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The complete Zeeman and hyperfine (dipole, quadrupole, and octupole) matrices are given for an (sl)
configuration in intermediate coupling. From these are derived the second-order corrections to the zero-field
hyperfine intervals for an (sp) configuration. In addition, we obtain the corrections appropriate to the
crossing of certain of the hyperfine Zeeman levels of an (sp) 3P; state for atoms with spin-} and spin-$ nuclei.

I. INTRODUCTION

NUMBER of optical resonance! and atomic beam

experiments? have recently been performed on the
(sp) 3P states of the group II and rare-gas elements,
other experiments are in progress,® and still others are
planned. The precision of these experiments necessi-
tates an evaluation of the second-order hyperfine and
Zeeman interactions between states associated with
different fine-structure levels. In this paper we present
the complete matrices for the magnetic dipole, electric
quadrupole, magnetic octupole, and Zeeman operators
for a general (s7) configuration in intermediate coupling.
These matrices are used to compute the second-order
dipole and quadrupole corrections to the zero-field
hyperfine intervals of the 3P and !P states of an (sp)
configuration. These results are applied in an accom-
panying paper® to the analysis of the hyperfine structure
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Development Command.
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(hfs) of the 3P states of Zn® and Mg?. Finally, we dis-
cuss, in connection with an accompanying paper,’ the
second-order Zeeman, hyperfine, and cross Zeeman-
hyperfine corrections to the level-crossing field appro-
priate to an (sp) 3P; atomic state.

In this work we have followed the relativistic methods
of Breit and Wills® and Casimir” in their formulation
of the two-electron hyperfine problem, and the method
of Schwartz® in the evaluation of the single-particle
interaction constants. Relativistic and diamagnetic
corrections to the Zeeman effect are not discussed.
Wherever possible we have used the same notation as
Schwartz.®

It is assumed that the wave function representing
these states may be written as a product of single-elec-
tron wave functions. This ignores configuration inter-
action which may be important in the heavier elements.
Since the general problem of the hfs and Zeeman effect
for an s election and an electron or hole with arbitrary
orbital angular momentum / (referred to as an s con-
figuration) is only slightly more difficult than the case
of an sp configuration, we have analyzed this more
general problem. As yet, there are no precision measure-
ments of configurations other than sp but we expect, for
example, that the hfs of the metastable (6s5d) 2D state
of barium will be measured in the near future.

II. WAVE FUNCTIONS AND HAMILTONIANS

The electronic configuration, exclusive of closed sub-
shells, consists of two electrons; electron (1) with /=0
and electron (or hole) (2) with I/=arbitrary. In the
absence of hyperfine structure and an external field,
the s and / electrons couple to form four states which we
designate with the usual Russell-Saunders (RS) symbols
8L141,3L4, 3Ly 1, 'Ly, The wave functions representing
the states of highest and lowest total angular momenta
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SECOND-ORDER HYPERFINE

are independent of coupling and can be written as®”’

V(L) =¥ (L") =| G, I3 u),
and

YCL)=y(CLi)=| (3, I—5)i),

where the superscript (0) indicates a pure RS state and
the symbol |(j1,72)s) indicates a pure (jj) coupled
state. The wave functions for the two states of total
angular momentum / depend on the coupling. We will
need to expand these wave functions in terms of both
the pure (j7) and pure RS wave functions:

VCL)=a| (G, D)+l (3, 1-D0

=ap (*L)+Y (L), (la)
and
V(L) =cr'| G, IH+D)+ed' | G, 15
=aYCL)+BY(LY), (1b)
where orthogonality and normalization require that
c'=cs c'=—c;, o'=—P, B'=q,

cittel=a2+4-p=1.

The RS and j; expansion coefficients are related by

I \}  fIH1\?
=) *elag)
21+1 2+1

N gL
=olm) )
u+1) N\t

2
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For pure RS coupling we have

o) =G)
a=\—"), e=\—"T—"—),
21+1 2141
8=0.

The values of ¢; and ¢. (and @ and 8) depend on the
relative magnitude of the spin-orbit and electrostatic
interactions between the two electrons and may be
estimated in a number of ways to be discussed in
Sec. VI.

The interaction Hamiltonian is given by the sum of
two terms: 3C,, the hyperfine interaction, and 3C,,
the Zeeman interaction. Following Schwartz,® we write
the hyperfine term as

=2 2ok Te® (3)e Tr® =3 ;3CH),

where the 7 summation is over the s and / valence elec-
trons and the tensors 7. and T,® are defined by
Schwartz. The superscript % indicates the multipolarity
of the hyperfine interaction; 3¢, 3¢®, and 3¢® are the
dipole, quadrupole, and octupole Hamiltonians re-
spectively.

The Zeeman term is given by

3¢, =pogsS - H4pogrL-H4-pogrI-H, (5)

where wo is the Bohr magneton and H is the magnetic
field. '

(4)

a=1,

III. MATRIX ELEMENTS

The matrix elements of the relativistic hyperfine
operator 3C, are most readily evaluated in the jj cou-
pling scheme.? These elements are diagonal in both F
and m. Thus,

F I
sl 1 Em =Sl KEAS T OOl @ AT, ©)
where the two-electron reduced matrix element is related to the single-particle reduced matrix elements by
1 ;!
. . . it e 2 J2
(B o e Te® @) Bj) )= 81,1830 (= 1)1+ [(21+1)(21’+1)]f[2]/ L ]@o%nz“w(s)n;o%)
bl
e S T8 ,
e T 0. 0
Je
From Schwartz we have:
(a) Single-electron dipole elements
EUIT Pllvili)= I/unli(+1) (25+1) T,
—I¢& (20+1)(20143)
VTPl I=3)=— (3 1= Tyl I+3)=—- Qi
wr 4 [200+1)(204+1) ¢ (s2)
a
4eurx * wr LI+ 1)
aj=——————|[ 2 fgdr="2—por———(1/r3)ul,
15(2j+2)Jo I j(G+1)
=1+l (GG=HD); k==, (j=I-}).

9 A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1957).
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(b) Single-electron quadrupole elements (lower sign refers to holes)

<v%lj||Te‘”Ilv%lJ'>=ﬂ:[

(J'+1)(2j+1)(2j+3):r b;

7(2j—1) 20’

(V3L I3 T @ |3l 1= 1) = — (YA 1= || To® ||y 31 14-3) =+ "Ibz+%|— 3(2+3)(21+2) ]é (3b)
Y2 2|4 e ||72 2 Y2 zllL e l72 2 l Q LZ(ZZ)(ZZ‘l‘l)(Zl_‘ 1) ’
eQ(2j—1) J—1
. —5(f2f )y = 1/ R;.
J—____—-—zj ; Ar (f*+ghdr 2 2eQ( /7 )avR;

(c) Single-electron octupole elements (see Appendix I for the definition of {)

|| T.®|lv3lj)= 9

A ST @i =3 = — (il 1= T @ vl 14-3) =

2ex(25—1) .

ci=—Q—————— | rfgdr=Qu

i+

The relativity correction factors F;, Rj, and T; are
discussed in Sec. VI. The quantities £, 5, and { are de-
fined in terms of the ratios of the off-diagonal to di-
agonal matrix elements for the dipole, quadrupole, and
octupole operators respectively. These are discussed in
Sec. VI and Appendix I. The equation given in Ap-

TaBLE 1. Magnetic dipole matrix elements for

61[(21'-!-4) (27+3)(27+2)(27+1)

2j(2j—2)(2j—1) ] ’

(21+5)s°61+g|“ (214-3) (2i+4) ¥
20 L3(21—1—2)(21+1)(21)(2l—1)(2l~2)]’ (Be)
81(1—1)(I4+1)(I+2)
(2j+2) (25+3) (2j+4)

\1/75>avTj'

pendix I for ¢ does not apply to p electrons. However,
it follows from the conservation of angular momentum
that the octupole matrix element connecting single-
electron Py and Pj states is zero and therefore { van-
ishes when /=1.

By combining Eqs. (6)-(8), we obtain the complete

an s/ configuration in intermediate coupling.

Diagonal dipole matrix elements:

K( a 2141
(BLyy Fm |3 | BLyya Frin) =— + aLyy
2 2142 2142

K 622 012 21+3
(BLiFm|3e® | BLiFm)=—{{ —— as+ —2¢
2

612
20 2142 2142

(I*LiFm|3C® | L, Fm)=above with ¢; — ¢’ and ¢z — ¢o’
as 21+1
i}

K
(I3L1_1Fm |50 | I3L,_yFrm) =—[ —t
2| 2 2

Off-diagonal dipole matrix elements:

2143 21—1
162 E)az+a+622< )dt_;}
[@n(2i+2)1 2

(I3L1y1Fm|3e® | BLiFmYy= {[ (12— (F— )P (F+I-+1)
(I3L1 1 Fm |3e® | P LiFm)=above with ¢; — ¢1’ and ¢; — ¢»’

(I3L11Fm|5e® | L, Fm)y=0

(20+3)¢

1
- (l—|—1)2]}%————{ 61a5— |:61+02——— —:Itmi }
2(214-2) 2L (21 (21+-2) Tt

1
(IBLiFm|3® | BLy_Fm)= {[P— (F—I)2][(F+I+1)2—F]}§2—(2—l)<‘ ¢2(@a—a1_3)— 6 ——————£a;

(IPLiFm|3C® | I3L,_1Fm)=above with ¢ — ¢’ and ¢z — ¢2’

2143
£a +}}
2@ (Q+2)]

K 1 1 Zl—|—3|'
(IBLiFm |3 | L LiFm)=—{ —c1cq + [
2 2142 21

where K=F(F+1)—J(J+1)—1({I+1).

Tl

(e?—c?)¢ :I <2l——1> }
ICZJI ar3— 102073
@nreEn@+2)F 2
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TaBLE IT. Quadrupole matrix elements for an s/ configuration in intermediate coupling.

Diagonal quadrupole matrix elements:

3 [K(KA+1)—§(+D(+2II+D]

(I3L1ssFm | 50® | 3Ly, Fm) =—
2 @DEI-1)(2+2)21+1)

1 I' 2(21——- 1)(2i44)

126162?)

3 [K(K+1)—310+1II+1)]
(PBLiFm|3® | FLiFm)y=— {
2 @ner-neEn@-1)

(P'LiFm|3® | ' L;Fm)=above with ¢; — ¢,’ and ¢z — ¢o’

(IBLi_1Fm|3® | 3L ,Fm)=-

a1l ”

brigt-ca?big
(214-2) R¢2)) (21+2)]*:l }

2 @D@r—1)(-2)2-3)
where K=F(F+1)—J(J+1)—I(I+1).

Off-diagonal quadrupole matrix elements:

3 [K(K+D)— 0~ DIU+D] ) @-3) }
{ -1y )

(PLiaFm |3 | BLiFm)y=(—)[F (F+1)—I(I+ 1)~ 10+ HL(F+I+12— (12012 — (F—T 2]

(I3L1 1 Fm|3C® [ I LiFm)=above with ¢; — ¢," and ¢z — ¢’/

3 2142\ }
X {CH‘CW('—“) ‘ by
@nEI-1)2ni+1)21+2) 2l

(PLipaFm |30 | PLyaFm)={[PP— (F—1PIL0+12— (F—=DILF+HI+H1 P~ PIL(F 12— (T 12T}

(BLFm |3 | Ly Fm)=(—)

SLE(FD~IU+1) - (+D0-1]

2n@EI-1@a-1)@n2i+1)

(PLiFm|3¢®|BL;_1Fm)=above with ¢; — ¢,’ and ¢z — ¢’

3[K(K+1)—$10+DI(I+1)]
("LiFm|5® | I3LiFm)y=—

Lr

21—-1)(21+4) [

3 1
X b
@DEI-1D@-1)) @+ L)@+

43

{[P— (F—IPIL(F+I+1p—-2])}

l+}+

{ 214-3

% (2141) }
Cr nb
[en@+23 !

Co bl-
(21-2)

2 @DEI-1)@)@2I—1)

el

(214-2)

matrix of the hyperfine operators in (54) coupling. These
can be transformed to intermediate coupling by applica-
tion of the transformations given by Eq. (1). The com-
plete two-electron dipole, quadrupole, and octupole
matrices in intermediate coupling are given in Tables I,
II, and III, respectively. Some of the octupole matrix
elements have been expressed in terms of the Wigner

67 symbol,? . .
{ 71 J2 ]3}
Ja ds dol

I(S'L)T'E'm’|5¢.|vI (SL)TFm)= as.s,am,m«-)‘w"”'(

i

I
X[SJ R (_ )1+J+F—l—1{
' F

—m

f fttseany+(oyresen

Convenient numerical tables of these coefficients are
available 0

The matrix of 3C, (Zeeman operator) is most easily
evaluated in pure RS coupling. It is diagonal in # and
S (total spin). In intermediate coupling the total spin
is no longer a constant of the motion and matrix ele-
ments appear that couple states labeled with different
values of S. In pure RS coupling we have'®® (where the
Z axis is taken along the magnetic field H)

’

F
)[(2F’—|— 1)(2F+1)]
m

’ /

; i Joisedn] o

10 M. Rotenberg, R. Bivins, N. Metropolis, and J. Wooten, The 3+ and 64 Symbois (The Technology Press, Cambridge,

Massachusetts, 1959).

102 Note added in proof. The m dependence of the Zeeman matrix element is contained in the Wigner 3; symbol,?:10

1 Ja Ja)
my M2 M '
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TasLe III. Octupole matrix elements for an s/ configuration in intermediate coupling.

Diagonal octupole matrix elements:
(BL1AFm|3e® | BLy Fmy=M(I;1+1; F; 3)Cryy
(21+5) 2165
(BLiFm|3e® | BLiFm)y=M(I;1; F; 3) ———————[ @1-2)cp—————— [Cry3+c?Cry
(2142)(21+1) [@en@+2)T

(I'LiFm|3C® | [1L;Fm)=above with ¢; — ¢,’ and ¢z — ¢2’

(214-3)(21—4)
N

@n2-1)

(BBLi_1Fm|3® | BLi_Fm)y=M ([ ;1—1; F; 3)

F I J)[(@J—3)12T+4)1(21—3)1(21+4)1]
where M(I;J; F;3)= (_)I+J+F{ }

3 J I @nien!
20
- (2D QI-1)(2I-2)(2)) (2T —1)(2T —2)
XLEHAR SR =3I (I+1)T T+ D)+ T+1D)+T (J+1)+3} =4I I +1)T (T +1)]

or M(I;J; F;3)

and K=F(F4+1)—I(I4+1)—J(J+1)
Off-diagonal octupole matrix elements

F I+l 1 12)QH+5) QA+ e 245 Cui
(PLiyiFm|3® | PLiFm) = (—)’“’“ﬂ{ }(1 lITn<3>lIl>[ ] l:cx+————————s“]—
I 1 (21+2)2+1) (21 (2—1) 12LenEH+2)T | e

(BBL1 1 Fm|3e® | ILLiFm)=above with ¢; — ¢’ and ¢z — ¢2’
F I+1 5 (21+4)(214+3) P Q245) Cuyg
<13Lz+1FmIsc<3>Ilst_IFm>=(—)’*F“{ aumnn[‘ ] 1
3 I I-1 6 (21+1)(21—-1)(21-2)| 2)(Q2+2) @

(12)(21+3)2+2)214-1)32
@n@i-1)(21-2) (21—3):|

F I-11
(I3Li_yFm|3C® | BLiFm)=(— )”"F“{ } UNT.® |[1)|:
3 I 1

X[ Ciy o (U+5)2+4)Q2—3) Cuy
¢ + —
o 12 Q+2)QED[EHEHDT o ]

(IBL1_1Fm|3C® | 'L, Fm)=above with ¢; — ¢/ and ¢z — ¢5’

F 1l I (2+4)(2+3) i
(BLiFm|3®| P LiFm)= (—)I+F+ { } AT @1 )[ :l
Il (2+2)2+1)(21) (21—1)(21—2)

X { (2z+5)[—5152(2z—2)+ (c2—cr?) { 1

Cuy
[en@+2)1d o

Ciy
tci62(204+1)(204-2)—
Q

[(21—3)1(21+4)1 T
where (Z||To®||I)=—— (=
@n!

where 3€..=gruol .H and 3¢,.= (gruoLs+gspoS:) H. The nuclear and electronic reduced matrix elements are given by

(L[3Cen|| )= grl T (T41) (27+1) PuoH,

L J S
<J'||:fczeuf>=[(2]+1><21'+1)]%uoH[gL<—>L+S+J'+1{J g 1}[za+1><zz+1)]%

!

+gS(_)L+S+J+1{ S

L}[s<s+1><zs+1>]ﬂ. (10)
J 1
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TABLE IV. Zeeman matrix elements for an s/ configuration in intermediate coupling.

Zeeman matrix elements in intermediate coupling

F(F+U)+J(T+1)—I1(I+1)  FEHDHIT+1)—-T(TH+1)
(ISL;Fm|3Cz|ISLsFm)y=| g," e ]mMOH
2F(F+1) 2F(F+1)

(g.;'—g,)uoHr[F2—m2][(I+J+1)2—F2][F2— (1—1)2]]’
2w L a1
(gs—gr) F(F+1)+I10+1)—1(7+1)

(I'LiFm|3Cz| I*LiFm)= (— )aB muoH
1(0+1) 2F(F+1)

(ISL;F—1m|3z|ISLyFmy=(~—)

(IPLiF—1 m|3Cz| BLiFm)y=(I*"LiFm|3Cz| [P L;F —1 m)=af

(gs—gL)MoHr[F“—mﬂ[(I-l—l-i-1)’—F2:|[F2* (5—1)2]:]"
10+12F L ap—1

1 1
~(BLiF'm|3Cz| BLiga Fmy=(— )~(I"LiF'm|3Cz| I* L1z Fm) = (IBLOF'm|3Cz| I*L1..0Fm)
a 8

where F'=F, F+1, and the pure RS matrix elements (superscript zero) are given by:
(gS—gL)M#oHI_[(I+F+1)2—-]2][]2—‘ (I—Fy]r- (1—1)2][(14—2)2—]2]]*
ar(F4+1) | T4 —1)
(I3Ly_OF —1 m|3Cz| L Fm)=(I*L,%Fm|30z| IPL;_2F —1 m)
(gs—gouoll] (F—m)[(J+FP— (LU +FP =PI = (= D)L (420 =T
B 4JF 4rr—-1)(42-1) ]

(IL;_PFm|3ez| I L AFm)=(I*L,Fm|30z| BLs_0Fmy=

(I3Ly—0Fm|50z| L SF —1 m)= (I°L SF —1 m|3¢z| PLy_0Fm)
— (es—go e[ (=) (I+1)— (T— FYI I (F—mtﬂ—(Z—l)ﬂE(Z+2>2—ﬂJT
 Wr R —1)(42—1)

87/ (Li1)=gs (L)
g7’ CL)=02gs CLP) 4% (LL)
8" CL11)=gs (L1
g7 (L) =0?g;(AL0)+p2%s (CLY)
JIHDFLELA+H1)-S(S+1) JUTHD+HSES+H1)—LELAY)
gr(SL,%) =g tgs

27 (J+1) 27 (J+1)

The Zeeman matrix may be transformed to inter- The hyperfine interaction constants 4, B, and C are
mediate coupling by application of the transformation as follows. Dipole interaction constants:
given by Eq. (1). The resulting matrix elements are

. as 241
given in Table IV. ACLiy)= + Qs
2142 214-2
IV. ZERO-FIELD HYPERFINE ENERGIES 2141
as
The energies of the zero-field hyperfine levels are A(3L;,_;)=——+ 3
given by 22
Wr=WrO+Wr®, 2 ol
where Wr® is the first-order energy given by ACL)= as(;i_ 2 -I-Z) (12)
w_ K, SEE+)=II+DI(+1)] 20+3 21—1
We®=4—+B +al+1 e 612‘*‘01_%( o
2 41(21—1)(27) (2 —1) \212 2
+CM(1,J,F3), (11) 21+3

C1C3 ¢a
where K and M (I,J,F,3) are defined in Table III. ! 12l(21+2)[2l(2l+2)]*

i
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TaBLE V. Second-order corrections to the zero-field hyperfine intervals for an sp configuration in intermediate coupling.

Second order corrections to zero-field hyperfine intervals for an sp configuration

|CPalac[iP) |2 [CPalaC[P) I | CPalsC[Po)]2

Wr® (Py)= ; f
E(@P;)—E(P1) E(Py)—E(P:) E(P:)—E(P,)

(FHI1+3)(F-I+2)I—-F+2)(F+I-1)
64

Wr® (4Ps)=

1 5v2 I(I+1)—F(F+1)+3 2
X {'—‘——_— [(Cl(la —C183 uggdg) : (61+\/762n )b*]
E(*P;)—E(P1) 8 2I(2I—1)

R
E(*P;)—E(\P1)

€

1 5v2 I(I+1)—F(F+1)4+3 2
———[(caas—cw; } cifay |4 (ca—VZem)bs
8 2I(2I-1)

1 |'(F+I+2)(F—I+1)(I—F+1)(F+I)][ nbs ]2}
I(2I1-1)

" E(P.)—E(Py)|_ 2

P33Pz [@Palae 1P ]2 |(@Py]ge|oPo)|?

EQ@P,)—E(Py) l EQP)—E(Py) I LE(P,)—E(Py)

(F+1+3)(F—1+2)(1—F+2>(F+1—1>r<
GA[E(Py)— E(Py)] L

Wr® (EP1)=

Wr® (EP)=

" GA[E(P)—E(Py)]

C10s—C1a3— —é—02£a;

5V2 > 'I(I+1)—F(F-I-1)+3

2
(cl+\/762n)b;:|
20Q2I—1)

5vat
{ [F(F4+1)—IT+1)— 2][6162 (Sas—2a3—3as)+ (c2— 622)—8—@]

B[FE+)—1U+) -2 F(F+1)—T(I+1)~1]-81(I+1)

2I(21-1)

i(F-H~I-2)(IJI-1—1"‘)(F-i-1—1)(l?+l)

2
Lercat (e —co®nV2E]bs }

5VZgey  [FFHD—-IU+D]

16[E(P1)—E(Po)]

SVZcimby ]{

{6203—020.}—— C1—
8 41Q2I—1)

W ® (1P;)=same expression as for W® (3P;) except ¢; — ¢1’, ¢ — ¢2’ and in energy denominators E(Py) — E(\Py), E(P,) — E(3P1)

A (1L;)=above with ¢,’ and ¢;’ in place of ¢; and ¢,
respectively.
Quadrupole interaction constants:

B(*Lyi1) = by,

21—3)(2
Bor, )P,
21(21—1)

)

(—1)(2+4)
NN

B(*Ly) (1)

2brrstea?bi g

1261627) 21 3
e (2,
21(214+1)\214-2

B(*L;)=above with ¢;" and ¢,’ in place of ¢; and ¢,
respectively.

Octupole interaction constants:

C(Li1)=cuyy,

— )/
cop, )T RES)
21(21—1)

,(21=2)(21+5)

— T
(2141) (21+2)
26162(2l+5)§'€1+;

@2 Q)LD @+2) T

C(L;)=same as above with ¢,/ and ¢y’ in place of
¢1 and ¢, respectively.

The second-order corrections to the zero-field ener-
gies for an sp configuration are given in Table V. In
evaluating the second-order corrections we have in-
cluded only the dipole and quadrupole terms. The
second-order octupole terms are generally not im-

(14)

ytHelfey

C(st) =cC
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portant; however, if desired, they can be evaluated
from the matrix elements given in Table III.

V. CORRECTION TO THE LEVEL-CROSSING
FIELD FOR AN (sp) 3P, STATE

The level-crossing method of Colgrove, Franken,
Lewis, and Sands! provides a precise method for deter-
mining the magnetic field at which two atomic energy
levels become exactly degenerate (or cross). This
method has been applied to the fine-structure levels of
the (sp) 3P states of helium and the hyperfine levels of
the first-excited (sp) 3P state of mercury and cadmium.
Here we will concern ourselves with the latter experi-
ments and evaluate the corrections to the crossing-point
field arising from second-order hyperfine and Zee-
man interactions between states associated with dif-
ferent fine-structure levels. In evaluating these correc-
tions, it is important to remember that the crossing

—A'(Py) g (6)F

5V2¢ 1

1 L\/gal'
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occurs at a field value such that the Zeeman energy is
comparable to the zero-field hyperfine splitting of the
3P, state. In view of this, it is necessary to resort to an
exact diagonalization of the submatrix associated with
the 3P, state. The corrections arising from interactions
with the other fine-structure levels are obtained by the
method of Van Vleck® in which a unitary transforma-
tion is made to eliminate, to second order, the matrix
elements off-diagonal in J and S. The diagonalization
of the transformed submatrix leads to a value for cross-
ing-point field which is correct to second-order in the
hyperfine and Zeeman terms off-diagonal in J and S.

The corrections appropriate to the crossing of the
3Py (F=%, m=3%) and the 3P, (F=3%, m=—1}) states of
Cd™18 (nuclear spin %) are obtained by this method
in an accompanying paper.5 It is shown that the cross-
ing occurs when

g/=———————————a[c2 @s—a3)—cx
wHe 2 6

J_a2,U'0Hc|_

as T
8 JEGP)—ECP) 6

5\@5) 1 1

L% (cﬁ—c‘ s /7 IEcP)—E@P)

8 3p2

Here H, is the crossing field, E(SL;) are the fine-
structure energies, and A’(3P;) is dipole coupling con-
stant for the 3P, state without second-order corrections.
g7 is the gyromagnetic ratio which would be measured
at low fields in the 8P state for a zero-spin isotope. The
first two terms are given by the Breit-Rabi equation,
the next two terms are cross hyperfine-Zeeman correc-
tions, and the last term is the second-order Zeeman cor-

T - ] (15)
24 LEGP)—E(P) E(P)—E(GP)) E(Py)—E(Py)

rection. The second-order hyperfine corrections have
been absorbed into the Breit-Rabi term by employing
the experimental “A” value for the 3P; state rather
than the corrected value appropriate to an isolated
3P, state.

In the case of a spin § nucleus the crossing of the
8Py (F=%m=%) and the 3P; (F=3,m=1) states
occurs when

A DI DI ¥ ) 1—1b+ 50
g7/ oM, 2¢/ 1+
1apell* (1430 ¢ 1 1
12 A4 (1—1b)(14+15)\ECP)—E(P,) 8[E(3P2)——E(3P1)])
1 143 Aoaped,) 1 As(owed.)

1— §b-+g50°

' 20/6 14+3b ATE(P)— E(Pg)]

Here b=DB’/A’ where A’ and B’ are the dipole and
quadrupole interaction constants for the 3P; state
without second-order corrections (see above). In addi-
tion we have

Ao=c2(as—ay) —c1(5E/4V2)ay,

A2=clas—- [61+625£/4\/Z]a§, (17)

uF, D. Colgrove, P. A. Franken, R. L. Lewis, and R. H.
Sands, Phys. Rev. Letters 3, 420 (1959).

43 A'TE(Py)—E(Py)] (1—15)(14+30)

V3 By(oud.) 14164107
8 A'[E(P)—E(P)] (1—10)(1+3b)

(16)

and

By=[c1+comV2]bs.

In obtaining this result we have neglected the terms
arising from the interaction with the 1P; state. In the
case of the group II elements these terms are smaller
than the terms arising from the 3P, and %P state by at

12 See for example E. C. Kemble, The Fundamental Principles

of Quantum Mechanics with Elementary Applications (Dover
Publications, New York, 1937), pp. 394.
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least a factor of 100. The first three terms on the right-
hand side of Eq. (16) have been obtained previously
by Dodd.® (He assumed that <1 in the second and
third terms.)

VI. EVALUATION OF CONSTANTS AND
NUCLEAR MOMENTS

The theoretical expressions for the hfs of the P and
1P states may be written in terms of the constants ¢y, 2
(or a,8), as, a3, as, by, ¢3, & 1, and §. In the case of al-
most all of the atoms of interest the nuclear magnetic
moment and the P state hfs have been determined for
at least one stable isotope. This allows one to determine
the magnetic moment of a new isotope directly from the
observed hfs, at least to within the hfs anomaly. In the
case of the quadrupole and octupole moments, however,
reliable estimates of all of the above constants and
(1/#3)ay and (1/75)ay are required. Unfortunately, there
are more constants than experimental parameters and
we must rely on theoretical estimates of some of these
quantities. Here, we will briefly discuss the various
methods for estimating the constants and nuclear
moments.

The constants £, 7, and'® ¢ all involve the ratio of
radial integrals whose main contribution comes from
the neighborhood of the nucleus. Breit and Wills, and
Casimir have estimated these constants and the various
relativistic corrections for a Dirac electron with zero
binding energy in a Coulomb field. Schwartz has re-
evaluated the same quantities for a Dirac electron with
finite binding energy and a shielded Coulomb field.
Schwartz!* concludes that Casimir’s estimates for £, 7,
and @ are quite reliable; however, he finds that his
previous estimate of the octupole integrals are in serious
error. He has also shown that in some cases configura-
tion mixing can cause substantial changes in 6. As yet,
no one has estimated the configuration mixing correc-
tions to 6 for a general (sp) state.

Reliable estimates of the mixing coefficients (c1,c2)
or (a,8) are difficult to obtain. Three methods have
been used to determine these coefficients. In the first
method, the deviation of the 3P, 3Py, 3P, separations
from the Landé interval rule and the 3P,, 1P, separation
is used to estimate the degree of intermediate coupling.
This procedure takes account of the spin-orbit inter-
action, but neglects spin-spin and other interactions.!6
A more rigorous theory for the case of the alkaline earths
has been given by Araki,'” but in this theory there are
many more quantities to be determined than there are
experimental results. In the second method the lifetime
of the 3P, state is assumed to be determined completely
by mixing of the 3P, and 1P; states. That is, the natural

13 J. N. Dodd, Proc. Phys. Soc. (London) 77, 669 (1961).
14 C. Schwartz, Phys. Rev. 105, 173 (1957).
15 g=1a;/as.
16 Hugh C. Wolfe, Phys. Rev. 41, 443 (1932).
(1;;% Araki, Proc. Phys.-Math. Soc. Japan 19, 128 and 592
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decay of the 3P state in the absence of mixing is as-
sumed to be negligible. In terms of the measured life-
times we have:

[’32 T(lPl) )\3(3131_150)

= 18
@ (3P N(1P1—1So) (18)

where A(SP;—1S) is the wavelength corresponding to
the transition from the SP; state to the ground state.
While this method may be expected to be quite reliable,
few of the lifetimes have been determined with the
necessary precision. In the third method one makes use
of the fact that the Landé g factors for the 1P; and 3P
states are changed by mixing. Thus, for example, the
g7 factor for the 3P, state is given by'’®

gr(P)=3—368+a’(3¢s—1)
—%(m/M)(1+67)+A4g,

where Ag is the correction for relativistic, diamagnetic,
and configuration interaction effects. In the case of the
group II elements the effect of mixing on gs is only
slightly larger than the relativistic and diamagnetic
correction, so that a reliable theoretical estimate of
Ag; must be made before the mixing coefficients can
be obtained from the measured g; factor. In the case
of the 3P; state of the rare gases the situation is more
favorable since the mixing is much greater.

The single-electron quadrupole interaction constant
by can be determined from the measured quadrupole
interaction constant in either the 3P, or P, state. In
the case of the 3Py state ¢i, ¢, and 7 are required to
make this reduction. The nuclear quadrupole moment
can be obtained from &3 if we can estimate the rela-
tivistic correction factor Ry and the average value of
73 for the p electron ({1/7%).v). Tables of R; are given
by Kopfermann.!® These are based on the work of
Casimir. Schwartz has obtained substantially the same
corrections with a more refined method (see above).
Estimates of {1/7*).y can be made from either the ob-
served fine structure, the magnetic hfs constant for the
p3 electron (a3), or the well-known formulas'®

(19)

o ———
T )
(20)
77 1 dE
at{1/r)ay=

1(1-1)(214+1) Rek dn’

The hfs method is probably the most reliable, provided
that we can determine a3 from the observed hfs in the

172 Note added in proof. Here, we have neglected the Hughes-
Eckart reduced mass correction [see M. Phillips, Phys. Rev. 76,
1803 (1949)7.

18H. Kopfermann, Nuclear Moments (Academic Press Inc.,
New York, 1958), 2nd ed.
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3P, and 3P; states. This requires a knowledge of ¢i, cs,
¢, and 6. Quadrupole polarization (Sternheimer) effects
are discussed by Schwartz.

The nuclear octupole moment is obtained from the
octupole interaction constant (c3) in the 3P, state pro-
vided that we can estimate the average value of =%
for the p electron ({1/7%).) and the appropriate rela-
tivistic correction. The procedures for doing this are
discussed by Schwartz. Before extracting ¢s from the
observed hfs intervals in the 3P; state, it is essential to
subtract out the pseudo-octupole interaction arising
from the cross dipole-quadrupole interactions that exist
between the 3P, and 3P; states. These corrections can
be obtained from the formulas given in Table V.,

APPENDIX I

In Eq. (8c) we have written the I-electron off-diagonal
octupole-operator reduced matrix element in terms of
the constant { and the diagonal reduced matrix element
for the j=141% state. This constant { is introduced in
the same manner as the constants { and 7 and we follow
the procedure of Casimir and Schwartz to obtain the
ratio of the off-diagonal to the diagonal radial integral
of the octupole operator, which is expressed in terms
of the constant {. From Casimir? we have for the radial
part of the Dirac wave function for a single electron,

FO) =CEaT2p11(%) — (oK) 25(2) ],
g(r)=CaZls,(%),
x=(8Zr/a0)}, p= (K2—a2Z2)}, av=h*/me?, a=e*/fc,

@1

where C is the normalization constant. With these
functions the following radial integrals can be evalu-
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ated to yield:

© b f22\*
/ r4f g dr= ~C’2—<—>
0 2me\ ao

10T
x (204-3) (2042) (2041)21(2— 1) (20 +4)’

. (22)
[ e
’ 2N\ b 15(21—3)!
) AN

=_c/c//<__ —
ao/ 2mc (21+4)!

where 7" is given by Schwartz and L is a relativistic
correction factor given by

(o' +p'"—3)14121(21+4)
L= , (23)
(o' —=p"+3) 1(p"" —p'+3) (o' +p"+3) 1(21—=3) |

where the prime refers to j=I/4% and the double prime
refers to j=I1—1%.

With these definitions we have for the ratio of the
off-diagonal to the diagonal radial integrals:

/ 7_4(f'g"+f"g’)dr// 1,——4flg/dr
0 0
C//

3 L ¢

The results given in Eqgs. (22), (23), and (24) do not
apply to p electrons (/=1). In such cases the off-
diagonal matrix element is zero (see above).



