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The complete Zeeman and hyperfine (dipole, quadrupole, and octupole) matrices are given for an (st)
configuration in intermediate coupling. From these are derived the second-order corrections to the zero-field
hyperfine intervals for an (sp) configuration. In addition, we obtain the corrections appropriate to the
crossing of certain of the hyperfine Zeeman levels of an (sp) 'P

& state for atoms with spin- —', and spin-$ nuclei.

I. INTRODUCTION (hfs) of the sI' states of Zn" a,nd Mg". Finally, we dis-
cuss, in connection with an accompanying paper, ' the
second-order Zeeman, hyperfine, and cross Zeeman-
hyperfine corrections to the level-crossing field appro-
priate to an (sP) 'Pi atomic state.

In this work we have followed the relativistic methods
of Breit and Wills' and Casimir' in their formulation
of the two-electron hyperhne problem, and the method
of Schwartz' in the evaluation of the single-particle
interaction constants. Relativistic and diamagnetic
corrections to the Zeeman effect are not discussed.
Wherever possible we have used the same notation as
Schwartz. '

It is assumed that the wave function representing
these states may be written as a product of single-elec-
tron wave functions. This ignores configuration inter-
action which may be important in the heavier elements.
Since the general problem of the hfs and Zeeman effect
for an s election and an electron or hole with arbitrary
orbital angular momentum l (referred to as an sl con-
figuration) is only slightly more dificult than the case
of an sp configuration, we have analyzed this more
general problem. As yet, there are no precision measure-
ments of configurations other than sp but we expect, for
example, that the hfs of the metastable (6s5d) 'D state
of barium will be measured in the near future.

A NUMBER of optical resonance' and atomic beam
experiments' have recently been performed on the

(sp) sI' states of the group II and rare-gas elements,
other experiments are in progress, ' and still others are
planned. The precision of these experiments necessi-
tates an evaluation of the second-order hyperfine and
Zeeman interactions between states associated with
different fine-structure levels. In this paper we present
the complete matrices for the magnetic dipole, electric
quadrupole, magnetic octupole, and Zeeman operators
for a general (sl) configuration in intermediate coupling. '
These matrices are used to compute the second-order
dipole and quadrupole corrections to the zero-field
hyperfine intervals of the sI' and 'I' states of an (sP)
conlguration. These results are applied in an accom-
panying paper' to the analysis of the hyperfine structure

II. WAVE FUNCTIONS AND HAMILTONIANS

The electronic configuration, exclusive of closed sub-
shells, consists of two electrons; electron. (1) with /=0
and electron (or hole) (2) with I=arbitrary. In the
absence of hyper6ne structure and an external field,
the s and l electrons couple to form four states which we
designate with the usual Russell-Saunders (RS) symbols
'L,~+&, 'L~, 'l.

~ i, 'I.~. The wave functions representing
the states of highest and lowest total angular momenta
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are independent of coupling and can be written as' ~

0('I-i+i) =4 ('Lwi') =
I (k, t+k)»&,

and

4('I —) =4('L~~') =
I (k, t—k)~-~&

0('Li)=c~'l(k t+2)~&+co'l(k t—k)~)
= 7('L')+~V('L'), (1b)

where orthogonality and normalization require that

cy =co) co = —cy) cE = —P) P =Rq1 I 1 1

c '+c o=n'+P'= 1. (2)

The RS and jj expansion coefficients are related by

l ~-*'l+1 ~-:

i2l+1) 2l+1l

tt+»' r»'
tt = c~l

—
col

E2l+1l (2t+1)

(2a)

where the superscript (0) indicates a pure RS state and
the symbol l(j&,jp)z& indicates a pure (jj) coupled
state. The wave functions for the two states of total
angular momentum / depend on the coupling. We will
need to expand these wave functions in terms of both
the pure (jj) and pure RS wave functions:

0 ('L~) =c~l (-., t+k) ~)+co I (o, t—k) ~&

= 4('I-')+W('L '), (1 )
and

For pure RS coupling we have

&t+»'
(2t+1l (21+1)

P=O.

The values of c& and co (and n and P) depend on the
relative magnitude of the spin-orbit and electrostatic
interactions between the two electrons and may be
estimated in a number of ways to be discussed in
Sec. VI.

The interaction Hamiltonian is given by the sum of
two terms: KI„ the hyperfine interaction, and 3C„
the Zeeman interaction. Following Schwartz, ' we write
the hyperfine term as

Xy, ——Q, Qg T,&'&(i) ~ T„&'&=ggK~"~,

where the i summation is over the s and / valence elec-
trons and the tensors T,(~) and T„(~' are defined by
Schwartz. The superscript k indicates the multipolarity
of the hyperfine interaction; K(",BC('), and BC(3) are the
dipole, quadrupole, and octupole Hamiltonians re-
spectively.

The Zeeman term is given by

X.=pogsS H+ yoga. L H+yogzI. H, (&)

where pp is the Bohr magneton and H is the magnetic
field.

III. MATRIX ELEMENTS

The matrix elements of the relativistic hyperfine
operator 3C& are most readily evaluated in the jj cou-
pling scheme. ' These elements are diagonal in both Ii

and m. Thus,

F J I
(~IIFm

I x„I~II'F~& =P, ( 1)'+'+r— &(4jo)~IIX' T '"'(t)
II (kjp') ~ &(III T-'"'III»

k I J'

where the two-electron reduced matrix element is related to the single-particle reduced matrix elements by

&(!,j.).IIX, T. "'(')ll(-:j.')'&=~,.~;*,;. (—1)-:+'+'[(»+1)(»'+1)3-:
gl

&l0lllT' "'(~)lll0l&1

From Schwartz we have:
(a) Single-electron dipole elements

(vktjll2' "'lip-'tj&= (I/p, ,)[j(j+1)(2j+1)]-'*o,

I $ (2l+1) (2l+—3)
(p-,'t l+-', IIT.&»lip-,'t t——;&=—6-,'t t——;IIT,~»lip-', t t+-', &= C)+~

I r 4 [2t(t+1)(2t+1)j'

4eprr& ljr l(l+1)
r 'fgdr=2 —pp (1/rp& „F&,Ij(2j+2) o I j(j+1)

a=t+1, (j=l+-,'); ~= —l, (j=l——,').
A. R. Edmonds, Angular Momentum in Quantum 3IIechanics (Princeton University Press, Princeton, New Jersey, 195&).
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(b) Single-electron quadrupole elements (lower sign refers to holes)

(~l tjll2'. &"Ib-'tj& =~ (j+1)(2j+1)(2j+3) ' b;

j(2j—1) - 2Q

rib«+, 3(2t+3) (2t+2)
(v2t t+2ll2'. &'&Ilv2t t——:&=—(v2t t—2II2'. &p&II~:t t+-l&=+

Q -2(2t)(2t+1)(2t —1)-
eQ(2j —1)

b = r '(f'+-g')dr=
2j+2 p

22 —1
e Q(1/r' &„R,.

2j+2

c; (2j+4) (2j+3)(2j+2) (2j+1)
(~ltjIIT "'ll~ltj&= ——

0 2j(2j—2) (2j—1)

(c) Single-electron octupole elements (see Appendix I for the definition of i)

(2t+5)«c«+*,
6-;t ty-', IIT, & &II~-', t t——',)= —h-,'t t——,'IIT, & &ll~-,'t ty-;

2

(2t+3) (2t+4)
(8c)

3 (2t+2) (2t+ 1)(2t) (2t—1)(2t—2)

2ea(2j—1)
c„=—0

(2j+4) (2j+2)

8t(t—1)(t+1)(t+2)
r 4fgdr=D&Jp (1/r'&, T,.

(2j+2) (2j+3)(2j+4)

The relativity correction factors Ii;, E;, and T; are
discussed in Sec. VI. The quantities $, &1, and i are de-
fined in terms of the ratios of the off-diagonal to di-
agonal matrix elements for the dipole, quadrupole, and
octupole operators respectively. These are discussed in
Sec. VI and Appendix I. The equation given in Ap-

pendix I for i does not apply to p electrons. However,
it follows from the conservation of angular momentum
that the octupole matrix element connecting single-
electron I'; and I'; states is zero and therefore f van-
ishes when /=1.

By combining Eqs. (6)—(8), we obtain the complete

TABLE I. Magnetic dlpolc matrix clcmcnts for Rn sl con6gUlatloll i11 lntclIIlcdlRtc coUplIng.

Diagonal dipole matrix elements:

X g, 2l+1
(PL&+&Fm ~Xo&l PL&~&Fm) =— + o&+«

2 2l+2 2l+2

E (cP cP '&& f 2l+3
(I'L&FmlR"'II'I&Fm&=

I Io +I c&'

2 l, 2l 21+2) ( 2l+2

2l —1&&—2CIC2 p Ia&~«+ c '
Ia& «

L(21)(21+2)]« i 2l J
(PL&Fm IX&'& [I&L&Fm)=above with c~ —+ c&' and c2 ~ c.'

E a, 2l+1
(PL& gFm(X&'&~I'L& —&Fm)= ——+

2 2l 2l

OfI'-diagonal dipole matrix elements:

1 (2t+3)g
(PL&+&Fm )Ro&

~
I'L&Fm) = {L'(1+1)'—(F—I) ][(F+I+1)'—(l+1) ]}«——c&a,— cz+cg Iz&+«

2 (2l+2) 2L(21)(2l+2)]«
(PL&+&Fm )R&'&

~
PL&Fm) = above with c& —& c&' and cp ~ c~'

(PL +&&mF( &R' ~P&L&&Fm) =0
1 2l+3

(PL&Fm ~X&'& &PL& ~Fm) = {PP—(F—I)']L(F+I+1)'—P]}«—cg(&4 o& «) c, — ———$o&+«
2(2l) 2$(21)(2l+2)]«

(I'L&Fm ~R&'&
~
I'L»Fm) = above with c~ ~ c&' and cp ~ c2'

E ( 1 1) 2l+3 (cP—cP)$ (21 1&&—
(I'L&Fm

I
R "

I
I&L&Fm& =— c~c'I —+—I"+ c"2+ gt+y — CIC2C)

«&21+2 21) 2l+2 (2l)P(21)(2l+2)]«( 2l )
where E=F(F+1) J(I+1) I(I+1). — —
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TAnLz II. Quadrupo/e matrix elements for an s/ con6guration in intermediate coupling.

Diagonal quadrupole matrix elements:

3 LE(K+ 1)——;(l+1)(l+2)I(I+1)j
(I L&ylpm

~

X&'&
I I'L&+1Pm) ——by+

2 (2I)(2I—1)(2/+2) (2l+1)

3 pIC(IF+ 1)—;l(l+—1)I(I+1)j 1 (2/ —1)(2/+4) 12c&csr&
(I'L&pm IX"'

I
I'L,Pm) = Cq b~+)+&Pbi-g

2 (2I)(2I—1)(2l) (2/ —1) 2l+1 (2/+2) L(2/) (2/+2))t

(I&L&pm (X"& &I&L&pm) =above with c& —& c&' and cs ~ c2'

3 PE(X+1)—s'/(/ —1)I(I+1)j (2l+2)(21—3)
(PL& &Fm|X&'&IPL»pm)= b&-k r

2 (2I)(2I—1)(2/ —2) (2l —3) (2/) (2/ —1)

where Z =F(F+1) J(1+1—) 1(I+1)—.
08-diagonal quadrupole matrix elements:

(PL&+&pmlX&'& &PL&pm)= (—)t F(p+1)—I(I+1)—l(l+2)j(L(p+I+1)'—(/+1)'jL(/+1)s —(F—I)'j}t

X—
(2I)(2I—1)(2/)(2/+ 1)(2/+2)

(PL&+,Fm
~

X&'& (&I&L&pm) =above with c& ~ c&' and cs ~ cs'

(PL&+&Pm
~

X&'& &PL& cpm) = ([is—(F—/)'g((/+1)' —(F—I)'gL(F+I+1)'—/'g((p+l+1)' —(I+1)'j}&

(2l+2»
c&+col I

b&+1
&, 2/i

3
X

(2I)(2I—1)(2l—1)(2l) (2l+1) L(2l) (2/+2))&
3LF(F+1)—I(I+1}—(l+1)(l—1)j

(PL&Pm I X&s&
~
PL& cpm) = (—) —(D2 —(P—I)s/P(P+I/1)s —Pg}t

(2I)(2I—1)(2/ —1)(2l)(2/+1}
21+3 (23+1)

X gbl+g+&2 bl-$
L(2/)(2/+2]& (2l —2}

(I'L&pm &&X&'&
I
I'L& &pm) = above with c& ~ c&' and cs ~ cs'

3 LE(K+1)——;l(l+1)I(I+1)j 1 (2/ —1)(2l+4)
(i&L&pm

I
X&'&

I PL&Pm) =— CIC2 +6(cP—c2')— b~+) —cIc2b~ )
2 (2I)(2I—1)(2l) (2l—1) 2/+1 (2/+2) L(2/) (2/+2) j&

matrix of the hyperfine operators in (jj) coupling. These
can be transformed to intermediate coupling by applica-
tion of the transformations given by Eq. (1).The com-
plete tvro-electron dipole, quadrupole, and octupole
matrices in intermediate coupling are given in Tables I,
II, and III, respectively. Some of the octupole matrix
elements have been expressed in terms of the tA"igner

6j symbol, '
jl j2 j3

j4 j5 j6

Convenient numerical tables of these coeScients are
available. "

The matrix of K, (Zeeman operator) is most easily
evaluated in pure RS coupling. It is diagonal in m and
S (total spin). In intermediate coupling the total spin
is no longer a constant of the motion and matrix ele-

ments appear that couple states labeled with different
values of S. In pure RS coupling we have'" (where the
Z axis is taken along the magnetic field H)

P' 1 P~
(yI(S'1)T'F'rn' IK, I yI(SI)JFrn) =be, s 8, (—)"

I II (2F +1)(2F+1)1
&&. —nt 0 ns)

I I' J J' P' I
, ( )I+J+E+1 (III3&'-*-ll»+ (—)""""

I J
MM. Rotenberg, R. Bivins, N. Metropolis, and J. Wooten, 2"he 3-j and 6-j Symbols (The Technology Press, Cambridge,

Massachusetts, 1959).
' ' Note added in proof. The m dependence oi the Zeeman matrix element is contained in the Wigner 3j symbol, ' '&&

mf mg me
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TAmz IIE. Octupole matrix elements for an sl con6guration in intermediate coupling.

Diagonal octupole matrix elements:

(PL&+&Fm IX&'&
I PL&+&Fm) =M(I; l+1; F; 3)C&+1

(PL&FmIX&»IPL&Fm)=M(I; l; F; 3)
(2l+5)

(2l—2)crP- Ci~)+c2'Ci y

(2l+2)(2l+1) I (21)(21+2)71

(I'L&FmlX&»II&L&Fm)=above with c& ~ c&' and c2 ~ cz'

(2l+3) (2l—4)
(PL& &Fm IX&'&IPL«Fm)=M(I; l 1;—F; 3) —C) )

(2l) (2l—1)

where M(I; J; F; 3)= (—) + +~
F I j [(2j—3)!(2I+4)!(2I—3)!(2I+4)!71

3 J I (2j)!(21)!

20
or M(I; J;F; 3)=-

(2I)(2I—1)(2I—2)(2j)(2j—1)(2j—2)

XP&'+4E'+ ,'E( 3I(I+1-)J(J+—1)+I(I+1)+J(J+1)+3j 4I(Ii])I(jy—1)7
and K=F(F+1) I(I+1) J(I+—1)—
OG-diagonal octupole matrix elements

(IPL,+,Fmlx&» IIPL,Fm) = ( )r+r+&+&-
F /+ j. I (12)(2l+5)(2l+4)(2l+3) t cp 2l+5

(IIII'-"&III) cl+
3 I l (2l+2) (2l+1)(2l) (2l—1) 12 L(2l) (2l+2)71 0

(PL&~lFmlX&'&II&L&Fm)=above with cr +ci' and c&&
-+cq'-

F l+1 I 5 (2l+4)(2l+3) 1 (2l+5) C&~t
(IPL,+&Fmlx&» IIPL, &Fm) =( )r+~+&- ( ll I.TI&II) ——

3 I l 16—(2l+1)(2l—1)(2l—2) (2l) (2l+2) 0

(PL«Fm I
X&'&

I PL&Fm) = (—)r+r+'
P l—I I

C& 1 c& (2l+5) (2l+4) (2l—3) C&+t
X c2 +—

0 12 (21+2)(21+1)L(21)(21+2)71 0

(12)(2l+3) (2l+2) (2l+ 1)
(III T-&» III)

3 I l (2l)(2l —1)(2l—2)(2l—3)

(PL«FmlX&'&lI'L&Fm)=above with ci +ci' and cQ ~-cp'

(PL&FmIX&' lI'L&Fm)=( —)'+ +'
l I

3 I l

(2l+4) (2l+3)
(III2'-"&III)—

(2l+ 2) (2l+1)(2l) (2l—1)(2l —2)

X (2l+5) —c&cp(21—2)+(cr' —c&r)—
L(2l)(2l+2) 7'

Clog C) )
+cicr(21+1)(21+2)

0 0
I:(2I-3)!(2I+4)!7'

where (IIIT~&»III)= — - —(—ii)
(2I)!

where K,,„=grppl H and 3C„=(grl&& pi. +gsppS )H The nuclear a.nd electronic reduced matrix elements are given by

(1113(' III&=gr P(1+1)(2I+1)g~&«os,

(j'llew('-ll j&=l (2j+1)(2j'+1)]:sos g ( )'+'+'+'—L J' S
D(l+1)(21+1)]lJ I

S J' L
+g ( ) r+s+&+& LS(S+1)(2S+1)j'* . (10)J S 1
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TABLE IV. Zeeman matrix elements for an sI con6guration in intermediate coupling.

Zeeman matrix elements in intermediate coupling

F(t+1)+J(J+1) I(I+—1) F(F+1)+I(I+1) J(J—+1)
(IsLgtm

~
Rz

~
IsLztm) = gz'— —+gr—— mppH

2F(F+1) 2F(t+1)
(gz' —gr)uoH Lt' —mo5H I+I+1)'—to7Lto —(J—I)'5 O

(IsLqt 1m
~
Xz—

~
IsLqtm)= (—)——

2P 4p2

(gs gs)—F(t+1)+l(l+1)—I(I+1)
(PL)tm iXz

~
PLitm) = ( )n—p mIJ, pH

l(l+1) 2F(t+1)

(gs gr, )IJoH—ft' m'5—((I+1+1)' F'5P—F' (l——I)'5
(I'L(F 1m

~
Xz—[ I'Latm) = (I'Latm [Xz [I'LtF 1m) =nP—

l(l+1)2F 4F'—1
1 1
(PLit'm-(Rz ) I'Lt+1tm) ( ) (I'Lit'm )Xz ( PL&~atm)= (PLPF'm( Xz ) I'L~~Ptm)

A p

where F'=F, F+1, and the pure RS matrix elements (superscript zero) are given by:

(gs gc)mpoH—P(I+F+1)' J'5)J'—(I—F)—'5'' —(l 1)'5L (1+2)' ——J'5
(PLg Ptm[Xz[I'Lz Fm)=(PLs'Fm(Xz(PLz x'Fm)=—

4F(F+1) J'(4J' —1)

(I'I J gF 1m)X—z(I—'Lz Fm)=(I'Lz'Fm[Rz[PLg Pt 1m)—
(gs gs)uoH (F' —mo)D J+F)o —(I+1)o5$(J+—F)o—PX.P—(l—1)o5[(1+2)o—J'5

4JIl (4F' —1)(4J'—1)

(IoLz & Fm)Xz(I'Lz'F 1m) =(I'Lz'F—1m(Xz(PL+ &—'Fm)

gz'('«pi) gz('«=+ro)

gJ ( L&)=n'gz(oL&')+p'gz( L&')

gJ ( Ll—1)=gJ'( L/ —r )

gg'('L)) =u'gg('Lp)+p'gg(oLp)

(gs g—z)uoH—(F' m')E(I—+1)' (J F—)'5LP— (F—J)o5LJ'——(l—1)'X(1+2)'—Jo5

4JF (4F'—1)(4J' —1)

J(J+1)+L(I+1) S(S+1) J(J+1)+—S(S+1) L(L+1)—
gq( Lq )=gz +gs-

2J(J+1) 2J(J+1)

The Zeeman matrix may be transformed to inter-
mediate coupling by application of the transformation
given by Eq. (1). The resulting matrix elements are
given in Table IV.

IV. ZERO-FIELD HYPERFINE ENERGIES

The hyper6ne interaction constants A, 8, and C are
as follows. Dipole interaction constants:

a, 2l+1
A('L ~+i) = + «+1

2l+2 2l+2

a, 2l+1
The energies of the zero-Geld hyperGne levels are A(oI, ,)=——+ « *,

given by 2l 2l

Wp= WF o&+Ws &'&,

where 8 p&" is the erst-order energy given by

E' 3(It (E+1)——,'I (I+1)J(1+1)j
Wo &"=A +8—

2 4I(2I 1)(2J) (2J'—1)—
+CM (I,J,F,3), (11)

(&o &r
A(sI.i) = a,l-

k 2l 2l+2i

(21+3) l'2l —1)
+«+-'I l~i +n~—',

I

'&2l+2 '
2l &

2l+3

(12)

where K and M (I,J,F,3) are defined in Table III.
—2cyc2 5«+.

2l (2l+2) $2l (2l+2) )&



LURIO, MANDEL, AND NOVICK

TABLE V. Second-order corrections to the zero-field hyperfine intervals for an sp configuration in intermediate coupling.

Second order corrections to zero-field hyperfine intervals for an sp configuration

I
('Ps ISe I'Po& I'

Ws &'&
(SPY )= + +

E(SPY)—E(SPY) E(SPu) —E(&Py) E(8Pg) —E(sPO)

(F+I+3)(F I+2)(I—F+2)(—F+I 1)—
Wp&'&('P )=

1 ( Sv2 i I(I+1) F(F+—1)+3———
~

c,a,—c,ai——c,(a; ~+- ———(ci+«m)b;
E('Ps) —E('Pi) k 8 l 2I(2I—1)

1 Sv2 && I(I+1) F(F+1)—+3
+ ——— cga~ c2a—i+ c&—gai ~+— (cm

—%2cqg—)bl
E ('P~) —EPPg) 8 P 2I (2I—1)

+
E('Ps) —E('Po)

I( P&lsel P&&I l(3P&lsel Po&l'
Wr &'&('P, )= +

E( Py) —E( Pg) L"( Pi) —E( Pi) E(~Pl) —I'( Po)

(F+I+2)(F I+1)(I—F+1)(F—+I) r&b

2 I(2I 1)—

(F+I+3)(F I+2)(I F—+2)(F+I—1) — 542
&& I(I+1) F(F+1)+—3

Wp&'& ('P&) = c~a, —chai ——c2bai ~+ — (c&+—Kcsg)bi
64[E(3P,) —E(3P,)j 8 j 2I (2I—1)

5v2g
+ [F(F+1)—I(I+1)—2] c,c~(Sa; 2ai -—3a,)+—(cP cP) —a—

64[E('P&)—E('Pr)3 8

3[F (F+1)—I(I+1)—2$[F(F+1)—I(I+1)—1g—8I(I+1)
+ —— [clc2+ (Cl —c2 )7&V2$]bi

2l(2I —1)

(F+I+2)(I+1 R) (F+1 I)(F+I)— —
+ C20 —C 8—

16[E('P&)—E('Po))

[F(F+1)—I(I+1)3—C1—— —— —5V2CIqbg
8 4I(2I 1)—

W&'&('P&)=same expression as for W&'&('P&) except c& ~ c&', c&
—+ c2' and in energy denominators E('P&) ~ E(P&), E('P&) ~ E('P~)

A('L~) =above with cr' and cs' in place of cr and cs, Octupole interaction constants:
respectively.
Quadrupole interaction constants:

fl('L&+r) = b&+.,

(2l—3) (2l+2)
8('L& r)= ~l—~s)

2l (2l—1)

(2l—1)(2l+4)
&('L&) = cg'b&+4+cssb, .

(2l+1) (2l+2)

(2l—4) (2l+3)
C('L& &)= c) x,

2l(2l —1)

(2l—2) (2l+S)
C( L&) = ct c&+i+cs c)

(2l+1) (2l+2)
2crcs(2l+S) f'cg+1

(2l+2) (2l+1)[(2l) (2l+2) jb

(14)

12crcsr) |' 2l
b&+-, ,

2l(2l+1) 'E2l+2)

8('L&) =above with cr' and cs' in place of cr and cs,
respectively.

C('L&)=sanM as above with cr' and cs' in place of
c& and c2, respectively.

The second-order corrections to the zero-field ener-
gies for an sp configuration are given in Table V. In
evaluating the second-order corrections vie have in-
cluded only the dipole and quadrupole terms. The
second-order octupole terms are generally not im-
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portant; however, if desired, they can be evaluated
from the matrix elements given in Table III.

V. CORRECTION TO THE LEVEL-CROSSING
FIELD FOR AN (sP) sP, STATE

The level-crossing method of Colgrove, Iranken,
Lewis, and Sands" provides a precise method for deter-
mining the magnetic field at which two atomic energy
levels become exactly degenerate (or cross). This
method has been applied to the fine-structure levels of
the (sp) 'P states of helium and the hyperfine levels of
the first-excited (sp) 'Pi state of mercury and cadmium.
Here we will concern ourselves with the latter experi-
ments and evaluate the corrections to the crossing-point
6eld arising from second-order hyperfine and Zee-
man interactions between states associated with dif-
ferent 6ne-structure levels. In evaluating these correc-
tions, it is important to remember that the crossing

occurs at a field value such that the Zeeman energy is
comparable to the zero-Geld hyper6ne splitting of the
'P& state. In view of this, it is necessary to resort to an
exact diagonalization of the submatrix associated with
the 'P~ state. The corrections arising from interactions
with the other fine-structure levels are obtained by the
method of Van Vleck" in which a unitary transforma-
tion is made to eliminate, to second order, the matrix
elements off-diagonal in J and S. The diagonalization
of the transformed submatrix leads to a value for cross-
ing-point field which is correct to second-order in the
hyperhne and Zeeman terms off-diagonal in J and S.

The corrections appropriate to the crossing of the
'Pi (F=-,', rn= ', ) a-nd the 'Pi (F=-'„rn= ——,') states of
Cd"' '" (nuclear spin si) are obtained by this method
in an accompanying paper. ' It is shown that the cross-
ing occurs when

A'('P, )—gr (6)& 5%2) 1 %3n ( Sv2() 1
n cs(a,—at) —ci aI + cia,—I ci+cs ~at

t pH, 2 6 8 E(sP,)—E(sP,) 6 ~ 8 ) E(sP,)—E(sP,)

&'ppII c 3P2

24 .E('Pi) —E('Pp) E('Pi) —E('Pi) E('Ps) —E('Pi)

Here H, is the crossing field, E(eI.q) are the fine-
structure energies, and A'('Pi) is dipole coupling con-
stant for the 'P~ state mAhout second-order corrections.
gz' is the gyromagnetic ratio which would be measured
at low fields in the 'P ~ state for a zero-spin isotope. The
erst two terms are given by the Breit-Rabi equation,
the next two terms are cross hyperfine-Zeeman correc-
tions, and the last term is the second-order Zeeman cor-

rection. The second-order hyperfine corrections have
been absorbed into the Breit-Rabi term by employing
the experimental "A" value for the 'P~ state rather
than the corrected value appropriate to an isolated
'P~ state.

In the case of a spin ~ nucleus the crossing of the
'P, (F=-', , ns=-s, ) and the 'Pi (F=-', , nt=-', ) states
occurs when

2A'(1 —-', b) (1+sb) 1 gz 1——',b+—'b'
= —(1+4b)——

2 gJ 1+sbgJ Poac

1 (ntipH )' (1+-'b)' ( 1 1

12 A' (1—sb) (1+-',b) (E(sPi) —E(sPp) 8(E('Ps) —E(sPi)J)

K3 Bs(nppH, ) 1+sb+-'sb'

8 A'LE(sPs) —E('Pi)) (1——,'b)(1+-,'b)

1 1+4b A p(ntipH, ) 1 A s(ntl pH, ) 1——',b+ s'sb'

2+6 1+-',b A'LE('Pi) —E('Pp) j 4v3 A'pE('Ps) —E('Pi)j (1—-', b) (1+-,'b)

Here b=B'/A' where A' and B' are the dipole and
quadrupole interaction constants for the 'P~ state
soithogt second order correct-ions (see above). In addi-
tion we have

A p cs (a. a,;) ci (5—&/4V—2)a;,

A s
——cia,—(ci+cs5 $/4v2/a. ;, (17)

"F. D. Colgrove, P. A. Franken, R. L. Lewis, and R. H.
Sands, Phys. Rev. Letters 5, 420 (1959).

and
Bs——Lci+csrt42$ba.

In obtaining this result we have neglected the terms
arising from the interaction with the 'P~ state. In the
case of the group II elements these terms are smaller
than the terms arising fron1 the 'P2 and 'Po state by at

"See for example E. C. Kemble, The Fundamental I'rinciples
of Quantum Mechanics with Elementary 3pplications (Dover
Publications, New York, 1937), pp. 394.
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least a factor of 100. The first three terms on the right-
hand side of Eq. (16) have been obtained previously
by Dodd. " (He assumed that b«1 in the second and
third terms. )

VI. EVALUATION OF CONSTANTS AND
NUCLEAR MOMENTS

The theoretical expressions for the hfs of the 'P and
'P states may be written in terms of the constants c&, c2

(or n, P), a„a;, ai, b;, c;, g, z), and l. In the case of al-

most all of the atoms of interest the nuclear magnetic
moment and the 'P state hfs have been determined for
at least one stable isotope. This allows one to determine
the magnetic moment of a new isotope directly from the
observed hfs, at least to within the hfs anomaly. In the
case of the quadrupole and octupole moments, however,
reliable estimates of all of the above constants and
(1/r'), and (1/r'), are required. Unfortunately, there
are more constants than experimental parameters and
we must rely on theoretical estimates of some of these
quantities. Here, we will brieQy discuss the various
methods for estimating the constants and nuclear
moments.

The constants" $, r), and" 8 all involve the ratio of
radial integrals whose main contribution comes from
the neighborhood of the nucleus. Breit and Wills, and
Casimir have estimated these constants and the various
relativistic corrections for a Dirac electron with zero
binding energy in a Coulomb field. Schwartz has re-
evaluated the same quantities for a Dirac electron with
finite binding energy and a shielded Coulomb field.
Schwartzr4 concludes that Casimir's estimates for $, zi,

and 0 are quite reliable; however, he finds that his
previous estimate of the octupole integrals are in serious
error. He has also shown that in some cases configura-
tion mixing can cause substantial changes in 0. As yet,
no one has estimated the configuration mixing correc-
tions to i) for a general (sp) state.

Reliable estimates of the mixing coeScients (cr,cs)
or (zr,p) are diflicult to obtain. Three methods have
been used to determine these coeKcients. In the first
method, the deviation of the 'P~, 'P~, 'P0 separations
from the Lande interval rule and the 3P~, 'P j separation
is used to estimate the degree of intermediate coupling.
This procedure takes account of the spin-orbit inter-
action, but neglects spin-spin and other interactions. '
A more rigorous theory for the case of the alkaline earths
has been given by Araki, ' but in this theory there are
many more quantities to be determined than there are
experimental results. In the second method the lifetime
of the 'P~ state is assumed to be determined completely
by mixing of the 'P& and 'P& states. That is, the natural

zz J. N. Dodd, Proc. Phys. Soc. (London) 77, 669 (1961)."C.Schwartz, Phys. Rev. 105, 173 (1957).
8=—Qi/Qg' Hugh C. Wolfe, Phys. Rev. 41, 443 (1932).
G. Araki, Proc. Phys. -Math. Soc. Japan 19, 128 and 592

(1937).

decay of the 'Pj' state in the absence of mixing is as-
sumed to be negligible. In terms of the measured life-

times we have:

P' r('Pr) X'('Pr —'Ss)

&2 r(BP ) $3(1P 1S )

where X(~Pr—'Ss) is the wavelength corresponding to
the transition from the ~P~ state to the ground state.
While this method may be expected to be quite reliable,
few of the lifetimes have been determined with the
necessary precision. In the third method one makes use
of the fact that the Lande gJ factors for the 'P~ and'P»
states are changed by mixing. Thus, for example, the

gz factor for the 'P& state is given by'"

a~('Pr) = s —sP'+~'(sos —1)
—-,'(zzz/M) (1+P')+kg, (19)

where Ag is the correction for relativistic, diamagnetic,
and configuration interaction effects. In the case of the
group II elements the effect of mixing on gJ is only
slightly larger than the relativistic and diamagnetic
correction, so that a reliable theoretical estimate of
Ag J must be made before the mixing coeKcients can
be obtained from the measured g~ factor. In the case
of the 'P~ state of the rare gases the situation is more
favorable since the mixing is much greater.

The single-electron quadrupole interaction constant
b; can be determined from the measured quadrupole
interaction constant in either the 'P2 or 'P» state. In
the case of the 'P& state c&, c2, and p are required to
make this reduction. The nuclear quadrupole moment
can be obtained from b; if we can estimate the rela-
tivistic correction factor R; and the average value of
r ' for the P electron ((1/r'), ). Tables of Ri are given

by Kopfermann. " These are based on the work of
Casimir. Schwartz has obtained substantially the same
corrections with a more refined method (see above).
Estimates of (1/rs), can be made from either the ob-
served fine structure, the magnetic hfs constant for the

P1 electron (a,*), or the well-known formulas's

o'(1/ ')-=
~*el(l+-', ) (l+1)

dE

l(l+1) (2l+1) Ech dzz

The hfs method is probably the most reliable, provided
that we can determine ag from the observed hfs in the

'" Pote addedin proof. Here, we have neglected the Hughes-
Eckart reduced mass correction [see M. Phillips, Phys. Rev. 76,
1803 (1949)g.

zs H. Kopfermann, Nzzclear Momezzts (Acade'mic Press Inc. ,
New York, 1958), 2nd ed,
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'P2 and 'P~ states. This requires a knowledge of c~, c2,

$, and 8. Quadrupole polarization (Sternheimer) effects
are discussed by Schwartz.

The nuclear octupole moment is obtained from the
octupole interaction constant (c;) in the 'I'p state pro-
vided that we can estimate the average value of r '
for the p electron ((1/r'), ) and the appropriate rela-
tivistic correction. The procedures for doing this are
discussed by Schwartz. Before extracting c; from the
observed hfs intervals in the 'P2 state, it is essential to
subtract out the pseudo-octupole interaction arising
from the cross dipole-quadrupole interactions that exist
between the 'P2 and 'P~ states. These corrections can
be obtained from the formulas given in Table V.

APPENDIX I

In Eq. (Sc) we have written the /-electron off-diagonal
octupole-operator reduced matrix element in terms of
the constant f and the diagonal reduced matrix element
for the j=/+p state. This constant i is introduced in
the same manner as the constants / and rl and we foHow
the procedure of Casimir and Schwartz to obtain the
ratio of the oR-diagonal to the diagonal radial integral
of the octupole operator, which is expressed in terms
of the constant / From C. asimir~ we have for the radial
part of the Dirac wave function for a single electron,

f(r) =Ct -', xj„+,(*)—(p+~)A, (*)j,
g(r) =CnZA, (x), (21)

x= (SZr/ap) l p= (a'—a'Z )'' ap=h'/nse' a= e'/Pic

ated to yield:

r 4f'g'c/r= —C"
p 2mc ap)

10T
X

(2/+3) (2/+2) (2/+1) 2/(2/ —1)(2/+4)
(22)

2Zi' h 15(2/ —3)!= —C'C" —
i

4L,
apl 2mc (2/+4)!

where T is given by Schwartz and L, is a relativistic
correction factor given by

(p'+p"—3)!4!2!(2/+4)
L= (23)

(p p +3) ~ (p p +3) !(p +p"+3) !(2/ —3) !

where the prime refers to j=/+ —', and the double prime
refers to j=l—2.

With these definitions we have for the ratio of the
off-diagonal to the diagonal radial integrals:

C" 3 I.
(24)

C' (/ —1) T / —1

The results given in Eqs. (22), (23), and (24) do not
where C is the normalization constant. With these apply to p electrons (/=1). In such cases the off-
functions the following radial integrals can be evalu- diagonal matrix element is zero (see above).


