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We define particles or resonances which do not correspond to the usual Breit-Wigner type poles in the
partial wave amplitudes. They are described in terms of the trajectory of the poles of the S matrix in the
complex angular-momentum plane as a function of energy, when this trajectory does not quite reach a
physical value of J.Range and scattering parameters are used to determine the trajectories near the thresh-

old, which in turn are related to high-energy cross sections for processes in which these particles are ex-

changed in the cross channels. The trajectories for the two definitely known examples, namely the I=o,
~-m, S-wave "virtual state", and the single n-p S-wave "virtual state", as well as the triplet e-p trajectory,
are determined.

' 'N this note we use Regge's continuation to complex
~ ~ angular momentum'' in order to define and de-
scribe particles or resonances that do not correspond to
a usual Breit-Wigner type pole of the partial wave
amplitudes. From the point of view of the analytic
structure of the S matrix regarded as a simultaneous
function of angular momentum and energy, however,
there is only a quantitative difference between these
and ordinary particles. There are at least two definite
examples of such resonances, namely, the I=O, x-m.,
S-wave "virtua, l state'" and the well-known singlet tt-p,
S-wave "virtual state, "4 both near the threshold. The
general situation is described here, which is valid for
any value of angular momentum and energy, and it is
suggested that some of the higher spin resonances
recently observed in strong interactions might belong
to this category. Furthermore, we determine the con-
nection between range and scattering parameters and
the trajectory in the complex angular-momentum plane
of poles of the S matrix that corresponds to virtual
particles. This trajectory in turn is related to high-
energy cross sections for processes in which these
particles are exchanged in the cross channel. ' '

Our considerations are based on the fact that the
total two-body elastic-scattering amplitude can be
written, using a Watson-Sommerfeld transformation
in the complex / plane, ' as a sum of—in general few-
pole terms plus a regular remainder. The pole terms
control the asymptotic behavior of the amplitude, and
also the bound states and resonances in the partial wave
amplitudes. One can thus separate explicitly the
singular parts of the amplitudes. This procedure is a

substitute for the use of subtractions in the dispersion
relations. For a given set of quantum numbers, the
poles are separated by more than one unit of angular
momentum. Therefore, in the vicinity of a bound state
or resonance, the total amplitude may be approximated

by a Regge-pole term of the form'

A(q, cosg) =P(q)P lo&(
—cos0)/sinscr(q), (1)

where n(q) is the position of the pole of the S matrix in
the complex / plane as a function of the center of
mass momentum q. The partial wave projections of
Eq. (1) are

~ (q, i) = (1/w)P(q)/lL~(q) —GL~(q)+i+13), (2)

which clearly shows the pole in the I plane at l=u(q).
For q'(0, n(q) is a real and increasing function of q;
for q') 0, n(q) has a positive imaginary part.

We first discuss the threshold behavior of cr(q). It
will be shown that the behavior of phase shifts near
threshold is consistent with a square-root singularity
of n(q') at q'=0. Therefore, near q'=0, n(q') can be
written~

~(q) =~~(0)+(—q')'(~./~q)o+-'(d'~~/~q')sq' (3)

Thus, for small q'&0, the imaginary and real parts of n

are given, respectively, by

&r=q(dctr/&q) o

ntr ——ct tg (0)+-,' (d'ntt/dq') pq'.

These expressions have also been verified numerically
and for the triplet rt-p scattering and give exactly the
deuteron binding energy in terms of the scattering
parameters. ' Once the three parameters in Eq. (3) are
determined, the behavior of al/ partial wave amplitudes
due to the pole term (1) and near q'=0 are obtained by
inserting Eqs. (4) into Eq. (2). We do not write the
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FIG. 1. Trajectory of the
Regge poles near threshold.
The real part of n is plotted
against (a) s=4(q'+1) in the
case of I=0, for a ~-7(- virtual
particle, and (b) q' in the case
of n-p singlet and triplet poles.
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TABLE I. Parameters of the Regge poles a=o.'(q') near threshold
q'=0. Above threshold the imaginary part of n behaves as
nr= (dna/dq)oq, and the real part as no=no(P)+2(dsnR/dqs)oqs
The residue of the pole is essentially given by P(0), and a(s=0)
will determine the power of. the total cross section in the crossed
channels.

q2/rn~
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general expression here, but if l=0 and we have
q'(d'ntr/dq') p((1, we obtain

A (q, /0)=(P/tr)//n (t0t)+ qc'+iq(d rn/dq) ]o, (5)

where c= s (d ntt/dq ) p (dnr/—dq) p . Equation (5) is
precisely the amplitude corresponding to the eRective-
range approximation q cotta= a '+rq'/2, and we obtain
by comparison

La~(0)/(dnr/dq) pl = 1/a, —
P(0)/ntr(0) = atr,

(d'n~/dq') p/(«r/dq) o 2(dnr/dq) —o= r. —
If we neglect the curvature (d'n~/dq')p for the time
being, we And

(dnr/dq) p r/2;——
n~(0) = —

s (r/a) ' (6)

p(o) = —( /2)r,

where a is the scattering length and r is the eRective
range.

We give now a quite independent calculation of the
parameters of Eq. (6), using the range of the forces
involved. If we take as a model a short-range potential,
a square well of range r p and strength Vp ——(tr/2 —e)'/r p'

not quite strong enough to make an S-wave bound
state, the position of the pole in the l plane is given by
ntt(0) ——pre/4. The scattering length a is related to e

by a=2ro/tre Hence w. e have

n~(0) = „'rp/a;—-
(dnr/dq) o= „'ro, -

p(o) = —( /2)ro

The two estimates agree roughly. Their difference gives
us the curvature of the trajectory

(d' /dq') o= 'ro( o/2 r). -—
Both for singlet and triplet tt-p Regge poles as well as
for the I=0, m-m pole, the curvature as determined from
the effective range formula is negative, i.e., the trajec-
tories turn at the threshold. This behavior expresses the
fact that there are no S-wave resonances without an
8-wave bound state. For trajectories near l=1 (or

a Evaluated from Eq. (7) on the basis of a scattering length @=2m~ 1

(see reference 2) and an assumed range ro=r =-',m '. Here cr(s=0) is
evaluated from Eq. (9), s =4(q~+1).

b Evaluated from range and scattering parameters fitted by a square-well
potential (see reference 3). For the triplet state, the approximate expression
for the position of the trajectory at the threshold is az(q=0) =(&)Ba&ro,
where Ba is the binding energy and ro the range of the forces (see reference
7). The calculations for this case are nonrelativistic.

higher), the situation is different. Here we can have a
I'-wave resonance without a I'-wave bound state, and
in this case we expect the curvature to be positive. The
real part of o. as a function of s or q' is shown in Fig. i,
and the parameters are given in Table I. It is important
to note that the parameters of the cusp depend only on
the range of the forces and not on scattering length.
Below the threshold, q' is less than zero, and n(q) is real
and is given by7

n—=nB(q) = nB(0) —( q') *(«r/—dq) p+ s (d'n&/dq') oq' (9)

This expression allows us to extrapolate 0, to the point
s= 0 or q'= rN ' in the case of the tr-tr, I=0 pole (or the
so-called ABC pole). The quantity ng]3Q(s=0) is also
shown in Table I. The exchange of the I=O, x-m system
in the crossed channel results in a total cross section in
the forward direction which varies as E &' (0)', where
E is the laboratory energy. ' '

Using the above method, we can also discuss the
threshold behavior of a Regge trajectory very close to
an integer l. Again, if we assume that the single pole
dominates the lth partial wave in question, we can
compare the amplitude (2) with that corresponding to
the effective-range formula q"+' cos5= a '+rq'/2. Then
near q'=0 we 6nd that'

ntt =ntt(0)+Aq',
Pq2 i+1

or
(0)+g ( qs) (2t+1) /2++ q2

This discontinuity is superimposed upon a generally
smooth trajectory at the threshold.

Ke now discuss the general situation where a reson-
ance is observed without the trajectory of the pole
crossing an integer value of l or J. First, the threshold
can occur, in principle, close to an integer l/0. This
case may be expected to be qualitatively the same as
the case l=0 discussed above. More interesting is the
following situation. In the case of resonances, the
function ntt (E) is an increasing function of E even above
the threshold, except possibly for a small cusp at the
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threshold. When n~(E) becomes equal to an integer,
Eq. (2) gives a Breit-Wigner resonance if n&(E) is
assumed to vary linearly with E locally near E„.' We
consider the case where the nz(E) curve turns very
close to a physical integer. ' In this case the expansion
of rrg(E) is of the form

~a(E) =~~(E.)+k(E—E.)'(d'~~/dE')+ ". (1o)

The partial wave amplitude is given by

(2/m)P(E)/t (2l+1) (d'Qrr/dE') j2 (E,l) (11)
(E—E„)'+i(F/2)+C

where F/2=2nr/(d'n~/dE')0, and C is a very small

'If exchange potential is assumed, only alternate values of l
give physical resonances.

constant. This amplitude corresponds to two energy
poles E=E„W(F&/2)(1—i). Therefore, if in Eq. (11) a
single-pole term is taken literally as the total amplitude,
one obtains a resonance cross section that is approxi-
rnately given by 1/P(E —E„)'+(F/2)'j. If we take one
of the energy poles only, the resonance shape becomes
1/L(E —E,—F~/2)'+F/4). Such a resonance can be of
importance only if the curvature at the turning point
is small. No examples of resonances of this type are
known at present. At any rate, the virtual particles,
although somewhat different in character, are special
manifestations of the poles of the S matrix in the
complex angular-momentum plane.
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The long-range scalar Geld, associated with a neutral, massless, boson, has been generally considered to
be nonexistent. This belief is based on the lack of overt sects, observed in the laboratory, from such a Geld.
It is shown that if this long-range interaction were to exist, it would of necessity be weak. The physical
reason for this is the large contribution, having its origin in the enormous amount of matter at great distance
in the universe, to the magnitude of the scalar. By comparison, the contribution of local matter is miniscule,
leading to a weak interaction of about the same strength as gravitation. Furthermore, it is shown that such
an interaction, in its eGects, would be very similar to gravitation and could be distinguished only with di%-
culty. It is concluded that there is not yet a compelling observation which could be used to exclude the
long-range scalar interaction.

'HE neutral, massless, boson fields play a uniquely
important role in the universe. They are the

sources of the quasi-static long-range interactions by
which distant parts of the universe make their presence
felt in the laboratory. If it be assumed that nature
abhors a Geld more complicated than tensor, i.e., an
elementary particle spin greater than 2, then only three
types of Gelds require consideration, scalar, vector, and
tensor.

Examples of vector and tensor fields are known, in the
form of electromagnetism and gravitation. While elec-
tromagnetism apparently plays an important role in the
dynamics of the galaxy, there is little reason to believe
that, aside from radiation effects it is important for
cosmology. In fact, with the usual assumption that the
universe is uniform and isotropic when averaged over
large volumes, the average electric charge density must
be zero, for the isotropy of space requires the vanishing

*This research was, in part, supported by the U. S. Atomic
Energy Commission and the Once of Naval Research.

of electric and magnetic fields, implying in turn the
vanishing of average charge and current densities.

The metric tensor field associated with inertial and
and gravitational forces is presumably an instrument
through which the mass distribution of the universe
makes its presence felt in the laboratory. It is presumed
that, in accordance with Mach's Principle, the local
inertial coordinate systems are determined by the mass
distribution of the universe. However, the appropriate
boundary conditions upon the metric field, which would
exhibit generally this unique dependence upon the mass
distribution, have not yet been formulated. According
to general relativity this is the sole local inQuence of
distant matter, and, in accordance with the equivalence
principle, in a freely falling, nonrotating laboratory
there are no observable gravitational eGects having
their origin in distant matter (aside from, generally
weak, tidal effects).

If one were to have some small faith in the proposition
that nature is not capricious, that the physical world is


