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Use is made of the accidental degeneracy of the energy levels in a Coulomb potential to construct a
correlated wave function for a system of # particles in this potential.

N the atomic and nuclear shell models one considers

a system of particles moving in a common potential

and interacting through two-body interactions. As the

problem cannot be solved exactly, the customary pro-

cedure is to start from a system of independent particles

in the common potential and consider the interactions
through perturbation or variational techniques.

If the common potential is of the Coulomb type, the
negative energy levels have an accidental degeneracy
due to the invariance of the problem with respect to a
four-dimensional rotation! group (Rj). In this paper we
shall make use of this invariance to find a set of integrals
of motion for particles in a Coulomb field that diago-
nalize a certain type of interaction. We shall also obtain
the exact eigenfunctions associated with these integrals
of motion and so have a new starting point for atomic
shell theory calculations.

We begin by briefly reviewing some well-known! con-
siderations on the Coulomb potential which have been
recently summarized by Biedenharn.?

The Hamiltonian

H=(p*/2m)—(Z&/), ¢))

commutes with the angular momentum L’ and the
Runge-Lenz? vector A’ defined by

L'=rXp, A'=2Zem)'(L'Xp—pXL)+rir. (2a,b)
From (2b) we obtain

A'XA'=i[—2h(Z%'m) ' H L, 3)
so that defining

A=[—22(Z2em)"HIA, L=i"L' (4
we get

AXA=il, [L,A;j]l=1ie;;sAx, LXL=:L. (5)
From the commutation relations (5) we see that the
components of L, A could be considered as the operators
associated with the six infinitesimal rotations in a four-
dimensional space.?

The linear combinations

M=3(L+4), N=}(L—A) ©)
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will be particularly useful as they satisfy the commuta-
tion relations

[M,N]=[HM]=[H,N]=0,
MXM=iM, NXN=iN. (7)

Furthermore, from (4) and (6) we have

2(M24-N2) 1= L2 A2 1= — Z2tm (22H)

M:—N°=L-A. (82,b)

Now let us pass to the problem of # particles in a
Coulomb potential. We shall indicate by H,, M, N, L,
the operators given above when associated with particle
s=1, 2, -+ -n, and define the operators

H»= zp: H,, M®»= Zﬂ M, N@»= Zp: N,,
s=1 s=1 s=1
Lo =M®--N®, (9)

where p=1,2, - -+, n.
From (9) we construct the following set of scalar
operators:

HO (MO (NOY, ... H® (M®)2 (N2 ...
e, (M@), (N@). - (10)

Each triplet of operators H»  (M®)2 (N®)2 commute
because of (7). Furthermore, as M(? for ¢>p is

M@=M®»- Zq M,,

s=p+1

(11)

we see that M(© commutes with the operators of index
# in (10) as the second part in (11) contains only opera-
tors of particles s=p+1, - - -, ¢. Therefore (M(?)2 [and
by the same reasoning (N(9)? H(9] commutes with all
operators of index p<g¢, and so all operators (10)
commute.

Two operators in (10) (M®)2, (N®)2 are not inde-
pendent as from (2) L-A=0 for a single particle, so
from (8b) (M®)2= (N®)2 and both are related with
H® by (8a). We take them out of (10) and replace them
by (L™)?, L, that commute with all scalar operators.

We obtained then 3%z commuting operators of which
H™, the Hamiltonian of # particles in a Coulomb field,
is one. We have therefore a set of integrals of motion for
this problem different from the independent-particle
set H,, L2, L,.. The set of integrals of motion of the
previous paragraph diagonalizes a symmetric scalar
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interaction of the form
V= fLLM)z, (Mm)2, (N@)], (12)

where fis an arbitrary function. From the commutation
relations (5) and (7) the eigenvalues v of this interaction
will be

v=fIAW A1), w0 (1), »® (1) ],

with A 2u( 2y restricted to integer values.

We shall refer to the eigenfunctions of the integrals of
motion (10) that have a definite total angular momen-
tum as correlated wave functions. To find them we only
need the coefficients with whose help we could transform
an eigenfunction of the operators

M127 lea L127 Lzl; M22, N22, L22, L;g
into an eigenfunction of the operators

My, N2, M2, N2y (M®)2, (N®)2, (L®)2, L,®. (14b)

(13)

(14a)

| p1pa,u@ @A Dy @)y= 3" 3"

A1y Aemg

M1
X1
A1

where (|) is an ordinary Wigner coefficient and { } is a
9-7 coefficient.

In a similar way, by adding a particle at a time, we
could construct the n-particle correlated wave function,
which could be given afterwards any desired symmetry
characterization; e.g., it could be antisymmetrized if the
spin part of the wave function has all spins up.

We could then use correlated wave functions as a
starting point in atomic shell-model calculations. The
author does not know how advantageous this starting
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These coefficients will be the Wigner coefficients of the
R, group obtained by Biedenharn? which can essentially
be given in terms of 9-j coefficients, as, from (7) and (9),
passing from (14a) to (14b) is a problem in the re-
coupling of angular momenta.?

As anillustration we shall give the explicit form of the
correlated wave function for a system of two particles.
For a single particle M2=N? and so the corresponding
eigenvalues are equal, i.e., u=». We can then denote the
single-particle ket as

| wpdm)= Ry 1 A (1) Vrm (0, 00), (15)
where ¥ is a spherical harmonic and ® is the radial wave
function for a particle in a Coulomb field of charge —Ze
and total quantum number 2u-+1. If we now designate
with the indices 1, 2 the kets (15) for particles 1, 2, the
two-particle correlated wave function takes the form

{[(2)\1-}— 1) (20+1) (2u®@+1) (2yD4-1) 2

pe pu®

uy ¥® (Al)\gmlm2])\(2)m(2)>|#1#1>\1m1>!u2u27\2m2>}, (16)

A A®

point is for realistic electron interactions, but he would
like to point out that an equivalent problem to the one
discussed here, for the three-dimensional harmonic
oscillator, has contributed to our understanding of
nuclear collective motions from the standpoint of the
nuclear shell model.%5
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