
V(x) includes noninstantaneous polarization terms but
we shall assume that these corrections can be neglected.

16 +le have been careful to take into account the spin-inversion
properties of the system and particularly, we have introduced a
minus sign on the right-hand side of (5) because the self-energy
part of the last diagram of Fig. 1(a) has the opposite spin com-
bination to that of definition (7).

tions of these processes, we obtain the following equa-
tions which are really geometrical relations between
classes of diagrams:

G(k, io) =Gp(k, io)+Gp(k Io)zi(k, Io)G(k,co)

—G, (k,u)Z, {k,~)F(k,~), (5)

F(k, io) =GII(k, —Io)Zp(k, io)G(k, io)

+Gp(k, —co)z,(k, —(o)F(k,po). (6)

We have used here the energy-momentum representa-
tion and omitted the spin indexes for simplicity. "
Go is the unperturbed propagator. Zj, Z2, and Z2 are the
self-energy parts which involve no net variation of the
number of particles, the net creation and the net annihi-
lation of one pair, respectively. We shall see later that
each F operator contributes a factor of the order of
the ratio of the average energy-gap 6 to the Fermi
energy e&, In the weak coupling limit, we want to
neglect the second- and higher-order terms, which result
from diagrams including two or more operators Ii. We
shall then restrict the summation for Z~ to the class of
all self-energy diagrams involving no operator F or E,
i.e., the diagrams which make up Z~ in the normal state.
Similarly, we shall only include in Z2 or Z2 those self-
energy diagrams which involve only one operator F or
F, respectively":
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In other words, we replace the true energy dependent
potential V(k, cp) by the limiting value V(k,0). In
this approximation, the self-energy parts Z2 and Z2

are instantaneous so that we need only to know the
relation between Ii and F for equal times, in order to
solve the Eqs. (5) and (6)."We can easily derive this
relation from the commutation rules:

F,.(r—r', +0)=zDQ..(r', f)P.(r,f))]*
=LE- (r—r', +0)]*. (g)

Introducing the gap function C(k) defined by Anderson
and Morel, we obtain, therefore,

Zs(k, cp) C(k),
9

Zz(k, ~) C'(k).

Carrying this into (5) and (6), we find then

J (k,cp) = C(k)/

L("——~,(k, )]L..+ —~,(k, —)]+ I
c(k)

I
.

F(k,cp) =C(k)/LG„(k, cp)]
—'LG„(k, —cp)]

—'+
~
C(k) i

'

and finally )from (7) and (10)]:
(10)

Since Z& is identical to the self-energy in the normal Quid

(within second order corrections), $ek —cp —Zi(k, cp)] '
is just the renormalized propagator G„(k,cp) in the
normal Quid; consequently, we may rewrite the expres-
sion for F in a more elegant form:

V( —k')C(k )
ask 8co .

LG.(k',-')]- [G.(k', —')]-'+ IC(k') I'

G„(k,cp) =
Ai(k, cp') A (k,cp')—

dcp'. (12)
p -cp cp zz) cp +co zeal &~p

The simplest approximation consists in neglecting all
dynamical correlations (Hartree approxiniation) and
associating a definite energy with each momentum.
Then,

Ay= 8(cp —sk), ek) 0

A — 8(cp+ek)) ek(0)

and zero otherwise. The corresponding propagator is
essentially the unperturbed propagator Gp (possibly in-

cluding a correction of the particle energy in the form
of an effective mass different from the true mass):

Gp(k, cp) = 1/(sk —co+zri) if sk(0
= 1/(ek —cp —zr)) if ek) 0.

Carrying this into (11) and performing the frequency
integration, we obtain the familiar BCS equation corre-
sponding to the case of infinite lifetimes

C(k') d'k'
C(k) = V(k —k')

2Ek (2zr)'

E =Le'+ I
C(k) I']' (16)

'7 This is quite fortunate because the relation between F and F
for different times is not simple, in general. These operators are,
indeed, related by simple symmetry requirements when the ground
state is invariant under time reversal like the superconducting
state (l= 0) Lsee P. Nozieres, Lecture Notes, University of Paris,
1960 (unpublished) j. However, the condensed state of liquid
helium-3 has a d-type con6guration, involving a net correlation
current, and, therefore, is not time reversal invariant.

Hartret: Ayyroximation

We shall conveniently represent the renormalized
propagator G„by its I.ehmann expansion in terms of
spectral densities:

The actual resolution of Eq. (15) has been carried out
in detail by Anderson and Morel. ' They showed in
particular how to eliminate the energy dependence of
the potential V(k—k') by a suitable transformation of
this equation. We shall not be concerned here with such
refinements and simply take V as independent of the
moduli of k and k'. This approximation has, however,
the disadvantage of introducing an artificial divergence
into the initially convergent Eq. (15). In order to re-
move this divergence, we shall cut o8 the integral at
a fixed energy of the order of the Fermi energy. If we
are allowed to make this approximation, V(k—k') can
be considered as function of the angle between k and k'
which we expand in series of spherical harmonics. In
the case of helium-3 we retain only the term l=2.
Finally, we replace the integration over k' by an inte-
gration over the corresponding quasi-particle energy:

Then,

ek =Sup(k —kp). (17)

en=+i
C(k)=A'pV Q Vc~(k)

where Yc (k) is a shorthand notation for Fc (H, pp);
k is the unit vector parallel to k. Using the solution
derived in reference (5), we estimate from (18) the value
of the angular average 6 of the gap C(k):

6= 2e pD exp( —1/Xp V). (19)

D is a form factor which depends upon the particular
configuration considered. For the ground state configu-
ration of helium-3, Anderson and Morel find D=3.17.
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BMN Model

SQ

A ~——A ~'"'+-
7l (G7&eg) +Fy

(20)

the first term on the right-hand side corresponding to
the incoherent background and the second to the quasi-
particle peak (the latter occurs in A+ if e~) 0 or in A
if e~(0). Since we are mainly interested in the lifetime
eQect, we shall use a model spectral density in which
we neglect the incoherent part and, therefore, take
SQ —1

1 Fk

m (coW eg)'+1'k'

Hence Lwith the help of (12))

(21)

Actually, the approximation (13) neglects two major
effects. Firstly, in addition to the coherent quasi-
particle peak, A~ has a continuous background corre-
sponding to the simultaneous excitation of several
quasi-particles. The strength of the peak is therefore
reduced from one to some smaller value sg. Secondly,
the quasi-particle peak has a finite width 2F~ corre-
sponding to a pole at a finite distance iFL from the real
axis; this broadening clearly describes the damping of
the quasi-particle. We should, therefore, use instead
of (13):

particles is simply to reduce the magnitude of the energy
gap by the factor A/e&. We suspect that the same efFect
obtains for the transition temperature although one
cannot conclude positively from the present theory
valid only at absolute zero temperature.

~- =(2&+1)( /~) (26)

The required ensemble average is then carried out auto-
matically by summing over all 1 &. Since the relations

(5) to (10) of the previous section have been derived by
straightforward diagram counting, they obtain also in
the present formalism, and particularly,

III. CONDENSED STATE OF A NONIDEAL FERMI
FLUID AT FINITE TEMPERATURE

We shall follow here the diagrammatic approach
developed by Luttinger and Ward" and use the same
notation as much as possible. The gist of the finite
temperature "propagator" formalism lies in the possi-
bility of generalizing Wick's theorem for a "temperature
variable" u allowed to vary from —P to +P (P= 1/kT)
and playing the role of an imaginary time variable.
Accordingly, all (geometrical) relations derived by mean
of diagram analysis at absolute zero temperature obtain
also in this new formalism provided that it is replaced
by I and the continuous frequency cv by the discrete
variable f which takes the values

G„(k,(v) =1/(eg —cv —ir„) if a))0
= 1/(eg —(u+iI'k) if co(0.

~(k,f ~) =C(k)/LG. (k,f ~)-'Ã-(k, -i ~))-'+
l
C(k) I'.

(22) (27)

Equation (15) is then replaced by

C(k') 2 E~ — d'k'
C(k) = V(k —k') —tan ' . (23)

2Eg -vr I'g (2 )'

The effect of the bracketed factor which appears in the
integrand is, quite properly, to cut off the integral when
the imaginary part FI, of the frequency associated with
the quasi-particle k reaches the same magnitude as the
real part E),. It is well known that F~ is a quadratic
function of e~ (at T=O'K):

F'~ = e~'/&, (24)

where we introduce a parameter A which measures the
amount of scattering. We can solve (23) in the same
fashion as (15), the only difference appearing in the
energy integral. A numerical computation shows how-
ever that

2 h) de 2A
—tan —' —

~

=ln +— +O(C3/A3).
e )Le'+(C(')' [C[

Thus, we 6nally obtain the expression for the average
gap:

6=2AD51+0 186/A) exp( —1/No V). (25)

Apart from the bracketed factor (which is practically
equal to one), the effect of the finite lifetime of the quasi-

Now
l'=+oo

C(k) =-
P(2~)' &'=—~

d'O' V(k —k')F (k', l p). (28)

Luttinger has shown" that the "temperature propa-
gator" G„(f) in the normal fluid can be expressed in
terms of a Lehmann expansion, just like the usual time
propagator G„(co): +"A (k,x)

dS~ (29)G. (k,l-)=

where A is the spectral density. At zero-temperature,
A reduces to A+, if x&0 and A, if x&0. As in the
previous section, we shall use a model spectral density
instead of the exact density A(k, x). The simplest ap-
proximation (Hartree approximation) is to take the
spectral density as a delta function, thereby obtaining

Go(ks) = 1/("—f). (30)

This approximation leads of course to the usual BCS
equation, as we shall briefly demonstrate below. Carry-
ing (30) into (27) and (28), we obtain indeed:

d'k' C(k')
C(k) = V (k—k')

(2~)' 2EQ~

1+~ e""~ e&"i

X-P + ~, (31)
P ~ &~ ii &~+pi—&
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used to find (see Appendix 8)

ll
FIG. 2. Plot of the cutoff function g vs energy and

temperature Lsee Kq. (36) of the text j.

where e&& is a convergence factor which we shall make
equal to one at the end of the derivation. Using a result
quoted in reference 12 (Appendix), we see that the sum

over all 1 is just

g(Ek, T) = (2/'ir) tan '(Ez/Iz)+O(C'/A')
(Eg)kT). (38)

It is reasonable that we should find the same cutoff
factor as for T=O'K since the effect of the Qnite lifetime
is significant only for particle energies much larger than
kT.. We have plotted the variation of this function g
vs energy and temperature in Fig. 2; note that the
effects of the thermodynamic average and of the finite
lifetime are well separated, at least in the weak-coupling
limit. The equation for the transition temperature T,
is a special case of (36):

f+(Eg )—f (Eg )= tanh(PEg /2), (32)
1=1VpV g(s, T,)—, (39)

as expected.
Following now BMN's method, let us introduce the

model spectral density,

1
A (k,x) =—

m- [x—eg7'+ I'„'(T)
(33)

Note that this expression correctly reduces to (24) in
the low-temperature limit. From (29) and (33), we de-

rive the expression for the "temperature propagator" in
the normal Quid:

G (k,f') = 1/(sg f il'i, ) —if Im| )0

= 1/(ej, —g+ii'g) if Imp (0. (35)

Finally, we derive from (28) and (35) the generalized

gap equation at finite temperature:

d'k' C (k')
V(k —k') g(Ek. ,T),

(2m-)' 2'&

2~( 1
g(E.,T)=- Zl +

p ~~ kE„—i,—iI'z Er+f i+iI'x

(36)

The latter expression cannot be computed exactly; we

can, however, consider limiting cases and firstly the
limit Ek«kT. We see from (34) that I'~ is much smaller
than m/P and a fortiori all f'i. In other words, the life-

time is long enough in the low-energy limit to permit
the use of the Hartree approximation: g(E~, T), there-

fore, reduces to (32). In the high-energy limit, on the
other hand, an approximate summation method can be

Here, I'& is proportional to the decay probability of the
quasi-particle k at the finite temperature T (different
from the decay probability at T=O'K on account of
the different statistical distribution). From Appendix A,
we have

1 m'+(pep)'
I'p(T) =

AP' 1+e

the explicit solution of which is approximately (weak-
coupling limit):

kT, 1.105'. exp( —1/XpV). (40)

This last result together with (25) finally demonstrates
that the effect of the finite lifetime of the quasi-particles
can be adequately described by a cutoff A. limiting the
domain of the useful transitions. One problem remains,
however: how to relate this parameter pertaining to the
microscopic theory, to the experimental data obtained
from macroscopic measurements.

IV. EVALUATION OF THE SCATTERING PROBABILITY

We have found in the previous sections that all
physical properties of a condensed Fermi Quid can be
expressed in terms of only two parameters: the strength
SpV of the interaction which binds the pairs and the
cutoff A. which measures the amount of scattering. How-
ever, estimating these parameters from the known
experimental data is not straightforward and conse-
quently, their accepted values are subject to some un-
certainty. Much attention and sizable computational
efforts have been devoted to the calculation of SpV.
We shall use here the value given by Emery and
Sessler,

exp( —1/Xp V)~1/40.

On the other hand, little is known about the scattering
probability and the corresponding decay rate of the
quasi-particle excitations of liquid helium-3. We shall
presently, analyze this decay probability in the frame-
work of I.andau's theory of Fermi liquids. "

There are many processes which may produce the
decay of a single quasi-particle excitation into several
excitations of lower energies but, on account of the
phase space available, the most probable process in the
low-energy limit is the creation of one particle-hole pair
(Fig. 3). This scattering process has been studied in
great detail by Abrikosov and Khalatnikov'4; we shall
follow their analysis and use the same notation as much
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as possible. The decay probability of a quasi-particle
of momentum pi (pi ——Ak, ) and spin oi by creating one
particle-hole pair. is also the collision probability with
a second particle y2, cr2, the two particles ending up in

y1', o.1 and y2', 0-2. Consequently,

Xf~(1—fi') (1—f~')5(e,+e,—e,' —e,')

Pro. 3.Diagram of the most probable collision process producing
the decay of a single quasi-particle excitation of the system. The
lines representing the initial and Anal particles bear no resemblance
to the actual disposition of the momenta in the reciprocal space.

X&(pl+p2 pl p2)d p2d pl d p2 )1 (42)

where W is the scattering probability, f, is the Fermi
distribution f(e;), and the two delta-functions enforce
the conservation of energy and momentum. When 0-2 is
antiparallel to 0-1, the summation over p2, p1', and p2'

must be extended over the whole momentum space. If
o-2 is parallel to 0-1, on the other hand, the final state is
unchanged by permutation of y1' and y2' as the particles
are undistinguishable. The integration over p2 should

therefore, be restricted to one half of the momentum
space. We shall find it more convenient to integrate
over the whole momentum space in both cases and write
the suitable factor 2' into the spin sum. Let us then
define

integration and obtain, after a slight change of nota-
tion involving the renaming of the energy variable

62 + 6lj 61 ~ 62j 62 ~ 63

m*3-

8$ 8n.45' cos(y/2)

X8(e ei e2 es)deide2dE3(4'5)

The bracketed expression is to be averaged over the
whole sphere; in the constant m approximation, this
average is simply 2z. The energy integration can be
done as we see from Appendix A. Comparing this rela-
tion (45) with (Al), we see that

2w= Wtg+-', lFt t. (43)

Bt, (2~5) ' .
ief2(1 f2 ) (1 f2 )5(el+e2 —ei —e2 )

We have introduced a factor 2 on the left-hand side,
in order to fit our definition of the function zv with the
notation of AK. The relation (42) becomes

I'g.
16m-'h' cos(x/2)

(46)

On the other hand, we can also compute the initial

decay rate of the quasi-particle k in the Green's func-

tion formalism. Let us add this quasi-particle to the
ground state at the time 3=0 and compute the prob-
ability of finding it again at a later time I,:

X&(pi+ p2 pl p2 )d p2d pl'd'p2', (44) &k(~) (9 0] ek(0)ek (~)ek(~)ek'(0)
] v 0)=

f G(k, &)
f

'. (47)

i.e., identical to Abrikosov and Khalatnikov s equation
(AK 7.8). Here, w is now a function of the angular
variables only: angle x between the momenta of the
incident particles and angle q of the planes p1p2 and
p1'p2'. This scattering probability or at least the forward
scattering probability (q =0) are closely related to the
quantities which appear in the Landau's theory and
can, in principle, be derived from the thermodynamic
properties of the Quid. We shall, however, postpone the
discussion of this matter to Appendix C and state
immediately the conclusion reached there: the available
experimental data are not su%cient to give any precise
information about the function w(x, p) beyond the
zeroth order approximation, i.e., the isotropic x ap-
proximation. We can estimate this constant m from
first principles (i.e. , molar density, effective mass, and
speed of sound data) using Landau's theory (see Ap-
pendix C). Proceeding then as AK, we do the angular

We can easily derive the expression of G(k, t) from the
spectral density (21), using the usual representation
for positive time:

G(k, t) = i A~(k, u))e '"'da& e '&'k "k" (48)

The initial decay rate is, therefore, also given by

1 m*3

52m'fi'-cos(x/2)-, &

12.17'Ã

16po'
(50)

Bnk/Bt = —2rk/A.

The relations (46) and (49) provide us with a convenient

bridge between the Green's function formalism and
Landau's theory. Using the expression (C11) for the
collision probability, we obtain finally,
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Using the most recent data on the specific heat' and
the molar volume" "we compute a value of the cuto6
of the order of 1.5'K, i.e., about one-half of the Fermi
energy.

We could also estimate m from physical properties
which are intimately dependent upon scattering such
as thermal coI:ductivity, viscosity, self-diffusion. In-
deed, the expressions of these quantities' involve vari-
ous angular averages of the scattering probability with
different weights. Since the angular average which
appears in the expression for the thermal conductivity
K is reasonably similar to that of Eq. (50), we feel that
the actual dependence of m upon the angular variables

x and q does not matter much and that a reliable esti-
mate of A can be derived from the experimental value
of E even though zv has to be approximated by a con-
stant. It is very gratifying to find 4~1.6'K, in good
agreement with the value computed from first principles.

It is reasonable that A should be of the same order
of magnitude as the Fermi energy, for a much smaller

cutoff would indicate a very strong interaction which

wouM be very unlikely in the case of a liquid because
the equilibrium density is usually such as to balance
the kinetic and potential energies. Thus, the Fermi

energy ep is essentially the only characteristic energy
of the problem. We should also remark that, in view of
A. being a sizable fraction of eg, we were not allowed to
neglect the energy dependence of the potential V(k —k').
This approximation had the eGect of overestimating V
for large excitation energies. This error can be corrected

by reducing somewhat the estimated cutoff, possibly to
a value of the order of 1'K instead of 1.5'K. Considering
this difhculty, we think that our result would account
for a transition temperature T, in the range 0.02 to
0.03'K. However, the effect of the finite lifetimes of the
quasi-particles cannot, in our opinion, account for the
much lower T, suggested by the absence of an observed
condensation above 0.008'K; any discrepancy between
the predicted T, and the experimental data should then
be ascribed to the estimated value of NOV.
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APPENDIX A

The object of this Appendix is to compute the follow-

ing integral:

(A2)

The right-hand side of (A. 1) is then the product of three
identical factors:

+oo ~(P+it) z

dx=
1+ee' P sinh(m t/P)

(A3)

This last result has been obtained by a straightforward
integration in the complex plane. Now

e—iet
)' dt

(A4)
p sinh(~t/p)i 2~

gran

The integrand has an infinite series of triple poles

t„=imp. (A5)

Some care must be exercised to find the corresponding
residues

g — +es ( 1)nene~

2 2
(A6)

A final integration in the complex t plane gives then:

2s-~ 1
&(e)= ——Q & =——+e'

~

(1+e ~') (A7)
A~=o A Ps j

Note that this expression properly reduces to e'/h. in

the low-temperature limit (e))kT), as can be seen

directly from (A1).

APPENDIX 8

The object of this Appendix is to evaluate, in the
limit E))kT, the function g(R) introduced in Sec. III:

4E ~ 1

P ~~ Es+L(2t+1)~/P+P7s
(B1)

Let us first prove the following lemma.
Lemma. If f(x) is a continuous function decreasing

monotonically from a 6nite value f(0) for x=0 to zero

2
P(e) =—

t 1—f(e~)7L1—f«s)721 —f(es)7
A

X 5 (e—eg —es —e,)de,desde„(A1)

where f is the Fermi distribution. In order not to spoil
the symmetry of this expression, we shall replace the
delta-function by its Fourier transform
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at infinity, then,

Z f(~+2)= f(x)dx+ f'(0)
4X3!

f/// (0)+
48X5!

(82)

Restricting our attention to the special case of forward
scattering without spin exchange (pp=o), we see that
these collision amplitudes are related to the interaction
energy of the quasi-particles f„(k,k') introduced by
Landau (see AK, Appendix A). Both A„(x,o) and

f (x) can be decomposed into symmetrical and anti-
symmetrical parts according to

Let us expand f(x) in Taylor's series near x= Arr(x, o) =A'(x, o)+A (x,o),

A&&(x,O) =A (x,O) —A (&,0),
(C2)

f(x)dx=f(l)+ f"(l)+ f' (l)+ . (83)
4X3! 16X5! fr 2(x) = f'(x)+f'(x),

f»(x) = f'(x) f'(x)-.
(C3)

Adding the corresponding equations for the intervals
1—2, 2—3, etc. , we obtain, therefore, Let us further expand these four functions A', A', f',

and f in series oi Legendre polynomials:

2 f(~+l) =
lm

OQ
00

f(x)dx — Q f"(1+,')-
4X3!&~ A (x,o)=g Ai'Pz(cosx), etc.

l=p
(c4)

1—Z f' (~+2) (84)
16XS!l=o

Repeating the same process for the sum of the second
derivatives, and then for the sum of the fourth deriva-
tives, etc. , one does indeed obtain (8.2). Moreover, if
the function f(x) is smooth, i.e., decreases gently and
regularly, one sees that the second and higher order
terms of (8.2) are quite small.

Now, the function
0!l'=

1+p i*/(2~+1)
(C6)

and introduce instead of the coe%cients A', etc. , the
dimensionless quantities

ni'= A i'(m*p /2r2/242) q 2' fi'(m*p——/2r252), etc. (C5)

Then, the relation between A and f can be expressed in
the following fashion

l
see AK, Eqs. (A2. 14)$:

a(E) =
420

(85)
2r2 /=p (p2E'/42r')+L(pr/22r) jr+-'2j'

Q l
1+p i /(2~+1)

APPENDIX C

We wish here to analyze the collision probability m

in further detail and relate it to the Landau theory of
Fermi liquids. The collision probabilities vega or zvgg for
two particles with parallel or antiparallel spins can be
expressed in terms of the corresponding diffusion
amplitudes:

~- =(2~/&) lA- (x,p) l'. (C1)

fulfills exactly these conditions in the limit we are con-
sidering. Then,

2 f E 22r EF
g (E)= tan —

'l ———

2r k F 3p' (E2+1'2)2

142r' EI'(E2—F2)
+ (86)

15P4 (E2+@2)4

For a typical value PA= 100 (weak coupling), we find
that the combined correction due to the second and
third terms of (86) does not exceed 0.002 in a range
where the first term varies from 0.98 to zero. It is,
therefore, permissible to retain only the first term.

ppp' ——(3mm*l'/pp') —1,

p i' ——(m*/m) —1,

//pp
= (eh/me) 2(m*pp/42r2A'Xir) 1. —

Using the most recent data, ' " ' "we find then,

~ s 9

~s 54

q p
———0.71.

(c7)

(C8)

"W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev.
Letters 7, 299 (1961).

"H. L. Laquer, S. G. Sydoriak, and T. R. Roberts, Phys. Rev.
113,417 i1959).

'3 A. C. Anderson, W. Reese, R. J. Sarwinski, and J. C.
Wheatley, Phys. Rev. Letters 7, 220 (1961).

These relations give us the means to compute the for-
ward collision amplitudes, provided we are able to esti-
mate the coefficients fi' and fi from the experimental
data. However, only three among these coefFicients can
be reached experimentally. From AK's equations (5.8)
and (9.9) we see that pp', q i', and q p' can be expressed
in terms of the effective mass m*, the velocity of sound
u, and the magnetic susceptiblity X~'.
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Hence,
np'=0. 9,

o,j'= 1.92,

ap'= —2.41.

(C9)

Actually, the important quantities are 3&& and 2&&,
rather than 3' and A'. Their mean values averaged on

the sphere are, in reduced units:

npg g
= —1.51,

0.'pf g =3.31.
(C10)

Note that the collision amplitude is larger for anti-

parallel spins than for parallel spins; this is quite reason-

able since the exchange correlation is expected to reduce
the effective interaction in the latter case. In view of
the importance of ap, it does not seem reasonable

to include the first-order term ni', when we do not
know e~ .'4 We are, thus, led to assume a constant
forward diffusion amplitude A(x,0). At this stage, we

may as well proceed and assume that A(x, p) is constant
and equal to the average value for q =0.

'4 A slightly diferent view has been taken by D. Hone, Phys.
Rev. 125, 1494 (1962).This author estimates n~ from the known
values of Lip, Ap and a1' by requiring that the scattering amplitude
vanish for parallel spins and 0=0. However, the y dependence is
still completely unknown.

With the help of Eqs. (43), (C1), and (CS) and the
experimental values (C10), we obtain then,

E(erg/cm sec'K) =48/T,

q(poise) = 1.2X10 '/T'
D(cm'/sec) =5.9X 10 '/T'.

(C12)

These theoretical values compare reasonably well with
the experimental data" ""

X=51/T,
g=2 SX10 '/T'

D = 1.54X 10-s/Ts.
(C13)

The theoretical value of the viscosity is too small and
the value of the self-diffusion coefficient too large, but
the discrepancies are well within the range of error we

may expect from our crude approximation (in fact, one
shouM even try to infer from these results a qualitative
behavior of the function tt(x, &p)). The most reliable
result seems to be the thermal conductivity which we

use in the body of the paper.

"A. C. Anderson, G. L. Salinger, and J. C. Wheatley, Phys.
Rev. Letters 6, 443 (1961l.

(C11)

Inserting this result into the expressions for the thermal
conductivity, K, the viscosity p and the coefFicient of
self-diffusion D "we get


