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Plural Scattering of 20-kev Electrons in Aluminum
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The angular and energy distribution of 20-kev electrons, scat-
tered at very small angles ((10 ' rad) by transmission through
aluminum foils, are compared with the theory of plural inelastic
scattering, under the following assumptions: (a) The probability
of elastic scattering at very small angles is negligibly small in
comparison with the probability of inelastic scattering. (b) In-
elastic scattering occurs predominantly through sharply de6ned
"characteristic" energy losses, whose number follows a Poisson
statistical distribution. (c) The angular distribution in each loss
follows a simple law: C(8) ~(8s'+8') '. (d) The cumulative
angular distribution from plural inelastic scattering is obtained

by repeated "folding" of C (8) with the angular spread of the
incident beam. The angular distribution of zero-loss electrons is
found to be substantially independent of the foil thickness; the
normalized angular distributions of the erst- and second-loss peaks
are accurately 6tted by the "folding" calculation; Poisson
statistics gives a good approximation to the observed numbers of
energy losses. The value of ) for Qve observations on foils of
thicknesses 650—2580 A is approximately 810 A, independent of
thickness; systematic errors in the method of observation may
render this value up to 20/~ higher than the mean free path
corresponding to the total cross section.

INTRODUCTION
' PREVIOUS extensive experimentation' on the passage

of 10—100-kev electrons through thin ( 1000 A)
metal foils has suggested the following characteristics
of the scattering phenomena:

(a) The probability of elastic scattering at very small
angles ((10 ' rad) is negligibly small in comparison
with the probability of inelastic scattering. This may
be a consequence of the low differential cross section for
nuclear scattering in this angular range, occasioned by
screening; or, the independent very-small-angle scatter-
ing from single atoms may be suppressed by coherent
interference from the atoms of an extended lattice
structure.

(b) Inelastic scattering occurs predominantly through
sharply defined "characteristic" energy losses, whose
number in a given foil follows a Poisson statistical
distribution, '

(c) The angular distribution in each characteristic
energy loss follows a simple law: 4 (0) ~ (t)&'+0') '.

(d) The cumulative angular distribution resulting
from plural inelastic scattering at very small angles
((10 s rad) is obtained by repeated "folding" of the
single-scattering differential cross section with the
angular spread of the incident beam. ' '

The present paper contributes additional evidence for
the details of this description, in regard to the passage
of 20-kev electrons through aluminum foils of 600—
2600-A thickness. The more advanced features of the
experiment to be reported are the following:

1. Intensity measurements are obtained on a detector
which is accurately calibrated over three orders of
magnitude.

'L. Marton, L. B. Leder, and H. Mendlowitz, Advances in
Electronics and Electron Physics (Academic Press, Inc. , New York,
1955), Vol. 7, p. 183.

~ A. W. Blackstock, R. H. Ritchie, and R. D. Birkhoff, Phys.
Rev. 100, 1078 (1955).

s R. A. Ferrell, Phys. Rev. 101, 554 (1956).
4 G. Wentzel, Ann. Physilc 69, 335 (1922).
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2. Angular resolution of 0.25 mrad in the detector
is combined with a narrow primary angular distribution
(width at half-maximum 1.1 rnrad).

3. Angular distributions are measured for a range of
accurately known foil thicknesses.

4. Energy resolution of the detector permits clear
separation between the discrete-loss peaks.

These features have been individually employed in
previous' ' experimental work, but this is the hrst case
in which they have been combined for a single detailed
measurement.

ELEMENTS OF THE THEORY

Elastic and inelastic scattering can be regarded as
statistically independent exchanges of momentum be-
tween the electron and the scattering foil. Numerous
calculations' have shown that the differential cross
section for single-atom elastic scattering at very small
angles is extremely small ((10 ') in comparison with
the probability for inelastic scattering which is observed
in solids of low Z. In addition, the predominance of
crystalline diffraction implies that elastic processes
produce only discrete transfers of momentum, corre-
sponding to the vectors of the reciprocal lattice. The
well-known Bethe dynamical theory of diffraction
suggests that in the angular region between diffraction
peaks, the probability of elastic scattering is suppressed
by "destructive" interference from the lattice structure.
In the present experiments, attention is con6ned to very
small angles, and therefore to zero momentum transfer
in diffraction processes. '

5 L. Marton, L. B. Leder, C. Marton, H. Mendlowitz, J. A.
Simpson, J. A. Suddeth, and M. D Wagner, in . Reports of the
Fourth International Conference on Etectron Microscopy (Springer-
Verlag, Berlin, 1960), Vol. 1, p. 281.

e H. Watanabe, J. Phys. Soc. Japan 11, 112 (1956).' F. Leonhard, Z. Naturforsch. 9a, 1019 (1954).' F. Lenz, Z. Naturforsch. 9a, 185 (1954).
9 The Grst-order diffraction peak in these experiments is seen at

about 60X10 ' rad, well beyond the range ((0—7)X10 '
radar fn

which the angular distribution has been studied. Hence diffraction
may be disregarded, except as a reduction of intensity in the
transmitted beam at small angles.
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Thus, we shall regard the probability of scattering
through a small angle g as the product of a probability
of "no elastic momentum transfer" and the probability
of inelastic scattering through an angle 0. Theoretical
and experimental analysis of the statistical independ-
ence of elastic and inelastic processes, when momentum
transfer occurs in elastic scattering, constitutes a
separate problem.

CROSS SECTION FOR INELASTIC SCATTERING

The probability of an inelastic process with a small
momentum transfer q is inversely proportional to q',
when the scattering is due to Coulomb forces between
the incident electron and the electrons of the foil, and
when account is taken of the probability of electron
excitation as a result of this momentum transfer. If the
electrons in the foil could be regarded as independent
of one another and of the lattice, so that each electron
could absorb a vanishingly small amount of recoil
energy, the cross section for such a process would be
proportional to 1/q', according to Rutherford's law.
However, the foil electrons are part of a quantum
system, which absorbs in a collision only a finite amount
of energy, whether its excitation be characterized as a
"plasmon" or as an interband transition. In any event,
we are here concerned with the observation of finite
energy losses in elementary collision processes. A vanish-
ing momentum transfer has vanishing probability of
transferring a 6nite amount of energy to a quantum
system. Therefore, the probability that a finite energy
loss results from a very small momentum transfer is
proportional to q' (the probability amplitude, which
vanishes at q=O, is proportional to q for small q). Thus
we see that the 1/q'-cross section arises as the product of
a 1/q4 factor (Rutherford's law for free particles) and
a q' factor (probability of a finite excitation with a
given small q).

This theoretical argument is an essential point of the
Bethe' " theory of inelastic scattering. The derivation
of the result for the plasma theory has been given by
Ferrell, ' and the applicability of the argument to all
types of energy loss has been emphasized by Fano."The
differential cross section of an inelastic Coulomb inter-
action is given by the Born"" formula:

where the first factor represents the effect of Rutherford
scattering and the second the probability of exciting
the nth state by means of momentum transfer q. This
equation may be rewritten as follows:

If we now assume that the probability amplitude
b„(q), for a process involving momentum transfer q,
is proportional to q for small q (as is suggested by per-
turbation theory for both transitions between single-
electron states' and excitation of a collective oscilla-
tion"), the second factor will become a constant.

The resulting differential cross section may be re-
written as a function of the angle of scattering of the
incident particle, making use of energy and momentum
conservation. Figure 1 (which follows a similar diagram
in reference 12) shows the momentum diagram for the
incident particle. In the small-angle approximation
(where sing= g), we have the relation

q2 —(Qp)s+ p2g'& —
p2L (gp/p)2+ g21—p2Lg 2+ gsj

where gz = Ap/p —AE„/2E. Since p' changes by a
negligibly small proportion during one scattering, we
may consider it a constant. %e obtain for the form of
the differential cross section:

In our experiments we observe a single energy loss
(AE)„and therefore the differential cross section given
above is all we need consider. If we were to observe
unresolved energy losses, the relevant angular distribu-
tion law for single scattering would be obtained by
averaging this equation for values of Oz corresponding
to the various energy losses (AE)„in proportion to their
relative probability. The distribution so obtained, when
all possible single energy losses are included, is expressed
in terms of the "incoherent" scattering function of the
x-ray theory. "For the scattering by single atoms de-
scribed in the Thomas-Fermi model, it is given by the
Heisenberg-Bewilogua" "formula "

Plural Scattering

Since the differential cross section for single inelastic
scattering can be regarded as a probability of mo-
mentum transfer, the plural inelastic scattering process

"Reference 10, especially pp. 332, 338-40."P. M. Morse, Physik. Z. 33, 443 (1932).
"W. Heisenberg, Physik. Z. 32, 737 (1931)."L.Bewilogua, Physik. Z. 32, '/40 (1931).
"The 1/q' cross section proposed here differs from the widely-

quoted formula of Lenz' in the following respect; in the Morse"
x-ray form for the cross section,

q (q)=, ,L(Z f)'+~7—4

the "incoherent" scattering function S(q) is assumed to behave
as q~, instead of as

I H. Bethe, Ann. Physik 5, 325 (1930).
"H. Bethe, in Handbgch der Physik, edited by Greiger-Scheel,

(Springer-Verlag, Berlin, 1933),Vol. 24, especially pp. 491fl."U. Fano, Phys. Rev. 103, 1202 (1956).
'3 M. Born, Z. Physik 38, 803 (1926).

an expression obtained from the Hartree single-atom model. In
the Lenz expression, S(q) is equal to O~q'/3Z for q'&&6Z/O~; with
suitable choice of 0, it provides a g' dependence at small angles
with a more rapid decay at large angles. The choice of 0 in Lenz's
paper is considerably smaller than the equivalent 8E used here.
However, H. Wyrwich and F. Lenz have suggested in a later
paper [Z. Naturforsch. 13a, 515 (1958)7 that 8z=AE/2E~, as
determined here, is indeed the pertinent parameter.
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p= Q&mE

section, e.g.,

F(8„8,)=C(~8,—8, ~) =k/(e, + ~8,—8, [ ]. (6)

It follows from (3), (4), and (5) and from the defini-
tion of mean free path, that

p - imp = $2 m(E-&E) c (t))d'i),

(where t), is made finite, to give a finite total cross
section) that the angular distributions J~(8; t) form a
Poisson statistical distribution when integrated over
solid angle.

[ Of=0

J~(8; t)ds8= (t/X)Ne '~"/N!=Prr(t/X), (8)

FIG. 1. Energy-momentum diagram of the primary particle:
p, initial momentum; p —hp, final momentum; q, transferred
momentum; 8, angle of deQection; 8, initial kinetic energy;
E—hE, final kinetic energy.

J(8;t)= g S&(8;t).
N=O

The functions J~ are separable for t and 8,

(2)

where
y (6;t)=D (t)0(8),

D~(t)=t~e ""/lV!

(3)

(4)

and Orr(8) is a normalized angular distribution function
given by

ON(8) = d ~N—1 d'Ar 2 d2g

d'e, O, (8,y'(8„8,)" Z(8~ „8). (5)

Here the integrals are understood to be of the "folding"
type in two dimensions, Os(8o) represents the angular
distribution of the unscattered beam, and E(8i,8s) is a
two-variable representation of the diRerential cross
"G. Wentzel, Z. Physik. 40, 596 (1927).
'0 Q'. Bothe, Z. Physik. 5, 63 (1921).
"W. Bothe, Z. Physik. 4, 161 and 300 (1921).
~ G. Moliere, Z. Natnrtorsch. Ba, 78 (1948).
"H. Bethe, Phys. Rev. 89, 1256 (1953).

may be regarded as a random walk in transverse-
momentum space, each step being weighted by the
differential cross section. The law which describes this
process is due to Kentzel ' and Bothe " and has
been extensively described in the literature of plural
scatterj, ng

In the Wentzel representation, the probability J (8; 1)
that an electron is scattered into an element of solid
angle near 8 (here understood to have a vector signifi-
cance, corresponding to the projected momentum) after
traversing a foil thickness t is composed of terms J~(8; t)
corresponding to electrons which reach this angle by
0, 1, 2, . N scattering processes (or steps)

for S=0, 1) 2)
Alternative expressions of this statistical treatment

are the diffusion equation of Bothe' and its Fourier-
Bessel transforms' '; also the simultaneous diffusion
equations of Ferrell, ' which are statistically equivalent
to Eqs. (2)-(8).

APPLICATION TO EXPERIMENT

Assumptions (a)—(d) of the introduction have the
following consequences for transmission scattering
experiments:

(e) The assumption of zero momentum transfer in
elastic processes implies that the angular distribution of
emergent zero-loss electrons will be substantially inde-
pendent of the thickness of the scattering foil. For a
polycrystalline scatterer, the emergent angular distribu-
tion of the zero-loss electrons should be identical with
that of the incident beam. This contrasts with the
"diffusion" model of elastic scattering, discussed in
detail by Leisegang, '4 which predicts a diffuse angular
spread increasing with the thickness of the specimen.

(f) Poisson statistics of the inelastic scattering
process requires that the discrete-loss components of the
emergent beam, when integrated over solid angle, shall
agree with the formula (8). If this equation is correctly
applied, the argument t/X of the Poisson function I'rr,
as determined from the observed statistical distribution,
should prove proportional to the foil thickness t; or ), as
determined from this argument and a measurement of
foil thickness, should be the same for all foil thicknesses.

(g) The normalized angular distributions O~~ of the
discrete-loss components may be obtained by "folding"
the diRerential cross section C X times, with the initial
angular distribution 0's of the emergent zero-loss
electrons.

CONDITIONS OF OBSERVATION

In comparing these predictions with experiment, a
number of limitations inherent in the available experi-
mental techniques must be considered.

'4 S. Leisegang, Z. Physik. 132, 183 (1952).
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5. The angular spread 0's(e) of the incident beam
must not greatly exceed the half-angle Oz of the difter-
ential cross section C, during the experimental tests (e)
and (g). Otherwise the angular spreading due to inelastic
scattering will represent only a small fraction of the
initial spread, and will be dificult to separate from it.
This de.culty exists in many observations which have
been-reported in the literature. For aluminum at 20 kev,
Os=0.37X10 ' rad. In the experiments to be reported.
here, O~s(ti) has outer limits at about 1.5X10—' rad from
the axis of incidence.

6. The energy analyzer must clearly accept a cone of
angular width 8~ or smaller. Otherwise, the measure-
ments of angular distribution will be smeared out-
another difficulty common in the literature.

7. Unless the energy analyzer can separate the dis-
crete-loss peaks completely from each other, difficulties
of the type suggested by Ferrelp and Watanabe' may
occur, in which the angular dependence of the com-
ponents cannot be measured separately.

8. For the statistical comparison of paragraph (f)
above, integration over the energy line shape of each
peak has been shown to be desirable. ' This is necessary
because of the natural linewidth of the discrete-loss
process, which has been studied in detail by Arai, "and
which gives rise to different line shapes for the successive
discrete-loss peaks. The study of these line shapes con-
stitutes an independent experimental problem.

A common feature of energy spectrograms reported
in the literature (see for example, the review article by
Marton, Leder, and Mendlowitz') is a continuum under-

lying the discrete-loss spectrum. In the work to be re-
ported, this continuum has an extremely low magnitude.
The treatment of this continuum is a critical feature of
the statistical comparison (f). There are a number of
possible explanations for this continuum:

(i) Blackstock, Birkhoff, and Ritchie have ascribed
it to the low-energy "tail" of the thermionic distribution
of primary energy, and split the continuum propor-
tionately between the discrete-loss peaks.

(ii) If the "natural line shape" of the energy loss
process is Lorentzian, the half-width of the lines will

increase with E, and the continuum may be composed of
overlapping tails from the discrete-loss peaks. This
interpretation is encouraged by the visible changes in
line shape with X in the spectrograms to be reported.

(iii) Glick and FerrelP' have proposed a "short-
range" scattering process, at large angles of scattering,
which would produce a continuum of this type.

(iv) It could arise from any other inelastic scattering
process different from the collective type considered
here.

(v) In some previous experiments the continuum

"S.Arai, Science Repts. , Tohoku Univ. First. Ser. 41, 195
(1958); 43, 121 (1959); 43, 181 (1959).

"A. J. Glick and R. A. Ferrell, Ann. Phys. (New York) 11,
359 (1960).

may have been associated with instrumental effects
(e.g. , background scattering from the analyzer bafHes);
the improvement in this experiment is thought to be
due partly to careful electron-optical design of the
decelerator and analyzer. It has not been possible to
eliminate the possibility of a residual instrumental
effect, however.

Since it is not possible to decide between these models
on the basis of the present experimental evidence, the
continuum has been subtracted from the discrete spec-
trurn in the results to be reported here. The errors intro-
duced by this procedure will be discussed in connection
with the data.

9. The angular integration of paragraph (f) may be
carried out either by using a narrow incident beam and
integrating over all angles of emergence, or by using
a very broad, uniform spread of angle in the primary
beam, and observing at a single (central) angle of
emergence. These two procedures are statistically
equivalent, so far as the small-angle scattering
(&6X10 ' rad) is concerned. These techniques will be
compared in the data reported here.

10. Two large-angle effects influence the evaluation
of the mean free path ) from measurements of the type
(f). In the FerrelP theory, the cutoff angle 0. of Eq. (7),
at which C (8) is expected to taper to zero, is estimated
at around 12&10 ' or 15&(10 ' rad. Although experi-
mental observations by Watanabe' and Marton
e3 al''" show a rapid experimental falloff around
18)&10 ' or 20&(10 ' rad, in good qualitative agreement,
the cutoff limit 0, has not been sharply predicted by
theory, or accurately determined from experiment. Since
the contributions to the total cross section (7) from
0=0, region are non-negligible, this constitutes a funda-
rnental limitation on the determination of oscillator
strength for plasmon excitation $i.e., the constant
multiplying the angular dependence of cross section in

(1)j from mean free path.
An associated effect is the large-angle contribution to

the angular integration of Eq. (7), occurring between
7X10 ' rad and the cutoff angle 0,. This large-angle
integration is dificult to execute experimentally; as a
consequence the mean free path determined from these
experiments may be up to 20% larger than the value
corresponding to the total cross section for inelastic
scattering. This error mill be discussed in relation to the
specific statistical results reported.

OBSERVATIONS

A. Instrumental Method

Recent observations in this laboratory~'~ w'ith an
analyzer"" which combines high angular and energy

~' I. Marton, J. Arol Simpson, J. A. Suddeth, M. D. Wagner,
and H. Watanabe, Phys. Rev. 110, 1057 (1958).

2 L. Marton and J. Arol Simpson, Rev. Sci. Instr. 29, 567
(1958).

"H. Mendlowitz, Rev. Sci. Instr. 29, 701 (1958).
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work of Powell and Swan" to be associated with the
surface-loss" phenomenon, rather than with the promi-
net bulk-loss oscillation of the plasma" model.

~ ~

Energy analysis is performed in our measurement b
ecelerating the electrons from 20 kev to 300 ev, passing

them through the field of a Siegbahn-type analyzer
magnet, post-accelerating, and recording intensity with
a phosphor-photomultiplier detector, which is run as
part of a logarithmic photometer circuit. "This detector
compresses a large range of signal into a small output

0 I

I

2 3
ENERGY LOSS, UNITS OF 4IE

FIG. 2. Energy-loss spectrogram at 8=0 f r
thickness 650%180 A. Ans . ngular distribution of these eaks i
shown in Fig. 6. Primary energy 20 kev.

resolution have confirmed and ext d d
work'o " ex en e our earlier
wor ' "and the observations of I.eonhard' and Wata-
nabe' with Mollenstedt-type" "instruments.

In this paper we shall report some new results from

20- e
this high-reso ution, direct-reading instrument h' h, inw ic

-kev electrons have been scattered b l
'

f
'

y a uminum "oils

of thickness 650—2580 A. The data are taken as energy
spectrograms for fixed angles. Four such tsuc spectro grams,
at zero angle, are shown in Figs. 2—5. The foil thicknesses
or these examples are 650&180, 1130+150 1710

and 2580~100 A~100 A. The zero-loss peaks are at the left

a
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, J4
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FIG.IG. 4. Energy-loss spectrogram at g=0
thickness 1710&120A. Angular djstrjlar distribution is shown in Fig.

deflection, enabling spectra with a larwi a arge range of in-
ensi y o be recorded rapidly with no loss of d 'l

The chart rec
no oss o etail.

photometrically-established calibration curve, to give a
linear intensity spectrum. Th d
operated in linear mode; that is with
mu tip ier voltage, the output signal being ampliied by
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V)

IJJ

z

o-
I

0 I 2
ENERGY LOSS, UNITS OF ZLE

FIG. 3. Energy-loss spectrogram at 8=0 for
thickness 1130&150A. An lar dist

'
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I-
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Ld

the spectra consist of well-resolved discrete eak
im osed onp on a very weak continuous background. There
is slight evidence of weak 10-v loss p k-v oss pea s accompanying

e dominant 15-v ones these ar th h fe oug t from the

' L. Marton, J. Arol Sim son and T
I t . 26, 85S (1955)."J.Arol Simpson, T. F. McCrawp, cCraw, and L. Marton, Phys. Rev.

"G.Mollenstedt, Optik 5, 499 (1949)."H. Boersch, Naturwissenschaften 35, 26 (1948)."H. Boersch, Optik 5, 436 (1949)."W. Kleinn, Optik 11, 226 (1954).

0
I I I I

I 2 3 4 5 6 7
I

ENERGY LOSS, UNITS OF 4 E

FIG.IG. 5. Energy-loss spectrogram at 8=0
th' k 2580~100 A Angular distribution is

'6 C, J. Powell and J. B. Swan, Phys. Rev. 115, 869 1959 ."R.H. Ritchie, Phys. Rev. 106, 874 (1957).

'9 R. E. Bell and R. L.
"D.Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

d R. L. Graham, Rev. Sci. Instr. 23, 301 (1952).
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Fzo. 10. Energy-loss spectrogram at
8=0 for the specimen of Fig. 5, taken
with wide primary angular distribu-
tion (see text). Dashed curve is 6tted
to the minima between peaks; the
continuum beneath this curve is sub-
tracted for statistical comparison with
the Poisson distribution.
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have as good internal consistency as those in the other
plots. The same type of angular spreading can be ob-
served in these points, however. )

It will be noted that the angular eGects described by
the olding integral theory are independent of foil
thickness, when normalized angular functions are used;
t is is in full agreement with the predictions of the
Wentzel theory.

D. Comparison with Poisson Statistics

To complete the comparison with plural-scattering
t eory, it is now desirable to compare the statistical
population of the discrete-loss peaks with the Poisson
ormula. The angular spreading associated with inelastic

scattering has an important effect on the statistical
istribution of electrons among the various loss peaks.

For example, the spectrogram of Fig. 10 has been taken
on the same specimen as the spectrogram of Fig. 5;
however, in Fig. 10 the angular spread of the incident
beam is much larger. In contrast with the zero-loss
angular spread shown in Fig. 9, the zero-loss beam used
to obtain Fig. 10 extends from —3.5 rnrad to +3.5 mrad,
with a Rat maximum of about 2-mrad width. This
spread approximates the limiting case of wide angular
distribution (half-width of the incident beam much
greater than 2()e which was discussed in paragraph ( )

ove. The zero-loss, first-loss, and second-loss peaks
are seen to be much less strongly weighted than in the
spectrogram of Fig. 5. In addition, a weak continuum
appears under the discrete spectrum at large values of
energy loss, as indicated by the dashed line. This con-
tinuum, it will be noted, is less pronounced in all of the
spectrograms taken with narrow incident angular
distribution.

If the area under the dashed curve is subtracted from
the spectrum, and the remaining areas of the peaks
integrated graphically by planimeter, the results may

e compared with a Poisson distribution, as is shown

tn Fig. 11. (This treatment differs from that of Black-
stock, Ritchie, and BirkhofP only in the interpretation
of the continuum. ) A high degree of fit is obtained with
a Poisson function: P~(t/X) = (t/X) e ""/N! of argu-
ment t/X=3. 2. It will be noted that this is an eight-
point fit.

Thhe zero-angle spectrogram of Fig. 5 is not in agree-
ment with this Poisson function, of course. In principle,

owever, we may weight the zero-angle spectrum by the
integrated solid-angle spread of each peak. The calcula-
tion is indicated graphically in Fig. 13. Assumin the
angular distributions of Fig. 9 to extend with cylindrical
symmetry, the products of the angular distributions
J~(0) with ~()

~

are shown as functions of
~

1) I. The curves
are expected to approach asymptotically the dashed
Hne, of slope 1, at small ~0I. The areas under these
curves should correspond to the weighting factors for

L8 ——
I

1.2

1,0

04

0.2

0
0 I 2 3 4 5 6

NO OF ENERGY LOSSES N

7 8

Fzo. 11.. Poisson distribution of the energy-loss peaks in Fig. 10:
areas of the peaks, with dashed continuum subtracted; Q areas

of the zero-loss and Grst-loss peak of Fig. 5, weighted by the
angular calculation of Fig. 13 (see text); solid line, the continuous
function (t/X)s'e 'I"/f'(N+1) Lwhich coincides with Pr„(t/X) for
integral values of Ng, with argument t/X=3 20.
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the solid-angle spread of each peak. It will be noted that
the zero-loss function is sharply cut off at about
1.4 mrad from the axis of the scattered beam, whereas
the 6rst-loss peak has a large-area tai1. extending out
beyond 5 mrad. It appears from these measurements
that the second-loss peak does not have a finite tail;
certainly it cannot be determined with any accuracy
beyond 6 mrad. Hence, the weighting factors can be
estimated accurately only for the zero-loss and 6rst-loss
peaks. If they are so measured, and the areas of the
Fig. 5 spectrogram multiplied by them, the two triangles
of Fig. 11 are obtained, in good agreement with the
Poisson distribution obtained from the wide incident
beam.

This small-angle effect has not been explicitly con-
sidered in previous experimental comparisons'" 4' of
characteristic-loss spectra with Poisson statistics. The
most successful measurement of this type to date, by
Blackstock, Ritchie, and Birkhoff, has tacitly assumed
that the scattering is one dimensional; however, the
success of their comparison is probably a result of the
fact that the incident beam had a wide angular spread,
and possibly that the angular acceptance of the detector
was also rather large. In measuring the areas of the
peaks, these authors assumed that the weak continuum
underlying the discrete-loss spectrum was composed of
long tails on the discrete-loss peaks, and divided its
area accordingly. This tends to give a higher value of
argument in the Poisson function derived to fit the data.
These authors have not demonstrated as detailed a fit
to the Poisson distribution as is shown here. In their
case t/X is not determined to better than &15%.Hence,
the comparison reported here differs in several critical
respects from that of Blackstock, Ritchie, and Birkhoff
and is felt to represent a more rigorous approach.

Js (t) =
si=o

J'tv (f); t)dse

is the area of the X-loss peak integrated over all angles
of scattering, then

N!Jtv (t) = (t/X) ~e (9)
or

log (E!Jtv) =N log (t/X) —1/X.

Thus a semilog plot of S ~j~ as a function of E should
be a straight line of slope log(t/X). This is indeed found

4e E. Sternglass, Nature 178, 1387 (1956).
'4 G. Ruthemann, Ann. Physik 437, 113 (1948).
4' H. Friedmann, Naturwissenschaften 41, 569 (1954).
"H. Friedmann, Z. Naturforsch. lla, 373 (1956).
"H. Friedmann, Fortschr. Physik V, 2, 51 (1957).
4 W. Lang, Optik 3, 233 (1948).

E. Determination of Mean Free Path

An alternative method of displaying this data, which

emphasizes the good agreement with a Poisson distribu-
tion, is shown in Fig. 12. From Eq. (8), if

to be the case, in Fig. 12. The straight line for t/X =3.20
Q.ts closely the small-error points from E=O to X=4;
the dashed line for t/X=3 33.includes the points N=5
to S=7 better, and shows that the statistical error in
determining this slope is not the limiting feature of the
measurement, since the two values of t/X agree within
4 jq. Perceptibly poorer agreement with the experi-
mental points will be obtained for any slope outside
the range 3.20&f/X&3 33.

If this value of t/X can be combined with an accurate
measurement of foil thickness, a mean free path for the
inelastic process may be determined. The thickness of
the specimen used for the measurements of Figs. 9—13
is 2580~100 A, giving a mean-free-path value of
810&60 A, if the value t/'A=3. 20 is used.

As has been indicated in (f), the same value should
be obtained for all foil thicknesses, if the mean free
path does not vary from specimen to specimen. The
angular distribution curves of Figs. 6—8 may be used to
weight the zero-loss and first-loss peaks of the zero-angle
spectrograms in Figs. 2—4, giving the following table of
mean free paths:

TABLE I. Comparison of mean free path for Al
foils of various thickness.

Foil thickness,
t (angstroms)

650~180
1130+150
1710+120
2580~100

t/X from
Poisson
function

0.75 (2-point 6t)
1.4 (2-point fit)
2.2 (2-point fit)
3.2 (8-point fit)

X, mean
free path

(angstroms)

870
810
780
810

Limits
of

error

~200
+110
~ 80
& 60

The data reported in this table are for a set of speci-
mens which exhibited low background continuum, and
for which the thicknesses are reliably known. These are
not isolated examples of the Poisson-distribution 6tting
procedure, however. A number of 5- and 7-point its to
Poisson distributions, similar to the data of Figs. 10
and 12, have been obtained for specimens exhibiting
larger background continuum, and for which the thick-
nesses were less accurately known.

It will be seen that the values obtained from the
spectra of Figs. 2, 3, and 4 agree with the more reliable
value of Fig. 10, within the limits of error of the
individual observations. The primary limiting factor in
these observations is the determination of specimen
thickness, which has been performed by the Fizeau-
Tolansky"' multiple-beam reflection interferometer
method. Since this method has certain systematic limita-
tions in the measurement of film thicknesses, which have
not been described in the literature, it is appropriate
to describe it briefly.

"S. Tolansky, Mttttfpte Beam Irtterfero-metry (Oxford University
Press, New York, 1948)."S. Tolansky, Surface 3A'crotopography (Interscience Pub-
lishers, Inc.

&
New York, 1960).
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F. Measurement of Specimen Thickness

It should be remembered that these experiments are
performed on self-supporting aluminum foils Lwhich are
evaporated on a stripping layer of evaporated rocksalt,
or Victawet 358 (sodium lauryl and octyl phosphate)$
and transferred to the specimen holder by Boating on
a water surface. A number of samples from the areas
adjacent to the scattering specimen are picked up on
microscope slides, some of which are clean, and others
of which are coated with an optically opaque mirror of
evaporated aluminum. These specimens are then
silvered by the Tolansky prescription, and the step at
the edge of each specimen is measured in the reQection
interferometer. As Tolansky has shown, this type of
step can be measured with considerable accuracy; here
we find an interferometer error of about ~20 A. Indeed,
the interferometer measurements are not found to be the
limiting factor; a more important question is whether
the step height of the silver coating corresponds exactly
to the thickness of the aluminum specimen. In this
connection it has been observed that the specimens
picked up on a glass backing exhibit a lower measure-
ment of thickness (by an irregular amount, ranging up
to three or four hundred A) than those picked up on the
aluminum backing. There are several possible inter-
pretations of this discrepancy, the most plausible of
which appears to be a different sticking probability for
the first monolayer of silver on glass and aluminum
surfaces. Under this interpretation the thickness meas-
urements with the aluminum backing should have the
minimum systematic error, since silver is evaporated
on aluminum at each side of the step. These are the
measurements which are quoted in the mean-free-path

IP4

io'—

UJ

+IO

x

~ IO

O

0
I I I I I I

2 3 4

NUMBER OF INELASTIC EYENTS N

table (Table I); the errors are the maximum departures
of the thickness sample measurements from the mean
values.

FIG. 12. Logarithmic representation of the Poisson distribution
in Fig. 11;37.J„is shown as a function of E, where J is the area
of the cVth loss peak in Fig. 10: solid line, P~(t/X} for t/X=3. 20;
dashed line, Prr(t/h) for t/X=3 33.
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FIG. 13. Graphical
estimate of the angular
weighting factors for the
spectrogram of Fig. 5,
using the angular data
of Fig. 9; the dashed line
shows the asymptotic
slope expected for all
curves as
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G. Interpretation

The value of ) =810&60A, obtained from the spec-
trogram Fig. 10, is slightly higher than the limit of
560 A reported by Blackstock, Ritchie, and BirkhoG'
for a primary energy of 25 kev; however, as we have
pointed out earlier, there are certain differences in the
treatment of these data.

Two primary sources of systematic error remain in
this measurement.

(a) Treatment of /he continuum If. the method of
subtracting continuum, used on Fig. 10, cannot be
theoretically justified, this contributes a systematic
error in the determination of t/), which is larger than
the statistical scatter in Fig. 12. In this respect, it may
be suggested that the line shapes of Fig. 10 suggest a
"natural line shape" for the single loss of Lorentzian
form, which would contribute broad tails on the peaks
for large X. A detailed investigation of this feature is in
progress.

(b) Xeglec/ of /arge angle scatt-ering. The method of
observation for both the spectrogram of Fig. 5 and that
of Fig. 10 excludes electrons scattered at angles greater
than about 6 mrad. In Fig. 13 the 6.rst-loss curve is
artidcially truncated at 6 mrad; in practice, however,
single inelastic scattering is known to continue out to a
cutoff at about 18 or 20 mrad. ' ' Assuming a 1/()' decay
in the region between 6 and 20 mrad, as has recently
been demonstrated by Kunz, ~' this region of angle may
be expected to contribute a total of &20% to the total
cross section of Eq. (7). Hence the mean free path
measured here is a mean free path for small-angle
scattering (8&6&&10 ' rad) which may be up to 20%
larger than the mean free path corresponding to the
total cross section. Hence the discrepancy with the value
of Blackstock, Ritchie, and Birkhoff may be partly a
consequence of the incident angular distribution of
Fig. 10 not being large enough to fully include the "tails"
of the differential cross section. An experimental solution
to this question is dificult to devise; if the data are to
be recorded as a zero-angle spectrum with wide incident
beam, as in Fig. 10, the incident beam must have a
uniform angular distribution between —20&10 ' and
+20X10 ' radian, a condition difficult to achieve in
practice.
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APPENDIX: CALCULATION OF THE
FOLDING INTEGRALS

The calculation of folding integrals can be made by
either of two methods: The functions to be folded may
be replaced by their Fourier-Bessel transforms, and the
inverse transform applied to the product of these (as
indicated by Moliere" in his more general method of
solution), or the functions may be evaluated and folded
numerically. The 6rst method has been used by Keil,
Zeitler, and Zinn" in their recomputation of Leisegang's
results; it has the disadvantage of involving a full

Fourier-Bessel transform for any numerical functions

used, such as the zero-loss angular distribution measured
in these experiments. Hence we have used the second
method, which may be done by a computer program
readily adapted to digest numerical input functions.

The method of integration has been as follows: the
two functions to be folded are plotted (in full cylindrical
symmetry) on fine-spaced x-y grids (spacing 0.25 mrad
in Fig. 6, 0.20 mrad in Figs. 7 and 9). The two grids are
overlaid, the functions are multiplied point-by-point,
and the product values summed out to a cuto6 radius of
between 8 and 10 mrad. The sum is then taken as a
single value of the integral function, whose argument is

given by the separation between the maxima of the two
functions. The maxima are then moved apart one grid
space, and the calculation is repeated for the new value
of argument. This operation has been programmed for
the IBM 704 computer, using Fortran coding. Sample
running time is 4 min/curve.

In cases where the experimentally-determined angular
distributions are not wholly symmetrical about zero
scattering angle (as is the case in Figs. 6 and '/) the
positive and negative scattering angles have been
treated as separate problems of cylindrical symmetry.
In Fig. 9 the experimental symmetry is sufhcient to
allow the use of a common approximation function for
positive and negative angles.

The value of 0~ used in the Ferrell differential cross
section has been 0.350 mrad in Fig. 7 and 0.370 in Fig. 9,
corresponding to AE of 14.0 and 14.8 ev, respectively.
In Fig. 6 the positive-angle half of the first-loss curve
has been evaluated with Hii

——0.370; the negative half,
and the positive half of the second-loss curve have been
evaluated with Hg ——0.350. Since it was not possible to
measure AE with high accuracy during these angular
measurements, these values were chosen to give best
fit (0.350) to the experimental points, or to correspond
to the widely quoted value of 14.8 ev (0.3'/0) in the
literature for this energy loss. The tail-width is particu-
larly sensitive to this parameter.

"F.Keil, E. Zeitler, and W. Zinn, Z. Naturforsch. 15a, 1031
(1960).


