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The drift velocity and the angle between the direction of the drift velocity and the electric field are cal-
culated as a function of the electric field strength, the crystal orientation, and the lattice temperature. The
fit between experimental and theoretical results is nearly quantitative. By the process of fitting, the optical
deformation potential constant D, and the intervalley rate constant w; are determined. The values
Dy=0.5X10° ev/cm and 1.66X10% sec!=w.<10" sec! are consistent with the results of independent

experiments.

I. INTRODUCTION

HE electric conduction in #-type germanium at

high electric fields shows quite distinct deviations
from the low-field Ohmic behavior. The tensor of
differential mobility becomes nondiagonal and field
dependent. The diagonal elements decrease with in-
creasing electric-field strength. Under the same condi-
tions, the ratios of nondiagonal to diagonal elements
tend, roughly speaking, to field-independent finite
values. In accordance with this, the following facts
have been found experimentally: (1) With increasing
field, the drift velocity approaches a field-independent
saturation value.l’? (2) The absolute value of the drift
velocity and the way in which it is approached, depend
distinctly on the crystal orientation.? (3) In general,
the electric field strength and the drift velocity are
not parallel (Sasaki effect). The angle ¥ between these
vectors depends on the crystal orientation and is zero
in the simplest crystallographic directions only.*®

A theory of these hot electron effects requires that
the structure of the conduction band of germanium
be known, at least for those parts of the Brillouin zone
which are accessible to electrons for the experimental
conditions under study. Furthermore, for the same
conditions, the distribution of the electrons must be
given.

In this paper, we replace the required knowledge of
the band structure by the assumption that even under
hot electron conditions only the (111) valleys of
germanium are populated. Furthermore we assume
that the effective masses are constants for the average
energies of the electrons under consideration. For this
special model of the band structure, the distribution
of hot electrons can be obtained by solution of the
Boltzmann equation as shown previously.” In this
paper, this distribution function will be used for the
calculation of the drift velocity and the anisotropy of
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hot electrons. It will be shown that a nearly quanti-
tative fit between the theoretical formulas for the
many-valley model of the band structure and the
experimental results for #-Ge is possible. Moreover,
the values of the optical deformation potential constant
D, and the intervalley rate constant ws determined by
the process of fitting, are consistent with the results of
other independent experiments. The possibility of a
consistent fit seems to indicate that the assumptions
and approximations, inherent in this and the previous
paper, are not unreasonable.

The procedure for obtaining these results is as
follows: In Sec. II a convenient form of the general
expression for the drift velocity is given and the
previous results for the electron distribution are sum-
marized. In Sec. IIT the drift velocity and anisotropy
are calculated for a special electron distribution, which
leads to simple results. In Secs. IV and V, the general
case is treated. An explanation of the field dependence
of the Sasaki effect is given and the comparison between
theory and experiment is carried out. Section VI
finally deals with the influence of approximations on
the interpretation of the experimental results in the
framework of the many-valley model and with the
question of the reliability of the whole theory.

II. EXPRESSIONS FOR THE DRIFT VELOCITY
AND THE DISTRIBUTION FUNCTION
OF HOT ELECTRONS

The average drift velocity vq of an electron distribu-
tion in a many-valley semiconductor is by definition
given by

> f v @ (AR D) BAKD
Vag= ’ (1)
Zlff(t)(Ak(l))dsAk(l)

where the sums extend over all valleys. Here Ak® is
the wave vector of an electron, reckoned from the
energy minimum of the valley j, /@ (Ak®) is the dis-
tribution function, and v denotes the group velocity.

We shall now write Eq. (1) in a form in which
immediate use can be made of the distribution functions
derived previously.” For this reason, we transform the
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surfaces of constant energies to spheres in each particu-
lar valley by means of the transformation of Herring
and Vogt® by which effective wave vectors AK*@ are
introduced instead of Ak®, and effective fields F*®
instead of F. The effectve vectors are defined by

Ak D) =[a@® PAkD), (2)
F*@ =[a®]F, A3)
and & is the tensor of the reciprocal effective mass

times the free electron mass. In the new variables the
distribution function can be written in the form?

FOAK*D) =319 (&) Py(cosd),

where ¢ is the angle between the effective field and the
effective wave vector, and e is the energy of the elec-
trons. Consequently, the following expression for the
drift velocity is obtained instead of (1):

)

Z]./ ef1D ()de[ & PF @
0

e x

5 / &0 ()de

Here m, is the free electron mass, and F*@ is the unit
vector in the direction of the effective field. In this
relation, our previous results for fo”(e) and f1 (e)
can be immediately used. On the one hand, this is done
by means of the equation®1

F1D (€)= Ey* D (dfo @ /de), (5)

where E(,)"? is the energy fed to an electron by the
electric field during the relaxation time () for momen-
tum scattering. The energy E¢),'@ depends on the
value of the effective field in the valley under consider-
ation on account of the relations

By i=Eqnl"@/F, (6)
where
Eqy=elF (1)(2¢/my)}, @)
and
ph‘iC[Z
(r) (®)

\/7241r3mtmﬁ512k Teffé%

Here m, and m; are the longitudinal and the transverse
masses, p is the density, ¢, is the longitudinal velocity
of sound, and E, is the acoustical deformation potential
constant for momentum scattering. Expression (8) is
formally identical with the expression for the acoustical
relaxation time for momentum scattering [Eq. 10(a)
of reference 7], apart from the fact that in (8) the

8 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
9 E. M. Conwell, Phys. Rev. 123, 454 (1961).
10 Compare Eq. (15) of reference 7.
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temperature T is replaced by the effective temperature
Tee=T

Dg?hic? Diwy

[(21zq+1)+(N—1) (2m+1)]. 9)

ElszwO Ozwi
Here N is the number of valleys in the band under
study; 7, and #; are the number of optical and inter-
valley phonons; wy and w; are their frequencies; and
Dy and D, are the deformation potential constants for
interactions of the electrons with them. The replace-
ment of T by Tets in Eq. (8) is due to the fact that for
hot electrons with average energies larger than %w, and
#w; the emissive interactions of electrons with these
high-energy phonon fully contribute to the momentum
relaxation.

As (r) varies as €% E(, is independent of the
energy. Consequently, insertion of (5) and (6) into (4)
leads to the final expression for the drift velocity:

0

ij fo@(e)dea”F,
17 2\? 0
vd=——<-—)E(,, , (10a)
3 my »
Zz/ e fo®(e)de
0

or

[ f()(j)(ﬁ)dé

17 2\?% n; Jo .

Y 2 ) o
n 0

/ & foD (e)de

where

n; i e
—_—= e fo@ (e)de ! o (e)de, 11
. / e /zf (9de, (1)

in which now only integrals over f,‘” (e) are contained.

For these functions, results have been obtained in
three cases: (1) The energy loss of the electrons is
almost entirely due to optical intravalley scattering;
intervalley scattering is completely absent. (2) Inter-
valley scattering is strong enough to establish a steady-
state distribution of the electrons in the different
valleys, although the electron transfer still does not
affect the energy balance. (3) The transfer of electrons
between different valleys caused by intervalley scatter-
ing has an influence on the energy balance comparable
to the influence of the interactions of electrons with
optical phonons.

In cases 1 and 2, a Maxwellian distribution

Jo@(e)=C; exp(—B;e), (12)
with 8;=1/kT *® given by
Bi=[Ew*DEqy*@ [hwothw(ng+3) 17, (13)

is found as a solution of the Boltzmann equation.
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Here E,*@ is the energy gain during the optical time
of energy relaxation,

ph3w0

To=————————, (14)
V222w mm Doled

Cases 1 and 2 are therefore only to be distinguished by

the different dependence of C; on the electron temper-

ature. In case 1, all the valleys have the same population

and consequently C;« ;% on account of the normaliza-

tion condition. In case 2, however, a finite repopulation

n; B 1—FwB;/2(2n+1) ] (15)
n SB[ —wBi/22nA1) T

Cjo B 1—hwiBi/2(2n:41) ],

(16)

is set up. In case 3, finally, the transfer of electrons
also does affect the form of the energy distribution of
the electrons fo® (e), which is no longer Maxwellian
but is found to be

S0 (9= {Kj—mc[ (N—1)Bye

+§j (;gﬁlg, [0 eXp[(Bj;Baé]—l dg)]}

B
Xexp(—B,O+7B,C X —— exp(—fie), (17)
i B;— B
where
¥=D2(2n;+1)/Dehcw;, (18)
K;j=C{B[1—Bhwi/2(2n:+1) I
—2982 2 [1/8:—1/8;1—48; 2 In(Bi/B)}.  (19)

The transport properties of hot electrons with these
different types of electron distributions will now be
studied.

III. TRANSPORT PROPERTIES OF HOT ELECTRONS
IN A SIMPLE CASE

In this section the properties of hot electrons whose
energy distribution is a Maxwellian one will be treated
for the range of high-electric fields, where 8;=1/kT ;*®
is approximately given by

Bi=two/ Er* @ E7y* @, (20
which means that the second term in Eq. (13) has been
neglected. The dependence of the electron temperature
on the electric field strength and the field direction is
especially simple in this case. Making use of (6) and
(7) and of (8), (9), and (14), B; can be written as a
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Fi1G. 1. Definition of the angles in the Sasaki plane.

product of two factors,
fiwo F?
= >< N
EE¢y [F@OF
96[ m*E1Do "R T et B
 [eFpcdiP(deta)  [FFOT

B;
(21)

The first of these factors is the same for all valleys and
depends only on the electric field and the lattice
temperature. On account of (3), the second factor,

[F/F*@ =1/ (B:aPFy), (22)

describes the influence of the field direction on the
electron temperature in the particular valley under
study. This factor is in general different for different
valleys.

If repopulation is taken into account in a way
consistent with the approximation (20), the distribu-
tion of the electrons over the different valleys is given
by

ni/n=B;*/21 82, (23)
which is identical with the well-known Knudsen
distribution in very dilute gases. On account of (21)
and (22), the distribution of the electrons depends
only on the field direction:

ni/n= (Fea@Fo)=2/3 ", (FoaOFo) 2 (24)

For field directions confined to the (110) plane (see
Fig. 1), the repopulation (24) as a function of the field
direction is plotted in Fig. 2.

Insertion of (12), (21), and (22) into (10b) leads to
the following expression for the drift velocity!:

va ~g( 2hw0<7>)%s

3 TLT o

Do hCl

S —
Ey m(3m kT o)}

1L H. G. Reik, H. Risken, and G. Finger, Phys. Rev. Letters 5,
423 (1960).

(25)
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F16. 2. Population ratios #;/# vs field direction
©-+y according to (24).

where the direction-dependent part S is given by

mi\* n;  &PF,
()
o 7 (Foa(”Fo)""
While the vector S is independent of the absolute value
of the electric field strength as well as of the lattice
temperature, the drift velocity decreases with in-
creasing lattice temperature. The explanation of the
saturation of the drift velocity as due to the energy
loss of the electrons by interactions with the optical
phonons was put forward by Shockley,?:® Since then,
the question of the relative contribution of the different
scattering mechanisms to the losses under a variety of
conditions has been studied extensively,*2
The properties of the relation (26) are plotted in
Figs. 3-5, where full curves refer to the Knudsen
distribution, (23) and (24), broken curves to no
repopulation, #;/n=%. In Fig. 3 the dependence of the
absolute value of S (and therefore of the absolute
value of v4) on the field direction, the so-called longi-

(26)

12W. Shockley, Bell System Tech. J. 30, 990 (1951).

18 Shockley calculated the drift veloc1ty under the assumption
of infinitely strong interactions between electrons and optical
phonons for a monoenergetic electron distribution and a needle

distribution in % space. In both of these cases he found va4
== (fwo/m™*)}. A Shockley type of formula,

vi==2(5- >( ) ™

is also obtained from (25) and (9) for Dy/=; — . This does not
mean infinitely strong optical interaction, for B; is now given by

472Dy
wo p/r"eF] deta Foa(“F T, 1)
and for the applicability of the theory 8;<1/%wo is required.
1 7J. Yamashita and M. Watanabe, Progr. Theoret. Phys.
(Kyoto) 12. 443 (1954).
15 B, V. Paranjape, Proc. Phys. Soc. (London) B70, 628 (1957).
16 E. M. Conwell, J. Phys. Chem. Solids 8, 234 (1959)
7 E. M. Conwell Bull. Am. Phys. Soc. 5, 61 (1960).
(1;865) M. Conwell and A. L. Brown, Phys Chem. Solids 15, 208
VK. H. Seeger, Z. Physik 156, 582 (1959).
2 A. F. Gibson, J. W. Granville, and E. G. S. Paige, J. Phys.
Chem. Solids 19, 198 (1961).
2 M. A. C. S. Brown, J. Phys. Chem. Solids 19, 218 (1961).
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F16. 3. Variation of the absolute magnitude of the drift velocity
with the field direction ©®+y (longitudinal anisotropy) according
to Egs. (25) and (26).

tudinal anisotropy is given. In Figs. 4 and 5 the angle
¥ between the direction of the drift velocity and the
electric field, the so-called transverse anisotropy, is
plotted against field direction and sample orientation,
respectively.

The results of our theory for the simple case under
study, with repopulation taken into account, agree
quite remarkably with most of the experimental results.
An indirect confirmation of Egs. (23) and (24) is due
to Paige.?? In his work, an analysis of Koenig’s experi-
mental results on the anisotropy of hot electrons®
based on Stratton’s transport theory® (in which also a
Maxwellian energy distribution for each valley is used),
was given. For F=1000 v/cm, Paige’s analysis, as far
as the repopulation is concerned is summarized in
Table I and compared to the results of Eq. (24).
(See also Fig. 2).

A number of direct confirmations exist for Eq. (26)
with repopulation taken into account. According to
Fig. 2 the ratio of the drift velocities in the {001)

tan y

04
03
Q24

014 -~ N

F16. 4. Anisotropy angle ¢ vs field direction
®-+y according to (26).

E. G. S. Paige, Proc. Phys. Soc. (London) B75, 174 (1960).
2 S. H. Koenig, Proc. Phys. Soc. (London) B73, 959 (1960).
R. Stratton, Proc. Roy. Soc. (London) A242, 355 (1957).
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F16. 5. Anisotropy angle ¢ vs sample orientation ®. @ —measure-
ment of Koenig et al.,?® F=4000 v/cm; T=80°K; +—measure-
ment of Schmidt-Tiedemann?; F=3500 v/cm; T="78°K.

and (111) directions vago1y/vau11y=1.58, whereas for
F=1000 v/cm, T="78°K, v4¢001)/va¢111y=1.60 was found
by Nathan.? Experimental results on the anisotropy
angle ¢, obtained by Koenig, Nathan, Paul, and
Smith?® and by Schmidt-Tiedemann?® are given in
Fig. 5. The results of these authors are close to the
theoretical curve. Finally, Eq. (25) gives the correct
temperature dependence of the saturation drift velocity
in contradistinction to Shockley’s results.??13

The optical deformation potential constant can
therefore be evaluated from measurements of the
saturation drift velocity using (25). For the evaluation
a value |S]|=0.80 and E;=11 ev (calculated with
E,=17 ev, E4=—15.8 ev has been used. The result is
shown in Table II. (Koenig’s values of v are calculated
from measurements of the saturation current density.)

The values of D, are consistent with the analysis
of mobility data by Brooks.?” They are of the same
order of magnitude as a value given by Meyer,?®?
Dy=1.15X10° ev/cm, which was extracted from experi-

TasBLE I. Repopulation of hot electrons according
to Paige® and to Eq. (24).

Experimental conditions and results (Koenig®)

©=26°, T=78°K, F=1000v/cm, ¢=11°, @-y=37°
Analysis ni/n na/n=ns/n na/n
Paige® 0.46 0.18 0.18
Eq. (24) 0.46 0.19 0.16

a E, G. S. Paige, Proc. Phys. Soc. (London) 75, 174 (1960).
b H. Koenig, Proc. Phys. Soc. (London) 73, 959 (1959).

2 S. H. Koenig, M. I. Nathan, W. Paul, and A. C. Smith,
Phys. Rev. 118, 1217 (1960).

26 K. J. Schmidt-Tiedemann (private communication).

27 H. Brooks, Advances in Electronics, edited by L. Marton
(Academic Press Inc., New York, 1955), Vol. 7, p. 85.

28 H. J. G. Meyer, Phys. Rev. 112, 298 (1958).

¥ H. J. G. Meyer, J. Phys. Chem. Solids 8, 264 (1959).
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Tasile II. Evaluation of the optical deformation potential
constant Dy from measurements of the saturation drift velocity
24 at different lattice temperatures.

Author Tt va (cm/sec) Dy (ev/cm)

Ryder® 77 09 X107 0.37X10°

193 0.76X107  0.49%10°

298  0.62X107 0.49X10°
GunnP 300 0.55%X107 0.43X10°
Arthur et al.c 300 0.65x107 0.5 X10°
Koenigd 80  1.08X107 0.47X10°
Koenig e al.c (100) sample 297  0.67X107 0.51%X10°

s E, F, Ryder, Phys. Rev. 90, 766 (1953).

b J. B. Gunn, J. Electron. 2, 87 (1956).
( o Slé)B. Arthur, A, F. Gibson, and J. W. Granville, J. Electron. 2, 145
1956).

d S, H. Koenig, Proc. Phys. Soc. (London) 73, 959 (1959).

¢S, H. Koenig, M. I. Nathan, W. Paul, and A. C. Smith, Phys. Rev.
118, 1217 (1960).

mental data on the infrared absorption by free carriers
obtained by Fan, Spitzer, and Collins.®*® More detailed
but as yet preliminary experiments on free-carrier
absorption by de Veer,® evaluated on the basis of the
theory of Meyer?®® and Risken and Meyer,* seem to
indicate a value for Dy much closer to our present one,
Dy=0.5X10° ev/cm.

IV. TRANSVERSE ANISOTROPY OF HOT
ELECTRONS: THE GENERAL CASE

The treatment of the last section was based on the
assumption, that the intervalley scattering has no
influence on the energy distribution of the electrons
and was further simplified by using approximate ex-
pressions for the electron temperature (20) and for the
repopulation (23). This led, as far as the anisotropy
was concerned, to the temperature- and field-independ-
ent results of Figs. 3 and 5, henceforth called the
limiting results. Under experimental conditions the
approximations (20) and (23) may not fully apply, at
least for the cold valley 1 of Fig. 2. Moreover, the
finite intervalley rate may to a certain extent affect
the energy distribution. Therefore, a slight dependence
of the anisotropy on the electric field and the lattice
temperature is to be expected.

In fact, the experimental ¢ vs F curves for fixed
sample orientation and fixed lattice temperature
exhibit a flat maximum?—%:2.25.26 whose existence, after
some discussion,®?® is now well established.?®:*¢ For
T=78°K the experimental values Of Ymax, given in
Fig. 5 are, as stated in Sec. III, close to the limiting
results.

The reason for this particular field dependence of
the anisotropy will first be discussed qualitatively. In
order to do this, let us note that the anisotropy is
zero if the distribution f,? (¢),and therefore the average

(12’5161). Y. Fan, W. Spitzer, and R. J. Collins, Phys. Rev. 101, 566
3 H.']. G. Meyer and S. M. de Veer, (private communication).
32 H. Risken and H. J. G. Meyer, Phys. Rev. 123, 416 (1961).
3 J. B. Gunn, (private communications to S. H, Koenig cited

in reference 25), '
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F1c. 6. Mechanism of energy transfer between different valleys.

energy €@, is the same for each j and that, roughly
speaking, the anisotropy measures the quantities

—1

«®

_ @
77(1')(]): .

The initial increase of the anisotropy with increasing
field strength can therefore be explained only if in the
distribution (12) the better approximation (13) for the
electron temperature is used instead of (20), while the
influence of intervalley scattering on the energy dis-
tribution of the electrons is still neglected. Under
these assumptions, the anisotropy is found to increase
monotonically with increasing field strength and in the
limit of high fields the limiting results of Sec. III are
re-obtained. It will now be made plausible that the
existence of the maximum and the final decrease of
the anisotropy with increasing field strength is due to
the finite intervalley rate.

Consider the two valleys of Fig. 6, whose population
ratio, according to the Knudsen distribution (23), is
determined by the electron temperature 7°,® and 7°,®.
In further analogy with the situation in Knudsen gases,
the average energy of transfer per particle is found to
be equal to 2%7..35 Therefore, from the point of view
of the hot valley, an electron going back and forth is
equivalent to an energy loss Ae=2k(7,®—T,®) which
corresponds to a number 7= Ae/7w, of emissive optical
interactions. By this energy transfer, the importance
of which increases as F?, the average energies of elec-
trons in the two valleys and therefore the populations
are partly equalized. In the region of high-electric
fields, this gives rise to a decrease of the anisotropy
with increasing electric field strength.

A quantitative description of the field and temper-
ature dependence is obtained if the distribution

#As shown by (10a), the anisotropy is measured by
| S f9de/ S fDde—1]. Insertion of (12) and (16a) shows that
this quantity is practically equal to the more intuitive lquantity
7¢iy@ used in the text.

3 The energy of the intervalley phonon is neglected as compared
to the average energy of the electrons as soon as the Knudsen
analogy is used. For finite energy of the intervalley phonons, the
average energy of transfer is in first approximation equal to
2kT D —Lhe;.
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function, (17) and (19), in which the influence of the
finite intervalley rate is properly taken into account,
is inserted into (10a). As we restrict ourselves to the
transverse anisotropy only, factors common to all terms
of the sum of the right side of (10a) can be omitted.
This procedure leads after straightforward calculations
to the following proportionality :

[w*TaF,

7 ) (27)
Foa @ F [ u* P4-mo/m,

Vg &< 4_"‘—*—‘1 FO‘JFZ

where the second term is analogous to the vector S of
(25) and (26), while the first one accounts for the
influence of the intervalley scattering on the drift
velocity. The dimensionless variables #* (which is
proportional to the field strength) and 4* (which is
proportional to the intervalley rate constant) are
defined by

L 2(2n:+1) E()Er mg
w — —
(2%(1‘{—1)(21’514-1)'—(01/600 (ﬁw0)2 ur

(21’Lq+ 1) (2%{‘!— 1) ——wl-/wo

i ephPc; P deta F?
x| | . 9
6L4m2 Doy me® mkT o
2n,41) 2n;+1) —w/w m
yr= Shor— 3 FuaOF,
(21z,~+ 1) My (29)
(21’Lq+1) (2nl—l—1)—w1/wo 21 My
AL
(2%,“" 1) 3 my

The range of validity of (27) is determined by the
conditions that the average energy of the electrons in
all valleys must be larger than the energy of an optical
phonon, which, according to (28), (13), and (6), leads
to #*>3. Furthermore, the deviation of the electron
distribution from the original Maxwellian one must be
small, which is equivalent to y*»*2<%.

Equation (27) shows that the limiting results of
Sec. III are to be expected in a specified range of
intermediate fields only. On one side, #* must still be
so small that the first term, which describes the
influence of intervalley scattering, can be neglected.
The remaining sum, however, is then practically equal
in direction with the vector S of (25) and (26) only if
Foa@F [a* >>me/m. For lower values of the electric
field, the anisotropy goes down on account of the in-
complete saturation of the drift velocity. For higher
electric fields the anisotropy also decreases because
then the first term, which always points in the direction
of the electric field, becomes important.

In the next section, the theory will be fitted to the
experiments. By this fit, the finite intervalley rate is
determined. For a comparison with the results of
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Weinreich, Sanders, and White®® it is expedient to
express ¥ in (29) by the intervalley rate constant w,
(see Appendix). This gives the relation

. ohPwo deta ]
’Y -—
3\/2-7F2D02M()§[:hw0]% 2 1
X[(2n,+1)(2n+1) *wi/woj[g‘i‘g

ﬁ]w (30)

my

by which v* is immediately connected with the inter-
valley rate constant ws,.

V. COMPARISON OF THEORY AND
EXPERIMENT

In the experiments on the anisotropy of hot electrons,
the angle ¥ is measured as a function of the electric
field strength for fixed lattice temperature and fixed
sample orientation in the (110) plane. The theoretical
¥ vs F characteristics can be calculated if the com-
ponents vaq10y and va(001y of the drift velocity from (27)
are inserted in the relation

V4 (110)

tan®= (31)

Vd{o01)
Then, for fixed values of ©, a surface
Y=y (0=const, v¥, u*)

is obtained. The contours of the particular surface
Y(0=26° v*, u*) are given in Fig. 7. The value of @

¥% 103

v=11°

20

18

16

1

12

10

2 3 A 5 6 7 8 9 10 u*

F16. 7. Contours of the surface ¢ =¢(©=26° v*, u*).
K G. Weinreich, T. M. Sanders, and H. G, White, Phys. Rev.
114, 33 (1959),
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F1c. 8. Field dependence of the transverse anisotropy (Sasaki
effect) for different intervalley rates. The parameter of the curves
is equal to y*X 103,

chosen corresponds to sample orientations used by
Koenig® and Schmidt-Tiedemann.?

According to (30), the experimental ¢ vs F char-
acteristics for fixed sample orientation and fixed lattice
temperature correspond to the curves

Y=y¢(0=26° v*=const, u*).

Some plots of these curves for different values of the
parameter v* are given in Fig. 8. For v*— 0, the ¢ vs
u* characteristics increase monotonically with in-
creasing #* and, in the limit #* — o, tend to the
limiting results ¥ (@=26°) of Fig. 4. For small values
of »*, the curves

Y=y (0=26° v*, u*)
and
¢=¢(@=26°7 7* - 07 M*)

are very similar. For larger values of #*, however, the
curves Yy=¢(0=26°, v*, *) exhibit a maximum, whose
value ¥max for small values of ¥* comes close to the
limiting result ¢ (®@=26°). For even higher values of
u*, the anisotropy goes down again on account of the
predominance of the intervalley effect.

A comparison between the theoretical ¢ vs u*
characteristics and the experimental ¢ vs F characteris-
tics can be carried out in three steps: (1) Draw the
experimental ¢ vs F characteristics with the same scale
for the ordinate as that of Fig. 8 and the same logarith-
mic scale for the abscissa. Try to bring each experi-
mental curve ¢ =¢(0=26° T, F) into coincidence with
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tan v W

10° 15 2 3 4 5

—=— F (v/cm)
Fic. 9. Comparison of theory and experiment (Schmidt-
Tiedemann). ©®=26°; T=78°K; M—experimental results for a

13-ohm cm sample; @—experimental results for a 2.08-ohm cm
sample; full curve: theory for w,=1.66X 101 sec™2.

a particular theoretical curve
Y=y¢(0=26°, v*=const, u*)

by mere displacement of the two curves along their co-
incident abscissas-axes. If this is possible, an empirical
relation y*=+*(T), u*=u*(T,F) is established. (2) Try
to match the corresponding theoretical relations (28)
and (30) to the empirical ones by a proper choice of the
optical deformation potential constant Dy and the inter-
valley rate constant ws. [The remaining constants in
(28) and (30) are supposed to be accurately known.]
(3) If this is possible, compare the values of Do and w,
with the independent values from the literature which
put the boundaries such that D and ws should lie inside
the limits

0.5X10% ev/cm <Dy <1.15X10° ev/cm,
SX 100 sect<w, <2X 101 sec?,

A comparison between theory and experiment has
been carried out for measurements by Koenig® and by
Schmidt-Tiedemann,?® which, apart from showing the
same general features, led to quantitatively different
values of ¢. The result of the comparison is shown in
Figs. 9 and 10. The theoretical and the experimental
¢ vs F curves can be matched satisfactorily for the

tan~ w»
04
20°
Q34
15°
= = ‘—b* ——
024-—— -
o a 210°
0 5°
10° 15 2 3 H 5
—=— F (v/cm)

Fic. 10. Comparison of theory and experiment (Koenig).
©=26° T'=78°K; e—experimental results; full curve a: theory
for finite intervalley rate w,=101 sec™?; full curve c: theory for
zero intervalley rate.
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experiment by Schmidt-Tiedemann. From the fit, the
following values of ws and Dy:

we=1.66X100 sec™, Dy=0.7X10° ev/cm,

are obtained. The fit between theoretical and experi-
mental curves is less good for the measurement of
Koenig. According to Koenig,*” this might be due to
the influence of the Gunn effect,® which is not excluded
in his experiment. If, as in Fig. 9, only the maximum of
the experimental ¢ vs F curve is used for the fit, the
values,

wy=10" sec™!, Dy=10° ev/cm,

are found.

The values of ws and Dy are of the correct order of
magnitude in both cases. It should however be men-
tioned that the value of w, obtained from Schmidt-
Tiedemann’s experiment is markedly smaller than the
values given by Weinreich, Sanders, and White.3¢ The
same applies for experiments of Koenig et al.?® done
for @=30°.8

VI. DISCUSSION

The transport theory of hot electrons presented in
this paper was based on a special model of the band
structure, viz., one type of strictly ellipsoidal valleys
only. This had the advantage that for &é9>>/w,, easily
tractable expressions for the distribution function and
the drift velocity could be found even for quite detailed
models of the scattering processes.

The agreement between this theory and the experi-
ments for #-Ge as presented in Secs. ITI-V especially
the explanation of the field dependence of the Sasaki
effect, gives evidence that the model and the further
approximations inherent in this and the previous
treatment” are not too unrealistic for the experimental
conditions under study. It is nevertheless worthwhile
to discuss in more detail the question of the reliability
of the theory.

We first note that each measurement of the anisotropy
of hot electrons is at the same time a thermometric
measurement, on account of Fig. 8 and the relation

(2%q+ 1) (2%,+ 1) —wqj/w()
2(2n,4+1)

BT, = [w*TFoa®F,

+net+3 }hwo, (32)

by which the wvariable #* is related to the electron
temperature in the zeroth approximation, (12) and (13),
of the distribution function.

37 S. H. Koenig (private communication).

38 The theoretical values of ¢ calculated by J. Yamashita and
K. Inoue, [J. Phys. Chem. Solids 12, 1 (1960)] and M. Shibuya,
and W. Sasaki, [J. Phys. Soc. Japan 15, 207 (1960)] with
Weinreich’s value of w; are too small as compared to the experi-
ments of Sasaki ef al.,* ¢ although these experiments are probably
influenced by the Gunn effect.
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The value Ymax=19°, found in Schmidt-Tiedemann’s
experiment, corresponds to #*=8.4 (C.f. Fig. 8). There-
fore the electron temperatures in the valleys 1-4 of
Fig. 2 are found to be

T,W= 540°K,
Te(z) = Te(3) = 3700°K,
T, =4200°K.

The electron temperatures in the valleys 2-4 are very
high. One may therefore have some doubt about the
assumption of constant effective masses in these “hot
valleys”#+0 and about the assumption that the higher,
nonequivalent valleys play no part in hot-electron
effects.®#? If we postpone this question, we remark
that, on the other hand, the temperature of the cold
valley 1 is relatively low. The use of the distribution
function (17) and (19), in which the determination of
K; from the intervalley balance was based on the
assumption fw;/kT, V<1, is therefore also open to
criticism. In fact, a small relative error in the large
first term of (17) may already be of the same order of
magnitude as the small corrections, linear in the inter-
valley rate constant. A fit between theory and experi-
ment is therefore liable to give only the order of
magnitude of the intervalley rate constant ws. The
errors coming from the cold valley can in principle be
eliminated by a better approximation, which, however,
leads to very complicated expressions. It is therefore
easier, and equally instructive, to make the approxi-
mation even worse by using the distribution (17) and
(19) with B;fw;=0. This deliberate deterioration of the
approximation has no influence on the form of the
¥ vs u* characteristics in Fig. 8, for Eq. (27) is re-
obtained. However, the relation between #* and F, v*
and ws is now different for, as a consequence of
Bifw;=0, w; in Egs. (28) and (30) is now set equal to
zero. The fit between experiment and theory, based on
this deliberate deterioration of the approximation, will
therefore lead to a value of Dy which is approximately
one half and to a value of w, approximately one quarter
of the values obtained in the last section. On the other
hand, as shown by (32), the electron temperatures
would be four times as high as before.

We therefore conclude that the form of the theoretical
Y vs F curve is due only to the simple physical picture
given in Fig. 6, and is not very sensitive to the accuracy
of the approximations. However, the quantitative
interpretation in terms of intervalley rate constant and
electron temperature is very distinctly influenced by
more or less accurate approximations. The same seems

#® F. Herman, Proc. Inst. Radio Engrs. 43, 1703 (1955).

4 M. Cardona, W. Paul, and H. Brooks, Helv. Phys. Acta 33,
329 (1960).

4 M. I. Nathan, W. Paul, and H. Brooks, Phys. Rev. 123,
391 (1961).

2R, Stratton, J. Electronics 5, 157 (1958).
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Fi1c. 11. Anisotropy angle ¢ vs sample orientation ©.

I u*=ow, ~+*=0.

IO u*=7, ~+*=0.
III. u*=7, ~*=2X1073.
IV. u*=T7, ~+*=4X10",

to apply for the hot valleys and even if the influence
of the nonequivalent valleys is taken into account as
proposed by Stratton. Then, for such values of the
field, where the average energy of an electron in some
of the (111) valleys is higher and in the other ones
lower than the energy of the minimum of the high
valleys, the anisotropy-enhancing mechanism of Koenig
et al. will act. For higher fields, where the average
energy of the electrons in all (111) valleys is higher
than the minimum of the nonequivalent valleys, the
anisotropy will decrease with increasing field. The
reason for this is, on the one hand, the appreciable
population of the high valleys, on the other hand, the
scattering between nonequivalent valleys by which the
average energies of the electrons in different valleys is

2 / N
N\

|
|
Q3 | \
]
/

/
Q / 7 \\\

Fi1c. 12. Anisotropy angle ¢ vs sample orientation ©.

L ut=w, ~*=0.
IL w*=11, +*=2X10"3,
ML a*=11, *=4X10".
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very efficiently equalized. In summarizing the foregoing
discussion, we may state that for experiments with a
sample orientation ®=26° the assumption of the theory
may not fully apply; that, however, the results of the
theory are not very sensitive.

For a more conclusive check of the theory and a
more accurate determination of the intervalley rate
constant, we propose measurements of the anisotropy
near ®=90°, where in a specified region of the electric
field all our assumptions apply and where, furthermore,
as is shown by Figs. 11 and 12, the anisotropy is very
sensitive to the intervalley rate constant.

ot =i | \hwo

where [8fo®?/0t]ins is the rate of change of the
distribution function due to intervalley scattering, and

\/2—471'2D1‘2Wl0% (ﬁwi)%
A= (A2)
phPw deta

are applied to the experiment of Weinreich ef al. In this
experiment, electrons in the two different pairs of
valleys behave like particles with positive and negative
acoustical charges ¢ in an acoustical potential ®. The
rate of transfer of positive acoustical particles into
negative acoustical particles can be obtained if the
four-equation (Al) is collected in pairs and the
Boltzmann average is performed. Taking the asymptotic
behavior of the modified Hankel function K;(%w;/kT)

H. G. REIK AND H. RISKEN
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APPENDIX I

The relation (30) between v* and the intervalley
rate constant ws can be derived if

[afomlﬂ > l(i+1)%t<m+1>fo<”<e+ﬁw0—"z‘fﬂ"“@]

+(Ei_1>7[”ffo<l)(e—ﬁw¢)—(m+1)fo<"’(e)] , (A1)

wWo

for hw;/2kT<1 properly into account, the rate of
transfer

ddny/dt=don_/di=—84 exp(—Fiw;/kT)dn, (A3)

is found, where 07, is the deviation of the population
of the positive pair of valleys from their equilibrium
population,

Nyo= ﬂo(l—qﬁb/kT).

Comparison of (A3) with Egs. (3.6) and (8.4) of
Weinreich, Sanders, and White shows that
wy=34. (A4)

Insertion of (A2) and (18) gives (30).
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A continuous solid-solution field extends at 1100°C in the Ti-Fe-Co ternary system between the CsCl-type
binary phases TiFe and TiCo. In the Ti-Co-Ni ternary system a similar solid-solution field extends at

1175°C from TiCo at least to TisCosNi.

The electronic specific heat coefficient of TiFe-TiCo alloys and of TisCosNi was found to have a large peak
at the same average electron concentration where the  peak for the bce Cr-Fe alloys occurs.

INTRODUCTION

STUDY of the electronic specific heat at low
temperatures of bce alloys of first long-period
transition elements! indicated that in different alloy

( 1 C.)H. Cheng, C. T. Wei, and Paul A. Beck, Phys. Rev. 120, 426
1960).

systems the variation of the electronic specific heat with
the average electron concentration (the average number
of electrons outside the closed shells of the various com-
ponent atoms) is very similar. This similarity suggests
that, at least in a first approximation, these alloys may
be described in terms of a nearly rigid 3d-band model.



