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FIG. 2. A plot of ESR spectra for Li in Ar, Kr, and Xe matrices
at 4.2'K. Numbers in parentheses beside each line denote /4)H,
(separation between maximum slope points in oersteds).

result of hf broadening due to magnetic matrix nuclei
(Xe"s and Xe"'), analogous to similar effects' for H
in Xe. Finally, there is a noticeable shift of the corre-
sponding spectral positions in the direction of somewhat
higher magnetic fields as the matrix is changed first
from Ar to Kr and then from Kr to Xe, indicating a
shift to smaller electronic g values (g~) as the size
(or mass) of the matrix atom increases. This is in
qualitative agreement with the results obtained for
trapped H atoms.

The intensity of a spectral line is represented in Fig.
2 as 10 logic(Pyg/Ve), where V is the maximum am-
plitude of a derivative absorption curve and I'0 is a
reference amplitude. (F'e has a fixed value for these
and other similar curves in this paper, roughly repre-
senting the limit of detectability. ) If hH, is the line
width in oersteds between maximum slope points, then
the integrated intensity, which is proportional to
AH, 'V, is expected to be the same for all hf compo-
nents in the ESR spectrum of an atomic species. Con-

III. RESULTS OF OBSERVATION

ESR observations of Li, Na, K, Rb, and Cs atoms
were made in matrices of Ar, Kr, and Xe at liquid
helium temperature. Figure 2 shows the observed spec-
tra for Li~ in Ar, Kr, and Xe matrices. Relative to the
calculated line positions of the quartet hf spectrum for
a free Li'(I=os) atom, it is seen that the observed line
positions for the trapped state are closely correlated
with those of the free state. Also, corresponding to each
line (designated by its Mr value at high magnetic
fields) in the free state, two lines are observed for Lir
in Ar, and similarly for Li in Kr. A trace of one of the
doubled lines for Li in Ar is shown in Fig. 3. This
phenomenon suggests the presence of multiple trapping
sites analogous to that observed for H atoms' in Ar and
in Kr. The broadening of the spectrum for Li~ in Xe,
indicated by the unresolved lines in Fig. 2, may be the

FIG. 3. A trace of 3EII=-,' hf lines for Li in Ar matrix. Compo-
nent (a) corresponds to dA &0 and component (b) corresponds to
aA &0.
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FIG. 4. A plot of ESR spectra for Na" in Ar, Kr, and Xe
matrices at 4.2'K. Numbers in parentheses beside each line
denote dH, .

sequently, the quantity Y for a given spectral series
should vary inversely as DII,'. The correspondence
between this rule and the experimental data can be
seen to be close in some instances and rather remote
in others. The cause for this discrepancy in intensity
distribution is not well understood.

The general pattern set by the hf spectra of Li~ in
the inert-gas matrices is followed closely by the other
alkali atoms. Figures 4—7 show, respectively, the ob-
served results for Na", K", Rb", and Cs"' in Ar, Kr,
and Xe matrices. A new feature, which is prominent
in the spectra of Na, K, and Rb in the Ar matrix, is
the presence of a structure of many lines at each Mz
position, instead of only two lines as in the case of Li
in Ar. The number of hf components in a group was
as high as seven.

Some information on the nature of the trapping sites
responsible for the multiple line structure in the ESR
spectra can be obtained from studies on their tempera-
ture dependence. As mentioned in the experimental
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section, Inost of the warmup experiments were vitiated
by premature loss of the sample due to vacuum prob-
lems. Nevertheless, evidence for the discrete nature of
the trapping sites was obtained in an experiment on
Na" in Ar. Figure 8 is the observed structure in the
spectrum for 3fz ——

~ at 4.2'K. In the warmup experi-
ment, all components except a and b in Fig. 8 dis-

appeared at about T=36'K, component b disappeared
at about 38'K, and, finally, component a disappeared
at about 40'K. Although the temperature range for
these events was rather narrow, there was no am-

biguity about the sequence and the distinct nature of
the events. On the basis of this evidence, one can con-
clude that the observed spectrum corresponded to
three or more trapping sites for Na atoms in the Ar
matrix. One could also infer from this demonstration
that the many-line spectra for K and Rb atoms (also
possibly for the unresolved spectrum for Cs) in the
Ar matrix should be identified with trapping in multiple
sites.
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In connection with the ESR observations on Li7 and
K" atoms in an Ar matrix, it should be mentioned
that the spectra for the less abundant species, Li' and
K",were also observed. There were three hf components
for Li as expected for I(Li )=1 and four hf compo-
nents for K4' as expected for I(K4') = ss. In both cases,
the line separations were consistent with the known
hf coupling constants and the line intensities relative
to those of Li~ and K" were in rough agreement with
their natural abundances.

IV. CHANGES IN HYPERFINE PARAMETERS DUE
TO MATRIX ENVIRONMENT

The spin Hamiltonian for an alkali atom in the
'S; state is

X,=g,PJ Hyg, PI HyAJ I,

where the first two terms are the Zeeman energies in a
magnetic field and the third term is the isotropic hf
interaction energy. J and I are, respectively, the elec-
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Fro. 6. A plot of ESR spectra for Rb" in Ar, Kr, and Xe
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where Ao and (g/) 0 are parameters characteristic of the
free atom and AA and Agg are the deviations from the
free-atom parameters as a result of the matrix environ-
ment. It is the primary objective of this paper to
determine and, wherever possible, to interpret the
significance of AA and AgJ for various alkali atoms in
inert-gas matrices.

The quantities AA and hgz are determined by using
the Breit-Rabi formula Lwhich is the solution of Eq.
(1)] with the usual selection rules, and using the
differences between the measured values of the line
positions and those predicted for a free atom. The data
from any pair of lines belonging to the same spectral
series should be sufficient to uniquely determine AA
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FIG. 7. A plot of ESR spectra for Cs"3 in Ar, Kr, and Xe
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tronic and nuclear angular momenta in units of A, gJ.
and gg are the corresponding g factors in units of the
Bohr magneton i3, H is the magnetic field and A the
isotropic hyperfine coupling constant. If the atom is
trapped in a symmetric environment (as when sur-
rounded symmetrically by inert-gas atoms), the atom
is subject to an essentially centro-symmetric electro-
static field and the Hamiltonian for the trapped atom
can still be describable by Eq. (1). Under these condi-
tions, the hf coupling constant (A) and the electronic

g factor (g/) for the atom in the trapped state can be
written as

A =Ao+hA,

g/ (g/) 0+~g J'p
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TABLE II. Values of nA/A 0 in percent for alkali
atoms in inert-gas matrices. '

Matrix Li Na Rb Csb

Ar

Xe

—1,6, 3.1
(2)

-17 22
(2)

—1.2
(m)

—0.9~4.9
(6)

—1.4, 2.0
(2)

—1.3
(zc)

—0.4~11.8
(6)

—1.2, 6.6
(2)
1.7
(u)

2.6~8.4
(7)

—0.56&-+6.9
(3)

—1,6
(u)

0.5
(I)

—0.9
(u)

I

5050 5060
Hinoe

Soro

I'IG. 8. A trace of Mq ——2 hf 1ines for Na" in Ar matrix at 4.2'K.

TAnrz I. Values of I, As/h, and (gg)s for the alkali atoms. '

L17 Na" K39 Rbss Cs'"

A q/h (Mc/sec) 401.756 885.813 230.860 1011.912 2298.158

(gJ)o 2.00231 2.00231 2.00231 2.00241 2.00258

& gz (free electron) =2.00230. See reference 3.

'P. Kusch and V. W. Hughes, EIandbuch der Physik, edited by
S. Fliigge (Springer-Verlag, Berlin, 1959), Vol. 37, Part 1, pp. 100
and 117,

and AgJ, and in principle these values should be identi-
cal with the results obtained by using any other pair
of lines in the same series. If the results for DA and
AgJ obtained by using different pairs of lines do not
agree within experimental error, it means that Eq. (1)
is not a complete description of the situation and an
added contribution, such as an anisotropic term, should
be introduced. Small effects of this kind have been en-
countered in our observations, suggesting an aniso-
tropic contribution to the hf energy due to slight asym-
metries in the crystalline field. Since they are negligible
for our present purposes, however, we shall simply use
the average of all independent determinations of AA
and AgJ.

Table I lists the known values' of I, As/h, and (gq)p
for Li~, Na", K", Rb", and Cs"'. Here Ao is related to
the zero-field hf splitting energy AW by Ae ——2AW'/

(2I+1).The results of AA/A e and Agg for all observed
cases are given, respectively, in Tables II and III. It is
seen in Table II that there are four cases (Li in Ar,
Li in Kr, Na in Kr, and K in Kr) in which each hf
component has two lines as a result of the matrix
effect. One of these two sets is characterized by a posi-
tive shift in A (AA/As) 0) and the other by a negative

a The number in parentheses denotes the maximum number of lines in a
group defined by MI. The symbol (u) denotes that the lines in a group
defined by MI are unresolved.

b Denotes value computed from MI = —3/2 and MI = —5/2 transitions
(high-field notation).

shift in A (AA/A s&0). In other cases, where there are
higher orders of multiplicity (Na in Ar, K in Ar, Rb in
Ar, and Rb in Kr), the lines are not individually
classified because of difficulties of identification. Never-
theless, the spread of the lines in each Ml group pro-
duces a corresponding spread of AA/As, the range of
which is indicated. In each of the remaining cases,
there is a broad and unresolved line at each Ml position
which can be characterized by a value of AA/As corre-
sponding to the peak of the broad line.

The results for Agg in Table III illustrate the usual
situation for trapped radicals in that almost all Ag~
values are negative. As a rule, for a particular matrix,
a spectrum with dA&0 yields a larger negative shift
in gg than one with AA &0. Also, for a given atom, an
inert-gas matrix with a higher molecular weight con-
sistently causes a larger negative shift in gz.

V. THEORY

A. General Description

The Zeeman and hyperfine energies of an alkali atom
in the free state are described by the solution of Eq.
(1) with the known constants As, (gg)p, and I. When
the atom is trapped in a matrix, there are various
interactions with the surrounding matrix particles
which cause perturbations of the Zeeman and hyper6ne
energies. In order to calculate these perturbations, one
has to know or assume the physical configuration of the
trapping site. In the case of a hydrogen atom, ' one can
assume that the atom may reside in an interstitial as
well as a substitutional site without appreciably dis-
torting the lattice. An alkali atom, however, because
of its larger size cannot occupy an interstitial site, but
may be accommodated in a substitutional site with a
degree of lattice distortion depending on both the
alkali atom and the matrix. In the case of the larger
alkali atoms, Rb and Cs, the distortions involved in
6tting the atom into a substitutional site may be so
large that this description of the trapping site is not
applicable. In addition, there is the possibility that
atoms may be trapped in amorphous regions, and on
the surfaces or edges of the matrix microcrystals.

In order to avoid the immediate necessity of choosing
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a certain site configuration and the difficulties of deal-
ing with many particle interactions, we will treat the
comparatively simpler problem of a pair of atoms (one
alkali and one inert gas) and assume that the law of
additivity holds true for any number of pairs, as
Adrian has done in his treatment of the hydrogen atom
problem. 4 We will further assume, also following
Adrian, that the results from the long- and short-range
interactions can be treated separately and added
together to form the net effect. In considering the
short-range interactions for the alkali atoms, it will

be shown later that it is very essential to include, in
addition to the overlap (Pauli exclusion) effect, pertur-
bation effects due to large distortions of the electronic
wave function.

Let the subscript I. denote an alkali atom and 3f a
matrix atom. Then the total Hamiltonian, in the ab-
sence of magnetic field, can be written as

~I++M+~int+~hf~

where 3!&and BC&& are respectively, the energies of the
isolated alkali and matrix atoms (not considering the
hf energy), K;„t is the interaction energy between the
atoms (containing all electrostatic energy terms be-
tween the charges of different atoms), and Xhi is the
hyperfine energy. The quantity X&& can be written as

Xhi= (gsr/3)gaging'2'8(r;) J; I, (4)

where 8 is the Dirac delta operator and r; is the position
vector of the ith electron having its origin at the alkali
nucleus. We will now examine the hf energy values
corresponding to the perturbation Hamiltonian

+int+~hf q

for large and small values of the internuclear distance.

B. Effect of Long-Range Interactions

If the internuclear distance R is suKciently large,
then BC;„t, becomes the well-known van der Waals inter-
action energy. The effect of BC;„& on the hf energy for
this case can be calculated in exactly the same way as

TABLE III. Values of —100hgg for alkali atoms
in inert-gas matrices. '

for the hydrogen atom with the following result4:

&Whi ———Whi((2/EI)+ I 1/(EI+Ess) $)Ei, (6)

where I/t/'hf is the unperturbed hf energy of the alkali
atom, 2$'l, f is the change in the hf energy due to the
van der Waals interaction, El, is the mean energy of the
excited states of the alkali atom, E'~ is the same for the
matrix atom, and Eir is the van der Waals (or disper-
sion) energy. The asymptotic expression for Eir at
large values of R is' '

Ev = —C/Es

where C can be calculated approximately from the
well-known expression'

(7a)

in which o: is the electric polarizability of the atom.
The coefBcient C can also be evaluated from atomic
scattering experiments. '

Since the mean energies appearing in Eq. (6) are
intrinsically negative and 8& is also negative by Eqs.
(7) and (7a), AWhi is negative for a positive value of
Whf. Quantitatively, the value of AWh&/Whi for an
alkali atom is an order of magnitude larger than that
of the hydrogen atom essentially because of the very
large polarizabilities of the alkalis.

C. Effect of Short-Range Interactions

If the internuclear distance E is suKciently small,
the electronic wave functions of the two atoms will

overlap considerably. This implies a violation of the
Pauli exclusion principle, leading to a perturbation of
the wave functions and a change in the hf energy. In
addition, particularly for the alkali atoms, the wave
functions are strongly distorted by the Coulomb and
exchange interactions associated with the energy terms
of K; t in Eq. (5). We can examine these effects by
following through the usual perturbation calculations.

First, assume the total ground-state wave function
(including spin) is antisymmetrized for all electrons in
both atoms. Let its denote such a wave function. Then
the first order perturbation treatment for K' in Eq. (5),
retaining only the term linear in 3!h&, gives simply

Matrix Li Na Csb

Kr 0.36, 0.57 0.45, 0.93
(2) (2)

0.59, 1.74
(2)

0.65+-+1.07
(&)

0.11
(I)

Xe 1.09
(I)

0.98
(I)

1.66
(te)

2.02
(I)

& See note a of Table II.
&See note b of Table II.

' F. J. Adrian, J. Chem. Phys. 82, 972 (1960).

Ar 0.05, 0.13 0.05~0.21 0.08+-+0.37 —0.85+-+0.89 —0.25
(2) (6) (6) (7) (~)

the explicit form of which will be given later. For the
second-order perturbation, we need the wave functions
in the excited state, such as tIrir in the Eth state, which

can be built up in the determinantal form by combining,
for instance, the excited-state wave function of the

' J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, 3folecular
Theory of Gases and Liqteids (John Wiley ik Sons, Inc. , New York,
1954), p. 964.

6H. S. W. Massey and E. H. S. Burhop, E/ectric and Ionic
Impact I'herlomerlu (Oxford University Press, New York, 1952),
p. 397.
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alkali valence electron with the ground-state wave func-
tions of all the other electrons. The second-order per-
turbation gives in the usual manner,

(Pp I
&;.~+Xi,t I Px) (4x I

&(' -&+&hi
I Pp)

Wp' ——Q'—,(9)
IC +'oo g ~o

where the prime on the summation sign indicates the
ground state lt p is omitted in the summation and W' is
the unperturbed energy in the state de6ned by its
subscript. By using the mean value for the energy
denominator, a procedure commonly employed under
similar situations, and by retaining only the terms
linear in BChf, we have

Wp' =—(2/&L) (0'p [5(l' t,
I
0'p) Q'p I5L'i t I

lt'p), (10)

where El, is the mean energy for the excited states of
the alkali atom, (Wp' —Wrc'), (assumed to be the same
as in Eq. (6) even though different kinds of averaging
are involved). In obtaining Eq. (10) from Eq. (9), it
can be shown that the term (4'p [5ci~tKhtl 4'p) is vanish-

ingly small.
The sum of the first- and second-order perturbations

(W'= W, '+ Wp') is

2
w'= (0'pl&hi lit'p) 1——(pp I

& t I pp)
jV~

The first term in Eq. (11) can be written approximately
as4

(lt'p[5(lht[4'p) ='Wi t{1+ZMQ'Lilt'M) }, (12)

where pL is the wave function of the unpaired s electron
of the alkali atom and pM is the wave function of the
Mth electron of the matrix atom. Combining Eq. (11)
and Eq. (12) and letting AWi, t ——W' —Wi, t, we have
for the net change of the hf energy, neglecting high-
order terms,

i1Wi t= Wht p(pL I pM) + (fp I
xi~a

I
lt'p) (13)

[EL[

It is seen that the first term on the right-hand side
of Eq. (13) is the change in hf energy due to the overlap
effect. This effect is brought about by the nonorthogon-
ality between the valence-electron wave function of
the alkali atom and the electronic wave functions of the
matrix atom. This is the term considered by Adrian in
his treatment of the hydrogen atom problem. The
second term represents the change in hf energy due to
the effect of K; t. The term (/pl%i„tlap) stands for
the met contribution of the Coulomb and exchange in-
teraction energies. 7 YVhen the net value is positive, it
represents a repulsive potential energy. Hence, the
second term should be interpreted as the change in hf
energy from the distortion of the valence-electron wave
function caused by this repulsive potential,

7 See reference 5, p. 937.

D. Approximation by the Lennard-Jones
Potential

Instead of attempting some formidably diS.cult cal-
culations of the repulsive potential, a reasonable ap-
proximation can be achieved by using the Lennard-
Jones potential which is written as'

where O-L,~ is the "collision diameter" between a pair
of atoms (molecules) labeled as I.M, and e is the depth
of the potential well. By identifying the second term
on the right-hand side of Eq. (15) as the van der Waals
energy in Eq. (7) we can equate the first term to the
repulsive energy which is needed in Eqs. (13) and (14).
Thus, we have

and
+V 4e(&LM/~)

9oI&'-~lltp) =4e( LM/~)" (17)

The parameter o-~~ can be estimated either from gas
kinetic data or from certain empirical relations. ' "The
parameter c can then be derived either from a theoreti-
cal expression for Ev as in Eq. (7a) or from atomic
scattering experiments. ' The knowledge of both o-l,~
and e leads to the repulsive energy by Eq. (17).

E. Calculation of the Matrix EBect for Li in Ar

We can now calculate AA/Ap for an alkali atom by
noting that

AA/A p
——DWi, t/Wst, (18)

and using Eqs. (6) and (13) with the aid of Eqs. (16)
and (17).The quantity Agz is calculated from Eq. (14)
with the use of Eq. (17). We will take I.i in Ar as the
representative case to study not only because it is
theoreticaljy the simplest but also because it is experi-
mentally the most cleancut.

For the calculation of the overlap integrals, Slater
orbitals" have been used for the Li atom and Hartree's

8 See reference 5, p. 32.
P L. Panling, The feature of the Chemical Bond (Cornell Uni-

versity Press, Ithaca, New York, 1960), 3rd ed. , p. 263.' J. O. Hirschfelder and M. A. Eliason, Ann. Acad. Sci. (N.Y.)
67, 451 (1957)."L. Pauling and E. B. Wilson, Jr., Introduction to Quaetuns
Mechanics (McGraw-Hill Book Company, Inc. , New York, 1935),
p. 248.

By performing a second order perturbation calcula-
tion of the spin-orbit interaction in a manner similar
to Adrian's work except for the consideration of the
repulsive effect, we have for the shift of the electronic

g factor

SA„, 2
~g~=' —(0—L

I
4")' 1+ (A [5C;.~ Ilt p), (14)

9 EL [EL[
where f„, is the outermost po. orbital of the matrix
atom and P „,is the spin-orbit splitting constant of the
same orbital.
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tabulated results for the Ar atom. " For the van der
Waals constant C in Eq. (7) for Li and Ar, the experi-
mental value C=188)&10 " erg cm' by Rosin and
Rabi" is probably too low in view of the more recent
work by Rothe and Bernstein" on K-Ar and Cs-Ar.
Instead of extrapolating the results by an arbitrary
procedure, we prefer to calculate for the value of C
from Eq. (7a) with the latest value nL ——20X10 "cm'
for the I,i atom" in addition to the usual value e~
=1.68)&10 " cm' for the Ar atom. This yields the
result: C (calculated) =237X10 " erg cm' for Li and
Ar. This value happens to be very close to C(extra-
polated) =237X10 " erg cm' if we raise the result of
Rosin and Rabi by a factor 1.28 as found by Rothe
and Bernstein for K and Ar. The value of O-L,~ between
I,i and Ar is taken to be

FxG. 10. Sum of all
calculated contributions
to rtA/Ap for Li in Ar
matrix as a function of
R/ap. Values of hA/Ap
are for a single pair of
atoms. The letters a and
b denote spectral sys-
tems in Fig. 2.

5,0

2.5

2.0

I.5
a
C'

D
~~ l.0.

«L

0.0

-0,5

8 9
R/ao

&L1lr &A +(r)L' (19)

—(zK)repulsive interaction

(Ir) overlap
effect

0

0

) van der Waa ls—interaction

6 |' 8
R/ ao.

FIG. 9. Calculated contributions to AA/Ap for Li in Ar matrix
as a function of R/ap (op=Bohr radius of the hydrogen atom):
(I) Effect of van der Waals interaction; (II) effect of overlap of
atomic wave functions; (III) effect of repulsive interaction. All
values of AA/A p are for a single pair of atoms.

"D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1938)."S.Rosin and I. I. Rabi, Phys. Rev. 48, 373 (1935).' E. W. Rothe and R. B. Bernstein, J. Chem. Phys. 31, 1619
(1959).

"A. Salop, E. Pollack, and B. Bederson, Phys. Rev. 124, 1431
(1961).' See reference 5, p. 205.

where rA, 1.71 A, bei——ng the gas kinetic collision radius
for argon, " and (r)L;——2.10 A, being the mean radius
of the I.i 2s electron averaged over its orbital. " The
value of 2.10 A for (r)L; is consistent with an empirical

rule proposed by Pauling'. (r)z„——rL;(covalent radius)
+0.8=2.14 A.

The results of the calculation for the three-compo-
nent contributions (overlap, repulsive interaction, van
der Waals interaction) to AA/Ap are shown in Fig. 9.
It is seen that the overlap effect varies much more
slowly with respect to R than the van der Waals
effect. The algebraic sum of these two contributions,
when the repulsive interaction is not included, would
give a continuously increasing negative value for AA/A p

as R decreases, contrary to the experimental result. On
the other hand, however, when the repulsive interaction
is taken into consideration, the repulsive effect balances
the van der Waals effect roughly at R=o.LAI(3.81 A or
7.20ap), which is the crossover point for the Lennard-
Jones potential. The eRect of the overlap contribution,
which should be included for the total effect, merely
pushes the crossover point to a somewhat larger value
than 0-1.~.

The over-all value for IPlA/Ap as a function of R is
shown in Fig. 10 and the calculated value for hgJ- is
shown in Fig. 11.The effect of the repulsive interaction
on AgJ turns out to be rather negligible, since the
second term in Eq. (14) is much smaller than unity in
the range of interest.

In comparing the experimental results, as tabulated
in Tables II and III, with the calculated results in
Figs. 10 and 11, it is necessary to know the number of
matrix atoms surrounding an alkali atom (which is
equal to the number of atom pairs). We will make the
assumption that only the nearest neighbors contribute
significantly to the matrix effect and that all the
nearest neighbors are equivalent (equal internuclear
distances from the alkali atom). We will assume 12
nearest neighbors, as for a normal substitutional site in
a face-centered cubic lattice. Dividing the tabulated
results of AA/Ap for Li in Ar in Table II by 12, we
have plotted the resulting values for spectral series a
and b on the AA/Ap curve in Fig. 10. Corresponding
values of AgJ in Table III, divided by 12, are also
plotted in Fig. 11, using the internuclear distances
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already fixed in Fig. 10. The points a and b in Fig. 11
do not fall on the calculated curve, but the over-all
agreement between the calculated and experimental
results may be considered as reasonably close (par-
ticularly for point a), considering the approxiinate
nature of the theory and experimental uncertainties in
the g-shift determination.

From the plotted points in Fig. 10, the internuclear
distance for site a is R,= 7.4sap and the corresponding
distance for site b is Rq=7.82ap as compared with the
distance Rp=7.0gap between the nearest neighbors in
an argon lattice. The internuclear distances for both
site a and site b are, within the accuracy of the calcula-
tion, close to the distance for a substitutional site in
argon. This suggests that both a and b may arise from
discrete, slightly distorted substitutional sites in argon,
the discrete nature of the sites being a consequence of
lattice energy relationships. An alternative possibility
is that only one of the sites is a substitutional site
(theory would favor site 4 because of the closer agree-
ment), and the other site is unspecified in the absence
of further information.

VI. EFFECT OF MATRIX ON THE WIDTH
OF SPECTRAL LINES

The effect of the matrix on the alkali atoms is also
revealed in the shapes and widths of the hf spectral
lines. Under the conditions of the present studies, the
intensity distribution of a spectral line is in most cases
approximately Gaussian. This implies that the aniso-
tropic effect on line broadening is relatively small, since
anisotropy usually produces asymmetric line shapes.

A spectral linewidth can be considered the result of
three effects: (1) spin-lattice relaxation, (2) dipolar in-
teraction, and (3) crystalline field. In addition, hyper-
fine broadening due to magnetic nuclei among the
matrix particles may be present, as in the case of
alkali atoms trapped in Xe. The effect of spin-lattice
relaxation is in general very complicated, but in prin-
ciple can be eliminated from consideration by using
suKciently low microwave intensities below "satura-
tion. "The e8ect of dipolar interaction is quite negligible
if the radical concentration is very low (e.g., below

about 0.01%%uo). The effect of the crystalline field is
regarded in the present studies as the dominant source
of line broadening and will now be examined in some
detail.

The crystalline field effect on line broadening can be
approximately described (accurately for Gaussian dis-
tributions) by

AH, '= AH ps+ AHg', (20)

where AHp is the broadening due to all crystalline effects
which are unrelated to hf interactions (e.g., nonuniform

gg shifts) and AHg is the hf broadening due to lack of
uniformity of the crystalline field. Hf broadening due to
nonuniformity of the crystalline field can arise, for
example, because one trapping site may be slightly
different in size from another, even though both have
identical symmetry. If W is the Gaussian measure of
the statistical variafiom of A (5A is different from AA,
which is the average shift of A), then AH~ can be seen
to be equal to M»8A when measured in magnetic field
units.

Figure 2 shows the hf spectra of Li7 with the AH,
values indicated for each line. It is seen that the line-
widths generally increase with higher M» value. The
dependence of the linewidth on M» decreases as the
atom is trapped in progressively heavier matrices. This
pattern of linewidth variation holds roughly for all the
alkali atoms, and is consistent with the results pre-
dicted by Eq. (20). Table IV shows the numerical
values of the parameters AA, W. , and AHp for the
example of Li' in Ar.

It is seen that although the two sites are well defined

by their AA values, which are widely separated from
each other, there is a spread of the A constant (8A) in-
dicating lack of complete uniformity of the matrix in
which the Li atoms are trapped. Lack of uniformity of
the matrix sites may be, in part, the result of the cold-
deposition procedure used in preparing the samples.
This inhomogeneity could conceivably be reduced by
subjecting the sample to a careful annealing process.

TAm, z IV. hA, 5A, and DHp for Li in Ar matrix. '

hf
spectrum aA (oe)

+4.44—2.29

hA (oe)

0.49
0.61

asap (oe)

0.88
'1.03

Ao (free Li7) =143,19 oe.

VII. MULTIPLE TRAPPING SITES

The phenomenon of multiple trapping sites has been
experimentally demonstrated in the case of Na atoms
in an argon matrix (Sec. III). It is believed that the
same phenomenon is present in all cases where there
are multiple hf spectra. However, we are as yet unable
to formulate a physical model which is adequate to
explain the discrete nature of the multiple trapping sites
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for alkali atoms in inert-gas matrices. It is not clear
why there should be several discrete trapping sites for
an alkali atom in an inert-gas matrix, and, in particular,
why this effect should be so pronounced for Na, K,
and Rb in argon. There is the possibility that several
discrete sites could represent different distortions of the
substitutional site. %e do not have sufficient knowledge
of the lattice dynamics involved to give a definite
answer to this question. There is also the possibility of
atom trapping on microcrystalline surfaces, at crystal-
line defects, or in amorphous regions of the solid. The
crystalline fields for atom trapping on the surface or at
defects would be anisotropic and the random orienta-
tion of the microcrystals would be expected to smear
the lines rather than give the observed narrow lines.
In the case of trapping in amorphous regions, the non-
reproducibility of the environment would be expected
to result in a broad line rather than a discrete set of
lines. The explanation of this phenomenon will require
further experimental and theoretical studies.

VIII. EXTRANEOUS SPECTRA

In addition to the spectra directly identified with
trapped alkali atoms, a number of unidentified spectra
have also been observed in our experiments. In almost
all experiments a strong line was observed near the
free-electron-resonance position, with slight variation
in spectral position depending on the alkali atom used.
There was no obvious correlation between this line and
the known resonance line for conduction electrons in
the alkali metal. A second type of spectrum of un-
known origin was a pattern of moderately closely
spaced lines in the vicinity of the free electron position.
These may be due to impurity paramagnetic species or,
possibly, to alkali atom aggregates. A third type of

spectrum consisting of many broad lines scattered all
over the spectral range resulted from the exposure of
the sapphire rod to alkali atoms in previous experi-
ments. The spectrum grew in intensity with successive
experiments for a particular alkali atom and was com-
pletely different for different alkali atoms. The spec-
trum is associated with stable paramagnetic centers
generated in the sapphire rod. It was found that this
spectrum was not drastically reduced in intensity even
by the abrasive removal of a surface layer of sapphire
1/100 mm in thickness.

IX. CONCLUSIONS

The matrix effects of the inert gases on the ESR
spectra of trapped alkali atoms were, as expected, very
similar to but much larger than corresponding effects
on trapped hydrogen atoms. The occurrence of high
order multiplicities of trapping sites for certain alkali-
matrix combinations has introduced a new and interest-
ing phenomenon for which a satisfactory explanation
is needed. A theoretical approach taking into account
repulsive interactions as well as the overlap and van
der Kaals interactions has been developed for the
calculation of matrix effects on the ESR spectra of
alkali atoms. For the case treated in detail, I.i in Ar,
the theoretical and experimental results are in good
agreement if the Li atoms are assumed to be trapped
in substitutional sites. Studies of the widths of the
spectral lines indicate a lack of complete uniformity of
the matrix sites, possibly due to the cold-deposition
procedure used.
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