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The angular and energy distribution of 20-kev electrons, scat-
tered at very small angles (<1072 rad) by transmission through
aluminum foils, are compared with the theory of plural inelastic
scattering, under the following assumptions: (a) The probability
of elastic scattering at very small angles is negligibly small in
comparison with the probability of inelastic scattering. (b) In-
elastic scattering occurs predominantly through sharply defined
‘“‘characteristic” energy losses, whose number follows a Poisson
statistical distribution. (c) The angular distribution in each loss
follows a simple law: ®(6) « (6z2+6%71. (d) The cumulative
angular distribution from plural nelastic scattering is obtained

INTRODUCTION

REVIOUS extensive experimentation® on the passage

of 10-100-kev electrons through thin (~1000 A)

metal foils has suggested the following characteristics
of the scattering phenomena:

(a) The probability of elastic scattering at very small
angles (<1072 rad) is negligibly small in comparison
with the probability of inelastic scattering. This may
be a consequence of the low differential cross section for
nuclear scattering in this angular range, occasioned by
screening; or, the independent very-small-angle scatter-
ing from single atoms may be suppressed by coherent
interference from the atoms of an extended lattice
structure.

(b) Inelasticscattering occurspredominantly through
sharply defined “characteristic”’ energy losses, whose
number in a given foil follows a Poisson statistical
distribution.?

(c) The angular distribution in each characteristic
energy loss follows a simple law : ®(0) « (652621

(d) The cumulative angular distribution resulting
from plural inelastic scattering at very small angles
(<1072 rad) is obtained by repeated “folding” of the
single-scattering differential cross section with the
angular spread of the incident beam.?+

The present paper contributes additional evidence for
the details of this description, in regard to the passage
of 20-kev electrons through aluminum foils of 600-
2600-A thickness. The more advanced features of the
experiment to be reported are the following:

1. Intensity measurements are obtained on a detector
which is accurately calibrated over three orders of
magnitude.
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by repeated “folding” of ®(§) with the angular spread of the
incident beam. The angular distribution of zero-loss electrons is
found to be substantially independent of the foil thickness; the
normalized angular distributions of the first- and second-loss peaks
are accurately fitted by the “folding” calculation; Poisson
statistics gives a good approximation to the observed numbers of
energy losses. The value of A for five observations on foils of
thicknesses 650-2580 A is approximately 810 A, independent of
thickness; systematic errors in the method of observation may
render this value up to 209, higher than the mean free path
corresponding to the total cross section.

2. Angular resolution of 0.25 mrad in the detector
is combined with a narrow primary angular distribution
(width at half-maximum ~1.1 mrad).

3. Angular distributions are measured for a range of
accurately known foil thicknesses.

4. Energy resolution of the detector permits clear
separation between the discrete-loss peaks.

These features have been individually employed in
previous®7 experimental work, but this is the first case
in which they have been combined for a single detailed
measurement.

ELEMENTS OF THE THEORY

Elastic and inelastic scattering can be regarded as
statistically independent exchanges of momentum be-
tween the electron and the scattering foil. Numerous
calculations® have shown that the differential cross
section for single-atom elastic scattering at very small
angles is extremely small (<1073) in comparison with
the probability for inelastic scattering which is observed
in solids of low Z. In addition, the predominance of
crystalline diffraction implies that elastic processes
produce only discrete transfers of momentum, corre-
sponding to the vectors of the reciprocal lattice. The
well-known Bethe dynamical theory of diffraction
suggests that in the angular region between diffraction
peaks, the probability of elastic scattering is suppressed
by “destructive” interference from the lattice structure.
In the present experiments, attention is confined to very
small angles, and therefore to zero momentum transfer
in diffraction processes.®
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? The first-order diffraction peak in these experiments is seen at
about 60X 1073 rad, well beyond the range [(0-7)X 1078 rad] in
which the angular distribution has been studied. Hence diffraction
may be disregarded, except as a reduction of intensity in the
transmitted beam at small angles.
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Thus, we shall regard the probability of scattering
through a small angle 6 as the product of a probability
of “no elastic momentum transfer” and the probability
of inelastic scattering through an angle 6. Theoretical
and experimental analysis of the statistical independ-
ence of elastic and inelastic processes, when momentum
transfer occurs in elastic scattering, constitutes a
separate problem.

CROSS SECTION FOR INELASTIC SCATTERING

The probability of an inelastic process with a small
momentum transfer ¢ is inversely proportional to ¢?
when the scattering is due to Coulomb forces between
the incident electron and the electrons of the foil, and
when account is taken of the probability of electron
excitation as a result of this momentum transfer. If the
electrons in the foil could be regarded as independent
of one another and of the lattice, so that each electron
could absorb a vanishingly small amount of recoil
energy, the cross section for such a process would be
proportional to 1/¢% according to Rutherford’s law.
However, the foil electrons are part of a quantum
system, which absorbs in a collision only a finite amount
of energy, whether its excitation be characterized as a
“plasmon” or as an interband transition. In any event,
we are here concerned with the observation of finite
energy losses in elementary collision processes. A vanish-
ing momentum transfer has vanishing probability of
transferring a finite amount of energy to a quantum
system. Therefore, the probability that a finite energy
loss results from a very small momentum transfer is
proportional to ¢? (the probability amplitude, which
vanishes at ¢=0, is proportional to ¢ for small ¢). Thus
we see that the 1/¢? cross section arises as the product of
a 1/¢* factor (Rutherford’s law for free particles) and
a ¢¢ factor (probability of a finite excitation with a
given small ¢).

This theoretical argument is an essential point of the
Bethe!®! theory of inelastic scattering. The derivation
of the result for the plasma theory has been given by
Ferrell,® and the applicability of the argument to all
types of energy loss has been emphasized by Fano.’? The
differential cross section of an inelastic Coulomb inter-
action is given by the Born'®* formula:

P, (q) = (Ze*/ )| Ea(@) |

where the first factor represents the effect of Rutherford
scattering and the second the probability of exciting
the nth state by means of momentum transfer ¢. This
equation may be rewritten as follows:

®,(q) < [(Ze*)*/¢*]| 8.(9)/q|*
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If we now assume that the probability amplitude
8.(q), for a process involving momentum transfer ¢,
is proportional to ¢ for small ¢ (as is suggested by per-
turbation theory for both transitions between single-
electron states' and excitation of a collective oscilla-
tion'?), the second factor will become a constant.

The resulting differential cross section may be re-
written as a function of the angle of scattering of the
incident particle, making use of energy and momentum
conservation. Figure 1 (which follows a similar diagram
in reference 12) shows the momentum diagram for the
incident particle. In the small-angle approximation
(where sinf=6), we have the relation

= 8P+ 0= pLA/ pP+0]= pLos+07],

where 0p=Ap/p=~AE,/2E. Since p* changes by a
negligibly small proportion during one scattering, we
may consider it a constant. We obtain for the form of
the differential cross section:

®,x1/(052+62). 1

In our experiments we observe a single energy loss
(AE),, and therefore the differential cross section given
above is all we need consider. If we were to observe
unresolved energy losses, the relevant angular distribu-
tion law for single scattering would be obtained by
averaging this equation for values of 8z corresponding
to the various energy losses (AE), in proportion to their
relative probability. The distribution so obtained, when
all possible single energy losses are included, is expressed
in terms of the “incoherent” scattering function of the
x-ray theory.'® For the scattering by single atoms de-
scribed in the Thomas-Fermi model, it is given by the
Heisenberg-Bewilogua'®'? formula.!’

Plural Scattering

Since the differential cross section for single inelastic
scattering can be regarded as a probability of mo-
mentum transfer, the plural inelastic scattering process

14 Reference 10, especially pp. 332, 338—40.

15 P, M. Morse, Physik. Z. 33, 443 (1932).

16 W. Heisenberg, Physik. Z. 32, 737 (1931).

17 1. Bewilogua, Physik. Z. 32, 740 (1931).

18 The 1/¢? cross section proposed here differs from the widely-
quoted formula of Lenz?® in the following respect; in the Morse!®
x-ray form for the cross section,

j— 4 2.
@)=y (2= /7+S]
the “incoherent” scattering function S(g) is assumed to behave
as ¢% instead of as

s@=2(1~rrgo7azs)

an expression obtained from the Hartree single-atom model. In
the Lenz expression, S(g) is equal to ©¢?/3Z for ¢*K6Z/0; with
suitable choice of ), it provides a ¢* dependence at small angles
with a more rapid decay at large angles. The choice of ® in Lenz’s
paper is considerably smaller than the equivalent 8z used here.
However, H. Wyrwich and F. Lenz have suggested in a later
paper [Z. Naturforsch. 13a, 515 (1958)] that 6r=AE/2E, as
determined here, is indeed the pertinent parameter.
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F(01,0,)=2(|0:—0:|)=k/[0s°+|0:—0,]2].  (6)

It follows from (3), (4), and (5) and from the defini-
tion of mean free path, that

1/n= / /I :;0 B(6)0, ™)

(where 6, is made finite, to give a finite total cross
section) that the angular distributions Jx(0;¢) form a
Poisson statistical distribution when integrated over
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&\ ; section, e.g.,
AN
AN p= 2mE
L4
-q
Ap
p-aAp=-2m(E~-AE)
po
el
"
s solid angle.

Fic. 1. Energy-momentum diagram of the primary particle:
p, initial momentum; p—Ap, final momentum; ¢, transferred
momentum; 6, angle of deflection; E, initial kinetic energy;
E—AE, final kinetic energy.

may be regarded as a random walk in transverse-
momentum space, each step being weighted by the
differential cross section. The law which describes this
process is due to Wentzel**® and Bothe? and has
been extensively described in the literature of plural
scattering.??:®

In the Wentzel representation, the probability J(0; #)
that an electron is scattered into an element of solid
angle near 6 (here understood to have a vector signifi-
cance, corresponding to the projected momentum) after
traversing a foil thickness ¢ is composed of terms Jx (8 )
corresponding to electrons which reach this angle by

0,1,2, ---N--- scattering processes (or steps)
J(0;0)=2 Jn(0;0). 2)
N=0
The functions Jy are separable for ¢ and 6,
Jw(0;0)=Dxn(1)0(0), )
where
Dy()=tNe t/N | 4)

and Oy (0) is a normalized angular distribution function
given by

On(0)= / / POy_y / / POy_g- - / / @0,

X / / d?0000(00)F (00,01) - - - F (05—-1,0). (5)

Here the integrals are understood to be of the “folding”
type in two dimensions, ®¢(0,) represents the angular
distribution of the unscattered beam, and F(01,0,) is a
two-variable representation of the differential cross

19 G. Wentzel, Z. Physik. 40, 596 (1927).

2 W. Bothe, Z. Physik. 5, 63 (1921).

2L'W. Bothe, Z. Physik. 4, 161 and 300 (1921).

2 G. Moliere, Z. Naturforsch. 3a, 78 (1948).
2 H. Bethe, Phys. Rev. 89, 1256 (1953).

//w In(0;5)d?0= (t/\)¥e !N/ N 1= Px(t/N), (8)
16]=0

for N=0,1,2, ---.

Alternative expressions of this statistical treatment
are the diffusion equation of Bothe and its Fourier-
Bessel transforms?:2; also the simultaneous diffusion

equations of Ferrell,® which are statistically equivalent
to Egs. (2)-(8).

APPLICATION TO EXPERIMENT

Assumptions (a)-(d) of the introduction have the
following consequences for transmission scattering
experiments :

(e) The assumption of zero momentum transfer in
elastic processes implies that the angular distribution of
emergent zero-loss electrons will be substantially inde-
pendent of the thickness of the scattering foil. For a
polycrystalline scatterer, the emergent angular distribu-
tion of the zero-loss electrons should be identical with
that of the incident beam. This contrasts with the
“diffusion” model of elastic scattering, discussed in
detail by Leisegang,?* which predicts a diffuse angular
spread increasing with the thickness of the specimen.

(f) Poisson statistics of the inelastic scattering
process requires that the discrete-loss components of the
emergent beam, when integrated over solid angle, shall
agree with the formula (8). If this equation is correctly
applied, the argument #/A of the Poisson function Py,
as determined from the observed statistical distribution,
should prove proportional to the foil thickness ¢; or A, as
determined from this argument and a measurement of
foil thickness, should be the same for all foil thicknesses.

(g) The normalized angular distributions @y of the
discrete-loss components may be obtained by “folding”
the differential cross section @ NV times, with the initial
angular distribution ®, of the emergent zero-loss
electrons.

CONDITIONS OF OBSERVATION

In comparing these predictions with experiment, a
number of limitations inherent in the available experi-
mental techniques must be considered.

% S. Leisegang, Z. Physik. 132, 183 (1952).
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5. The angular spread ©,(8) of the incident beam
must not greatly exceed the half-angle 6z of the differ-
ential cross section ®, during the experimental tests (e)
and (g). Otherwise the angular spreading due to inelastic
scattering will represent only a small fraction of the
initial spread, and will be difficult to separate from it.
This difficulty exists in many observations which have
beenreported in the literature. For aluminum at 20 kev,
0=0.37X1073 rad. In the experiments to be reported
here, ®¢(f) has outer limits at about 1.5X 1072 rad from
the axis of incidence.

6. The energy analyzer must clearly accept a cone of
angular width 6z or smaller. Otherwise, the measure-
ments of angular distribution will be smeared out—
another difficulty common in the literature.

7. Unless the energy analyzer can separate the dis-
crete-loss peaks completely from each other, difficulties
of the type suggested by Ferrell® and Watanabe® may
occur, in which the angular dependence of the com-
ponents cannot be measured separately.

8. For the statistical comparison of paragraph (f)
above, integration over the energy line shape of each
peak has been shown to be desirable.? This is necessary
because of the natural linewidth of the discrete-loss
process, which has been studied in detail by Arai,? and
which gives rise to different line shapes for the successive
discrete-loss peaks. The study of these line shapes con-
stitutes an independent experimental problem.

A common feature of energy spectrograms reported
in the literature (see for example, the review article by
Marton, Leder, and Mendlowitz!) is a continuum under-
lying the discrete-loss spectrum. In the work to be re-
ported, this continuum has an extremely low magnitude.
The treatment of this continuum is a critical feature of
the statistical comparison (f). There are a number of
possible explanations for this continuum:

(i) Blackstock, Birkhoff, and Ritchie? have ascribed
it to the low-energy “tail” of the thermionic distribution
of primary energy, and split the continuum propor-
tionately between the discrete-loss peaks.

(i) If the “natural line shape” of the energy loss
process is Lorentzian, the half-width of the lines will
increase with IV, and the continuum may be composed of
overlapping tails from the discrete-loss peaks. This
interpretation is encouraged by the visible changes in
line shape with NV in the spectrograms to be reported.

(iii) Glick and Ferrell?® have proposed a ‘‘short-
range” scattering process, at large angles of scattering,
which would produce a continuum of this type.

(iv) Tt could arise from any other inelastic scattering
process different from the collective type considered
here.

(v) In some previous experiments the continuum

2% S, Arai, Science Repts., Tohoku Univ. First. Ser. 41, 195
(1958); 43, 121 (1959); 43, 181 (1959).

26 A, J. Glick and R. A. Ferrell, Ann. Phys. (New York) 11,
359 (1960).
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may have been associated with instrumental effects
(e.g., background scattering from the analyzer baffles);
the improvement in this experiment is thought to be
due partly to careful electron-optical design of the
decelerator and analyzer. It has not been possible to
eliminate the possibility of a residual instrumental
effect, however.

Since it is not possible to decide between these models
on the basis of the present experimental evidence, the
continuum has been subtracted from the discrete spec-
trum in the results to be reported here. The errors intro-
duced by this procedure will be discussed in connection
with the data.

9. The angular integration of paragraph (f) may be
carried out either by using a narrow incident beam and
integrating over all angles of emergence, or by using
a very broad, uniform spread of angle in the primary
beam, and observing at a single (central) angle of
emergence. These two procedures are statistically
equivalent, so far as the small-angle scattering
(<6X1073 rad) is concerned. These techniques will be
compared in the data reported here.

10. Two large-angle effects influence the evaluation
of the mean free path A from measurements of the type
(f). In the Ferrell® theory, the cutoff angle 8, of Eq. (7),
at which ®(0) is expected to taper to zero, is estimated
at around 12X 1073 or 15X 10~ rad. Although experi-
mental observations by Watanabe® and Marton
et al.b®? show a rapid experimental falloff around
18X 1073 or 20X 10~ rad, in good qualitative agreement,
the cutoff limit 6, has not been sharply predicted by
theory, or accurately determined from experiment. Since
the contributions to the total cross section (7) from
6= 6, region are non-negligible, this constitutes a funda-
mental limitation on the determination of oscillator
strength for plasmon excitation [i.e., the constant
multiplying the angular dependence of cross section in
(1)] from mean free path.

An associated effect is the large-angle contribution to
the angular integration of Eq. (7), occurring between
7X107% rad and the cutoff angle 6.. This large-angle
integration is difficult to execute experimentally; as a
consequence the mean free path determined from these
experiments may be up to 209, larger than the value
corresponding to the total cross section for inelastic
scattering. This error will be discussed in relation to the
specific statistical results reported.

OBSERVATIONS
A. Instrumental Method

Recent observations in this laboratory®?” with an
analyzer?®2?® which combines high angular and energy

27 .. Marton, J. Arol Simpson, J. A. Suddeth, M. D. Wagner,
and H. Watanabe, Phys. Rev. 110, 1057 (1958).

28], Marton and J. Arol Simpson, Rev. Sci. Instr. 29, 567
(1958).

2 H. Mendlowitz, Rev. Sci. Instr. 29, 701 (1958).
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F1G. 2. Energy-loss spectrogram at §=0 for aluminum foil of
thickness 650180 A. Angular distribution of these peaks is
shown in Fig. 6. Primary energy 20 kev.

resolution have confirmed and extended our earlier
work33 and the observations of Leonhard” and Wata-
nabe® with Méllenstedt-type®—3% instruments.

In this paper we shall report some new results from
this high-resolution, direct-reading instrument, in which
20-kev electrons have been scattered by aluminum foils
of thickness 650-2580 A. The data are taken as energy
spectrograms for fixed angles. Four such spectrograms,
at zero angle, are shown in Figs. 2-5. The foil thicknesses
for these examples are 6504180, 11304=150, 17104120,
and 2580100 A. The zero-loss peaks are at the left;
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FiG. 3. Energy-loss spectrogram at =0 for aluminum foil of
thickness 1130150 A. Angular distribution is shown in Fig. 7.
Primary energy 20 kev.

the spectra consist of well-resolved discrete peaks super-
imposed on a very weak continuous background. There
is slight evidence of weak 10-v loss peaks accompanying
the dominant 15-v ones; these are thought from the

¥ L. Marton, J. Arol Simpson, and T. F. McCraw, Rev. Sci.
Instr. 26, 855 (1955).

3 J. Arol Simpson, T. F. McCraw, and L. Marton, Phys. Rev.
104, 64 (1956).

3 G. Mollenstedt, Optik 5, 499 (1949).

33 H. Boersch, Naturwissenschaften 35, 26 (1948).

3 H. Boersch, Optik 5, 436 (1949).

3 W. Kleinn, Optik 11, 226 (1954).
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work of Powell and Swan® to be associated with the
surface-loss®” phenomenon, rather than with the promi-
net bulk-loss oscillation of the plasma3® model.

Energy analysis is performed in our measurements by
decelerating the electrons from 20 kev to 300 ev, passing
them through the field of a Siegbahn-type analyzer
magnet, post-accelerating, and recording intensity with
a phosphor-photomultiplier detector, which is run as
part of a logarithmic photometer circuit.? This detector
compresses a large range of signal into a small output

T T T T

INTENSITY
T
L

L L L 1
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F16. 4. Energy-loss spectrogram at =0 for aluminum foil of
thickness 1710120 A. Angular distribution is shown in Fig. 8.
Primary energy 20 kev.

deflection, enabling spectra with a large range of in-
tensity to be recorded rapidly with no loss of detail.
The chart records of output are converted back by a
photometrically-established calibration curve, to give a
linear intensity spectrum. The detector may also be
operated in linear mode; that is, with constant photo-
multiplier voltage, the output signal being amplified by

T T T T T T T T
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F1c. 5. Energy-loss spectrogram at #=0 for aluminum foil of
thickness 2580100 A. Angular distribution is shown in Fig. 9.
Primary energy 20 kev.

3 C, J. Powell and J. B. Swan, Phys. Rev. 115, 869 (1959).

37 R. H. Ritchie, Phys. Rev. 106, 874 (1957).

# D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

#R. E. Bell and R. L. Graham, Rev. Sci. Instr. 23, 301 (1952).
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F16. 6. Normalized angular distributions of the zero-loss, first-
loss, and second-loss peaks of Fig. 2. Points are experimental peak
heights, normalized at #=0. Smooth zero-loss curve is fitted to
zero-loss points. First-loss and second-loss curves are computed
by folding the Bethe-Ferrell differential cross section with the
experimental zero-loss and first-loss points, with §z=0.350%X10-3
and 0.370X 1073 rad (see Appendix).

a direct coupled circuit having a 2-msec response time.
No appreciable differences have been found between the
two modes of operation; the spectra obtained from the
two methods agree within about =439, over 2 orders of
magnitude of range. Since the logarithmic mode enables
low-intensity details to be recorded simultaneously with
high-intensity ones, it is generally preferred when the
angular dependence of spectra with both weak and
strong peaks is to be measured. The cartograph plots
shown in earlier publications®3 have been compiled
from series of such logarithmic-mode spectra, taken at
a series of increasing scattering angles.

B. Angular Distribution of the Zero-Loss Peak

In Figs. 6-9 are shown the measured angular distribu-
tions of the zero-loss, first-loss, second-loss, and (in one
case) the third-loss peaks for these spectra. The data
are normalized to a value of one at zero angle. The points
shown are the intensities-at-maximum of the individual
peaks; if energy areas of the peaks are used instead,
similar results are obtained, since there is very little
change of energy spread in the peaks over the small
angular range (less than 7 mrad) covered. These data
are similar to some published by Watanabe.*

“ H. Watanabe, J. Phys. Soc. Japan 16, 912 (1961).
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F16. 7. Normalized angular distributions of the zero-loss, first-
loss, and second-loss peaks of Fig. 3. Points are experimental peak
heights, normalized at §=0. Smooth zero-loss curve is fitted to
zero-loss points. First-loss curve is computed by folding this with
the Bethe-Ferrell differential cross section, with 6z=0.350X1073
rad, corresponding to AE=14.0 ev.

The innermost curve in each plot is a smooth function
approximating the experimental points for the zero-loss,
“elastic” peak. It will be noted that the angular width
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F1G. 8. Normalized angular distributions of the zero-loss, first-
loss, and second-loss peaks of Fig. 4. Points are experimental peak
heights. Smooth zero-loss curve is fitted to zero-loss points. First-
and second-loss curves have not been calculated for this specimen,
because of normalization errors in the first- and second-loss
experimental points (see text).
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F16. 9. Normalized angular distributions of the zero-loss, first-
loss, second-loss, and third-loss peaks of Fig. 5. Points are experi-
mental peak heights. Smooth zero-loss curve is fitted to zero-loss
points. First- and second-loss curves are computed from the zero-
loss and first-loss points, respectively, by folding with the Bethe-
Ferrell cross section, with 65=0.370)X10% rad, corresponding
to AE=14.8 ev.

of this function does not increase systematically with
thickness of foil ; in fact, the narrowest angular distribu-
tion has been observed for the 1710 A specimen. This
observation is taken to suggest point (e) above, namely
that the angular distribution is that characteristic of a
central peak, identical with that of the incident beam.
The variations which are observed between these speci-
mens are interpreted as small shifts in the incident
angular distribution.

The sharp zero-loss angular distribution recorded in
Fig. 8 shows that the angular acceptance of the energy
analyzer is close to its estimated value of 0.25 mrad.
Were this not the case, the sharp central maximum
could not be so clearly distinguished.

A direct comparison of this emergent angular elastic
distribution with that of the incident beam is difficult,
because of the very large difference in intensity between
the incident and emergent beams. The outer limits of the
incident beam are found to agree (within a rather large
error, of about #+0.3 mrad) with the limits of the
emergent beam seen here, however, if the incident beam
is observed by the detector with no foil or holder present
in the system.

The narrow angular spread in this incident beam is
achieved with a Steigerwald* type gun, having a cored
oxide-cathode emitter of the Uyeda type,” and an
additional 0.25 mm defining aperture between the gun

4 F. W. Braucks, Optik 15, 242 (1958).
2 K. Ando, O. Kamigaito, Y. Kamiya, S. Takahashi, and R.
Uyeda, J. Phys. Soc. Jap. 14, 180 (1959).
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and the aluminum specimen. The condition of the
cathode (small emitting area), and its position relative
to the aperture of the grid electrode are found to be
critical for obtaining a narrow angular distribution.

C. Angular Distribution of the
Discrete-Loss Peaks

It is immediately seen from these plots that the first,
second, - - -, etc., discrete-loss experimental points form
a family of curves of increasing spread. The smooth
first-loss curves shown have been calculated by a
numerical folding of the smooth zero-loss approximation
function with the Ferrell differential cross section. The
details of this calculation are described in the Appendix.
Similarly, the second-loss curves have been calculated
by a folding of a smooth approximation function for the
first-loss points (not shown) with the same cross section.
Two slightly different values of 8z have been used in
calculation of these curves (see Appendix), but it is not
possible to depart far from the parametric value
05=AE/2E without obtaining a folding integral which
is either much wider or much narrower than the corre-
sponding experimental points.

Encouragingly good agreement between the calcu-
lated curves and the measured points is noted, even
though no correction has been made for the finite
angular acceptance of the analyzer. Several details of
agreement emphasize the general correctness of the
theoretical description. Both the calculated curve and
the experimental points for the first-loss peak show a
long tail at large 6, which is totally absent in the zero-loss
angular distribution. This is a consequence of the long
1/6* tail of the Bethe-Ferrell differential cross section,
which extends out to some 20 mrad before cutoff (in
this integration procedure the folding has been cut off at
about 8 mrad, since the angular-distribution measure-
ments were carried out only to about 6 mrad). In addi-
tion, the spreading of the first-loss peak at small angles
is well fitted by the value of 8z set by the Bethe-Ferrell
theory; this is the only parameter in the differential
cross section. This experimental fit appears more
accurate than the earlier ones of Ferrell.®

Thus we see that the predictions of the Wentzel
folding-integral theory are accurately borne out by
experiment, if the differential cross section for inelastic
scattering is chosen to be that given by the Bethe-Ferrell
theory. The folding-integral calculations have been
carried out only on data where an experimentally
significant comparison between the curves and the
experimental data could be obtained. (In Fig. 8 the
zero-loss angular distribution has an extremely narrow
central peak—so narrow that the loss peaks in this
region show irregular variations of intensity, apparently
as a result of the detector slipping to one side or other
of the central maximum. Under these conditions’it is
difficult to obtain a good normalization for the angular
distribution points, and these cannot be considered to
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F16. 10. Energy-loss spectrogram at
0=0 for the specimen of Fig. 5, taken
with wide primary angular distribu-
tion (see text). Dashed curve is fitted
to the minima between peaks; the
continuum beneath this curve is sub-
tracted for statistical comparison with -
the Poisson distribution.
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have as good internal consistency as those in the other
plots. The same type of angular spreading can be ob-
served in these points, however.)

It will be noted that the angular effects described by
the folding integral theory are independent of foil
thickness, when normalized angular functions are used;
this is in full agreement with the predictions of the
Wentzel theory.

D. Comparison with Poisson Statistics

To complete the comparison with plural-scattering
theory, it is now desirable to compare the statistical
population of the discrete-loss peaks with the Poisson
formula. The angular spreading associated with inelastic
scattering has an important effect on the statistical
distribution of electrons among the various loss peaks.
For example, the spectrogram of Fig. 10 has been taken
on the same specimen as the spectrogram of Fig. 5;
however, in Fig. 10 the angular spread of the incident
beam is much larger. In contrast with the zero-loss
angular spread shown in Fig. 9, the zero-loss beam used
to obtain Fig. 10 extends from — 3.5 mrad to 4-3.5 mrad,
with a flat maximum of about 2-mrad width. This
spread approximates the limiting case of wide angular
distribution (half-width of the incident beam much
greater than 26z) which was discussed in paragraph (g)
above. The zero-loss, first-loss, and second-loss peaks
are seen to be much less strongly weighted than in the
spectrogram of Fig. 5. In addition, a weak continuum
appears under the discrete spectrum at large values of
energy loss, as indicated by the dashed line. This con-
tinuum, it will be noted, is less pronounced in all of the
spectrograms taken with narrow incident angular
distribution.

If the area under the dashed curve is subtracted from
the spectrum, and the remaining areas of the peaks
integrated graphically by planimeter, the results may
be compared with a Poisson distribution, as is shown

2 3 4 5 6 7
ENERGY LOSS, UNITS OF aE

in Fig. 11. (This treatment differs from that of Black-
stock, Ritchie, and Birkhoff? only in the interpretation
of the continuum.) A high degree of fit is obtained with
a Poisson function: Py (#/X)= (¢/N\)Ye ¥*/N| of argu-
ment #/A=23.2. It will be noted that this is an eight-
point fit.

The zero-angle spectrogram of Fig. 5 is not in agree-
ment with this Poisson function, of course. In principle,
however, we may weight the zero-angle spectrum by the
integrated solid-angle spread of each peak. The calcula-
tion is indicated graphically in Fig. 13. Assuming the
angular distributions of Fig. 9 to extend with cylindrical
symmetry, the products of the angular distributions
Jx(8) with | 6| are shown as functions of |8]. The curves
are expected to approach asymptotically the dashed
line, of slope 1, at small |8|. The areas under these
curves should correspond to the weighting factors for

RELATIVE PEAK AREAS

' 1
6 7 8

A
0[ 1 1 L Il
o

!
3 4 5
NO OF ENERGY LOSSES N

F16. 11. Poisson distribution of the energy-loss peaks in Fig. 10:
@ areas of the peaks, with dashed continuum subtracted; A areas
of the zero-loss and first-loss peak of Fig. 5, weighted by the
angular calculation of Fig. 13 (see text); solid line, the continuous
function (¢/A)¥e~#*/T'(N41) [which coincides with Py(¢/\) for
integral values of V], with argument ¢/A=3.20.
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the solid-angle spread of each peak. It will be noted that
the zero-loss function is sharply cut off at about
1.4 mrad from the axis of the scattered beam, whereas
the first-loss peak has a large-area tail extending out
beyond 5 mrad. It appears from these measurements
that the second-loss peak does not have a finite tail;
certainly it cannot be determined with any accuracy
beyond 6 mrad. Hence, the weighting factors can be
estimated accurately only for the zero-loss and first-loss
peaks. If they are so measured, and the areas of the
Fig. 5 spectrogram multiplied by them, the two triangles
of Fig. 11 are obtained, in good agreement with the
Poisson distribution obtained from the wide incident
beam.

This small-angle effect has not been explicitly con-
sidered in previous experimental comparisons*#—#8 of
characteristic-loss spectra with Poisson statistics. The
most successful measurement of this type to date, by
Blackstock, Ritchie, and Birkhoff, has tacitly assumed
that the scattering is one dimensional; however, the
success of their comparison is probably a result of the
fact that the incident beam had a wide angular spread,
and possibly that the angular acceptance of the detector
was also rather large. In measuring the areas of the
peaks, these authors assumed that the weak continuum
underlying the discrete-loss spectrum was composed of
long tails on the discrete-loss peaks, and divided its
area accordingly. This tends to give a higher value of
argument in the Poisson function derived to fit the data.
These authors have not demonstrated as detailed a fit
to the Poisson distribution as is shown here. In their
case {/\ is not determined to better than =4=15%,. Hence,
the comparison reported here differs in several critical
respects from that of Blackstock, Ritchie, and Birkhoff
and is felt to represent a more rigorous approach.

E. Determination of Mean Free Path

An alternative method of displaying this data, which
emphasizes the good agreement with a Poisson distribu-
tion, is shown in Fig. 12. From Eq. (8), if

Tn()= f f i Tn(8;5)d%
18]=0

is the area of the N-loss peak integrated over all angles
of scattering, then

NUn(0)=@/N)Ne ", ©
or

log(N \Jx)=N log(#/\)—i/\. (10)

Thus a semilog plot of N !Jy as a function of V should
be a straight line of slope log(#/)). This is indeed found

4 E. Sternglass, Nature 178, 1387 (1956).

4 G. Ruthemann, Ann. Physik 437, 113 (1948).

4 H, Friedmann, Naturwissenschaften 41, 569 (1954).
46 H, Friedmann, Z. Naturforsch. 11a, 373 (1956).

47 H, Friedmann, Fortschr. Physik V, 2, 51 (1957).

48 W. Lang, Optik 3, 233 (1948).
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to be the case, in Fig. 12. The straight line for {/A=3.20
fits closely the small-error points from N=0 to N=4;
the dashed line for #/A=3.33 includes the points N =5
to N=1 better, and shows that the statistical error in
determining this slope is not the limiting feature of the
measurement, since the two values of #/A agree within
49,. Perceptibly poorer agreement with the experi-
mental points will be obtained for any slope outside
the range 3.20 <#/X\ <3.33.

If this value of #/A can be combined with an accurate
measurement of foil thickness, a mean free path for the
inelastic process may be determined. The thickness of
the specimen used for the measurements of Figs. 9-13
is 25804100 A, giving a mean-free-path value of
810460 A, if the value #/A=3.20 is used.

As has been indicated in (f), the same value should
be obtained for all foil thicknesses, if the mean free
path does not vary from specimen to specimen. The
angular distribution curves of Figs. 6-8 may be used to
weight the zero-loss and first-loss peaks of the zero-angle
spectrograms in Figs. 2—4, giving the following table of
mean free paths:

TasLE 1. Comparison of mean free path for Al
foils of various thickness.

t/X\ from A, mean Limits

Foil thickness, Poisson free path of
¢ (angstroms) function (angstroms)  error
650180 0.75 (2-point fit) 870 +200
1130150 1.4 (2-point fit) 810 +110
1710£120 2.2 (2-point fit) 780 + 80
2580100 3.2 (8-point fit) 810 + 60

The data reported in this table are for a set of speci-
mens which exhibited low background continuum, and
for which the thicknesses are reliably known. These are
not isolated examples of the Poisson-distribution fitting
procedure, however. A number of 5- and 7-point fits to
Poisson distributions, similar to the data of Figs. 10
and 12, have been obtained for specimens exhibiting
larger background continuum, and for which the thick-
nesses were less accurately known.

It will be seen that the values obtained from the
spectra of Figs. 2, 3, and 4 agree with the more reliable
value of Fig. 10, within the limits of error of the
individual observations. The primary limiting factor in
these observations is the determination of specimen
thickness, which has been performed by the Fizeau-
Tolansky*% multiple-beam reflection interferometer
method. Since this method has certain systematic limita-
tions in the measurement of film thicknesses, which have
not been described in the literature, it is appropriate
to describe it briefly.

© S, Tolansky, Multiple-Beam Interferometry (Oxford University
Press, New York, 1948).

© S, Tolansky, Swurface Microtopography (Interscience Pub-
lishers, Inc., New York, 1960).
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F. Measurement of Specimen Thickness

It should be remembered that these experiments are
performed on self-supporting aluminum foils [ which are
evaporated on a stripping layer of evaporated rocksalt,
or Victawet 35B (sodium lauryl and octyl phosphate) ]
and transferred to the specimen holder by floating on
a water surface. A number of samples from the areas
adjacent to the scattering specimen are picked up on
microscope slides, some of which are clean, and others
of which are coated with an optically opaque mirror of
evaporated aluminum. These specimens are then
silvered by the Tolansky prescription, and the step at
the edge of each specimen is measured in the reflection
interferometer. As Tolansky has shown, this type of
step can be measured with considerable accuracy ; here
we find an interferometer error of about 4=20 A. Indeed,
the interferometer measurements are not found to be the
limiting factor; a more important question is whether
the step height of the silver coating corresponds exactly
to the thickness of the aluminum specimen. In this
connection it has been observed that the specimens
picked up on a glass backing exhibit a lower measure-
ment of thickness (by an irregular amount, ranging up
to three or four hundred A) than those picked up on the
aluminum backing. There are several possible inter-
pretations of this discrepancy, the most plausible of
which appears to be a different sticking probability for
the first monolayer of silver on glass and aluminum
surfaces. Under this interpretation the thickness meas-
urements with the aluminum backing should have the
minimum systematic error, since silver is evaporated
on aluminum at each side of the step. These are the
measurements which are quoted in the mean-free-path
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F16. 12. Logarithmic representation of the Poisson distribution
in Fig. 11; N/, is shown as a function of N, where J, is the area,
of the Nth loss peak in Fig. 10: solid line, P (¢/A) for £/A=3.20;
dashed line, Py(¢/)) for t/A=3.33.

table (Table I); the errors are the maximum departures
of the thickness sample measurements from the mean
values.
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Frc. 13. Graphical
estimate of the angular
weighting factors for the
spectrogram of Fig. 5,
using the angular data
of Fig. 9; the dashed line
shows the asymptotic
slope expected for all
curves as || — 0.
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G. Interpretation

The value of A=8102£60 A, obtained from the spec-
trogram Fig. 10, is slightly higher than the limit of
560 A reported by Blackstock, Ritchie, and Birkhoff?
for a primary energy of 25 kev; however, as we have
pointed out earlier, there are certain differences in the
treatment of these data.

Two primary sources of systematic error remain in
this measurement.

(a) Treatment of the continuwum. If the method of
subtracting continuum, used on Fig. 10, cannot be
theoretically justified, this contributes a systematic
error in the determination of #/A which is larger than
the statistical scatter in Fig. 12. In this respect, it may
be suggested that the line shapes of Fig. 10 suggest a
“natural line shape” for the single loss of Lorentzian
form, which would contribute broad tails on the peaks
for large N. A detailed investigation of this feature is in
progress.

(b) Neglect of large-angle scatiering. The method of
observation for both the spectrogram of Fig. 5 and that
of Fig. 10 excludes electrons scattered at angles greater
than about 6 mrad. In Fig. 13 the first-loss curve is
artificially truncated at 6 mrad; in practice, however,
single inelastic scattering is known to continue out to a
cutoff at about 18 or 20 mrad.®® Assuming a 1/62 decay
in the region between 6 and 20 mrad, as has recently
been demonstrated by Kunz,* this region of angle may
be expected to contribute a total of <209, to the total
cross section of Eq. (7). Hence the mean free path
measured here is a mean free path for small-angle
scattering (<6X 102 rad) which may be up to 20%
larger than the mean free path corresponding to the
total cross section. Hence the discrepancy with the value
of Blackstock, Ritchie, and Birkhoff may be partly a
consequence of the incident angular distribution of
Fig. 10 not being large enough to fully include the “tails”
of the differential cross section. An experimental solution
to this question is difficult to devise; if the data are to
be recorded as a zero-angle spectrum with wide incident
beam, as in Fig. 10, the incident beam must have a
uniform angular distribution between —20X10~* and
+20X10~2 radian, a condition difficult to achieve in
practice.
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ments. The computer program used in the calculation
of the folding integrals was developed by L. Breed.

APPENDIX: CALCULATION OF THE
FOLDING INTEGRALS

The calculation of folding integrals can be made by
either of two methods: The functions to be folded may
be replaced by their Fourier-Bessel transforms, and the
inverse transform applied to the product of these (as
indicated by Molire? in his more general method of
solution), or the functions may be evaluated and folded
numerically. The first method has been used by Keil,
Zeitler, and Zinn® in their recomputation of Leisegang’s
results; it has the disadvantage of involving a full
Fourier-Bessel transform for any numerical functions
used, such as the zero-loss angular distribution measured
in these experiments. Hence we have used the second
method, which may be done by a computer program
readily adapted to digest numerical input functions.

The method of integration has been as follows: the
two functions to be folded are plotted (in full cylindrical
symmetry) on fine-spaced x-y grids (spacing 0.25 mrad
in Fig. 6, 0.20 mrad in Figs. 7 and 9). The two grids are
overlaid, the functions are multiplied point-by-point,
and the product values summed out to a cutoff radius of
between 8 and 10 mrad. The sum is then taken as a
single value of the integral function, whose argument is
given by the separation between the maxima of the two
functions. The maxima are then moved apart one grid
space, and the calculation is repeated for the new value
of argument. This operation has been programmed for
the IBM 704 computer, using Fortran coding. Sample
running time is 4 min/curve.

In cases where the experimentally-determined angular
distributions are not wholly symmetrical about zero
scattering angle (as is the case in Figs. 6 and 7) the
positive and negative scattering angles have been
treated as separate problems of cylindrical symmetry.
In Fig. 9 the experimental symmetry is sufficient to
allow the use of a common approximation function for
positive and negative angles.

The value of 8z used in the Ferrell differential cross
section has been 0.350 mrad in Fig. 7 and 0.370 in Fig. 9,
corresponding to AE of 14.0 and 14.8 ev, respectively.
In Fig. 6 the positive-angle half of the first-loss curve
has been evaluated with 65=0.370; the negative half,
and the positive half of the second-loss curve have been
evaluated with 85=0.350. Since it was not possible to
measure AE with high accuracy during these angular
measurements, these values were chosen to give best
fit (0.350) to the experimental points, or to correspond
to the widely quoted value of 14.8 ev (0.370) in the
literature for this energy loss. The tail-width is particu-
larly sensitive to this parameter.

( 52 F) Keil, E. Zeitler, and W. Zinn, Z. Naturforsch. 15a, 1031
1960).



