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A ground-state wave function for solid He? in the body-centered cubic phase is calculated in the form of
a product of single-particle orbitals and pair correlations. The correlation part is an eigenfunction of the
Pluvinage Hamiltonian with each pair in a state of zero energy in a frame in which their center of mass is
at rest. Assuming that exchange effects are small, we obtain an approximate single-particle probability
function from this wave function. The many-body energy is obtained from this single-particle probability
function from basic principles by a plausibility argument, and leads to a pressure-volume relation that is
in good agreement with observation. Exchange effects arise from the original wave function, when suitably
antisymmetrized. This predicts an exchange energy of about 0.005°K near the melting curve, in agreement
with a recent experiment of Adams, Meyer, and Fairbank ; this exchange energy favors antiferromagnetic

alignment.

I. INTRODUCTION

HE analytic treatment of the dynamics of the
atoms of the isotopes of helium in the liquid or
solid phase is a problem which must be attacked from
the point of view of quantum mechanics. Other liquid
and solid systems can be analyzed using classical con-
siderations to describe the basic dynamics of the inter-
acting particles, with application of quantum theory to
describe deviations from classical effects. The calcula-
tion of the Debye specific heat is a case in point.
London' applied the name ‘“quantum liquid” to
helium. Helium likewise forms a quantum solid. We
can describe helium quantum mechanically by using the
many-body Hamiltonian,

H=3 Ti+5 2 Vij(ri)+2 Vi(ra). ¢y
i g 1z
Here 7= — (#*/2m)V 2. Primes on the summation sign

indicate that all the indices appearing in each member
of the sum are different.

We take V;(r;) to be a constant and we use the two-
parameter Lennard-Jones potential for the inter-
particle potential,

Vij(rij) =4e[ (o/r:)2— (o/7:)*]. 2
For He* and He* we assume e=10.22°K, ¢=2.556 A.
Using dimensionless quantities x;/oc=u; and 7;;/o=p;,
and expressing V, V;, and ¢ in these variables, we have
the Schrodinger equation

— XNV utd 2 4o =i W= (B e, (3)

N=7%2/(2ma’e). 4)
For He?, A=0.347, and for He?, A=0.302.
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In the case of normal solids and liquids the term in
A? (the zero-point energy) is vanishingly small com-
pared to the term in p;;. Equation (3) then reduces to

3 2 4o = pi Wou= (E/ ffpu. ®)

In Eq. (5) the quantum aspects of ¥, do not affect the
result, and we have

3 2 delpi P —pii *]=E. (6)
7

Equation (6) is the basic formula for analysis of most
solids. For example, the cohesive energy and lattice
spacing can be obtained from (6), and the theory of
quantized sound fields is based on Eq. (6) and Newton’s
second law.

For helium, however, A? does not vanish, a quantum-
mechanical treatment of zero-point kinetic energy is
called for, and (6) does not hold. In principle, a solu-
tion ¥, of (3) might exist, containing A as a variable
parameter, describing all quantum systems conforming
to (3). This general solution has not been found, except
as a series expansion good for small A? (expressing quan-
tum-mechanical corrections to classical quantities).
Such expansions converge slowly for condensed helium.

In addition to introducing the complication of in-
cluding zero-point energy in the wave equation on an
equal footing with potential energy, the zero-point
energy results in an expansion of the system. An im-
portant consequence is the fact that at absolute zero,
He? requires over 30 atm of pressure for freezing.
Further, the interparticle potential at equilibrium has
marked anharmonicity, to such an extent that the usual
perturbation methods fail. Hooton? has considered
nearest neighbor interactions of He!in a consistent way,
but has not written a wave function for the ground state.

Still another severe complication lies in the strong
interaction described by (2). The expectation value of
the potential energy is infinite for a system described
by single-particle orbitals, because these simple orbitals

2D. J. Hooton, Phil. Mag. 46, 422 (1955); Phil. Mag. 46, 433
(1955).
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are incapable of describing the particle correlations
which must exist in strongly interacting systems. Solu-
tions of (3) which overcome the singularity in the poten-
tial energy have been obtained by Lee et al’ and by
Jastrow.* These theories are valid for dilute gases
where (p,0%)¥<1 (p,=number density). Brueckner® has
solved (3) in a form suitable for describing dense sys-
tems without intrinsic spatial ordering. Since our system
is dense and must also show the lattice order of the
solid, we cannot use these theories. Other investigators
have studied solid helium using an anharmonic oscillator
theory, but their calculations do not provide a ground-
state wave function useful for considering the statistics
of the particles.

Bernardes and Primakoff® have presented a theory
which provides a ground-state description. Their wave
function for solid He? is obtained by assuming certain
correspondences between solid He? and He*, and assign-
ing values to parameters such that their wave function
gives the observed cohesive energy and root-mean-
square deviation of atoms from their lattice sites for
He*. They then apply these parameters to He®. They
assume a face-centered cubic lattice, whereas the ob-
served lattice structure is body-centered cubic.” They
employ a single-parameter correlation function of the
form exp(8r) as a cutoff on the potential to circum-
vent the problem of the singularity. The function em-
ploys a variable parameter, chosen in their method to
yield the observed behavior of He’

We can write a list of requirements which must all
be satisfied simultaneously by our theory. The existing
theories, some of which we have just reviewed, all fail
in one or more particulars. The theory must:

1. Yield a ground-state wave function which dis-
plays the symmetry required by the statistics obeyed
by the particles (Fermi-Dirac statistics for He?, Bose-
Einstein statistics for He?),

2. Include correlations between strongly interacting
particles,

3. Be valid in the region of high density where
(0071“3)%z L

4. Display the order of the crystal lattice,

5. Include the potential energy and kinetic energy on
an equal basis in the Schrédinger equation,

6. Be valid for a nonharmonic potential energy, and

7. Consistently exclude empirically observed inputs,
in favor of first principles.

We deviate from this last requirement in that we ini-
tially assume a definite lattice structure.

In this work we assume a many-body wave function
which includes a functional dependence on the separa-

( 3’51‘7.)D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
1957).

4R. Jastrow, Phys. Rev. 98, 1479 (1955).

5 H. A. Bethe, Phys. Rev. 103, 1353 (1956).

6 N. Bernardes and H. Primakoff, Phys. Rev. 119, 968 (1960).

7 A. F. Schuch, E. R. Grilley, and R. L. Mills, Phys. Rev. 110,
775 (1958).
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tion of all particle pairs, and which therefore takes
account of particle correlations. We obtain a simple
single-particle picture of solid He® which is based on an
approximate solution of the Schrédinger equation.
Using the single-particle description we obtain expres-
sions for the cohesive energy, pressure, and exchange
energy which agree qualitatively with experiment.

In Sec. IT we list our basic assumptions. Most of
these appear explicitly in our final result and are thus
subject to a self-consistency test. We cannot so test
the assumption concerning the particle interaction,
which we take to be the Lennard-Jones 6-12 potential,
and it remains the fundamental physical assumption of
the analysis. In Sec. III we reduce an N-body density
matrix to a single-body density matrix v(r) adequate
for describing properties of the solid which do not
depend on particle exchange. In Sec. IV we obtain a
functional form of ¥ which approximately conforms to
the many-body Schrédinger equation.

In Sec. V we show how this wave function can be
used to get a quantitative description of the single-
particle probability density of solid He* obtained for-
mally in Sec. III. The density is of the form ~(r;)
= (const)2_; exp[ —&(R,;—r,)?], where R; is the posi-
tion of lattice site 7, and & is a function of range and
strength of the particle interaction, particle mass, type
of lattice, and lattice constant. In Sec. VI we compare
theory with experiment studying exchange energy,
pressure, and activation energy of diffusion, and find
good agreement. Section VII contains a summary of
the results.

II. BASIC ASSUMPTIONS

In our description of the ground state of He?, we
use the following assumptions:

1. There exists a single-particle projection of the
N-body probability density; that is, a microscopic
examination would show a solid with the constituent
particles found predominantly near lattice sites.

3. The particles interact with the Lennard-Jones 6-12
(L]) potential described by Eq. (2).

3. A two-particle separation of the wave function,
having correlations given as a function of interparticle
separation, contains sufficient information about the
state of the system.

4. Solid He?® exists in the body-centered cubic lattice
form, in accordance with experimental observation.

5. (a) Exchange effects involving more than two
particles are negligible. (b) Imposing the symmetry
requirements of the Pauli principle on the wave func-
tions makes a negligible difference in the single-particle
probability density, and gives a small correction to the
single-particle energy.

We shall arrive at self-consistency checks on some of
these assumptions. The result shows a necessary con-
formance to assumptions 1 and 5. We shall see that
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assumption 3 is reasonably correct, because correction
terms, which would indicate an error here, are small.
The body-centered cubic lattice is energetically pre-
ferred to face-centered cubic, so that assumption 4 is
partially substantiated. Assumption 2, the interparticle
potential, is then the only unsupported assumption.

Hirschfelder et al.® give a good description of the
interparticle potentials between rare-gas atoms. A phe-
nomenological form of the potential which gives good
correspondence with the observed behavior of the gas
phase near 1°K is the so-called Buckingham-Hamilton-
Massey (BHM) potential.” The BHM potential has a
form closely following the form of (2) for ¢=10.22°K,
0¢=2.556 A, but has a complicated analytical form. The
principal difference between the L] and BHM forms is
in the steepness of the repulsive core in the region of
very strong repulsion. We shall see that this repulsive
core has the principal effect of excluding states having
small separation, and either form is equally effective
in this regard.

There is a small three-particle effect, from an induced
triple-dipole interaction,'® which can easily be shown to
be negligible up to densities far greater than that studied
here.

III. THE SINGLE-PARTICLE DENSITY

In Sec. I we stated the assumption that a two-particle
separation of the wave function would serve to describe
our system. The Hamiltonian [Eq. (1)] contains the
variables r; and 7;;. A wave function ¢ expressed in
these variables would be capable, in a basic way, of
permitting the operations in H to be carried out on y.
Such a separation of the wave function is

Y=2p P I i(r)ni(T) 1 LisiXsi (rsy), (7a)
ri=[(@i—22+ (ys—yi)*+ (z:—2;)* . (7b)

Here 3 pP is the permutation operator for Fermi sta-
tistics in the case of He?, and for Bose statistics for
He. The spin state 7:({:) describes particle ¢ with spin
¢ The function X;; is independent of the identity of 4
and 7, is a function of the distance between members
of a pair, and is the same function for all pairs. We shall
regard the 7;; as variables independent of r; and r;, but
to prevent difficulties with redundant variables, we must
also impose the N (V—1)/2 restraints (7b) on the 7.
Pluvinage! and Jastrow? have used Eq. (7) for the
separation of the wave function. We use it to write the
N-body density matrix and then, by integrating over
the coordinates of all but one particle, obtain a single-
particle density expressed as a function of the position
of that single particle. We assume that there exists such

8 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
f‘g/gegy of Gases and Liquids (John Wiley & Sons, Inc., New York,

¢ R. A. Buckingham, J. Hamilton, and H. S. W. Massey, Proc.
Roy. Soc. (London) A179, 103 (1941).

10 P, Rosen, J. Chem. Phys. 21, 1007 (1953).

11 P, Pluvinage, Ann. phys. 5, 145 (1950).
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a single-particle description of the solid, in which the
particles are most likely to be found near lattice sites,
and look for a result consistent with this assumption.

Using the formalism of Loéwdin,? we write the N-body
density matrix,

M=y,
I =(Cp P I i(x N Limax (rix")*)

XCp PILi s x)ILimix (rin)).  (8)
The primes in (8) permit us to use differential and spinor
operators in '™ which act only on the unprimed
coordinates.

Obviously, we can obtain the single-particle density
v(x;) from I'™ by the formal expression,

v(x;)= (const)/l‘“\’) dej, (759). 9)

In the usual convention, the normalizing constant is N.
Putting (8) into (9), we have

v(1)=(const) 2_p Pspr*(1)$1(1)
X / {[ZPP¢2*<2>- oy (V)]

X[ p Poa(2)- - -dn (V)]
X3 (r2s)x2(r20) - - x2(rv—1n) ]

X2 (r12)d%s x*(r15)dxs- - - x*(riv)dxy.  (10)

The symbol Y pPg permutes the coordinate indices
in the symmetric sense, as follows:

PsT(172/3--+]123- - )
=I(21'3'+-|213---)=T(1'2/3'+ - - |123 - -),

regardless of the symmetry property imposed on .
In writing (10) we have neglected overlap terms like

$:(Dés(1) / ([X 0 Pér*(D6s*(2)- - ()]

X[ p Por(f)e2(2) - - - o (V) I x3(ras) - - - x2(rw—1n) 1}
XxA(r12)dxy- - - x2(riv)dxy, (177).

In calculating exchange energy in Sec. VI, we shall see
that when we include two-particle overlap terms, the
change in the single-particle probability density is small
in magnitude, and only enters into exchange effects.
We expect that three-particle overlap will be much
smaller than two-particle overlap because it is essen-
tially the product of two-particle overlaps. Further,
for He?, the Pauli principle will work to exclude three-
particle encounters.

12 P. 0. Léwdin, Phys. Rev. 97, 1474 (1955).
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In (10), the term in curly brackets depends on the
coordinates of the (N—1) particles which do not in-
clude particle 1. This term is the density matrix (in
the two-particle approximation) for (N—1) particles,
if we permit neglect of overlap of particle 2. We are to
use this density matrix to locate all the particles (2, 3,
«++4, +++N) in performing the integral in (10). We need
only locate all these particles in the single-particle
approximation. We can do this by using the expression

(B#1) (11)

for the density matrix in curly brackets.
We can then write

(1) = (const) Xi](1)]? / Y@ G)- - 4

Xx2(r12)dxs- - - x2(r1n)dxn

(const)myy (X2),

still in the single-particle approximation. Then

()= (const) il s I [ v radime. (12)

Equation (12) is the fundamental equation of this
approach to the ground state of He?.
To get (12) we have taken T'™ to be

[2p PIL: ¢i(x) ILiss x (ri) |2

on the one hand, and J].v(x:) on the other hand. The
first form contains superfluous information. However,
Eq. (12), in the x? terms, contains just the information
needed to give the correlation of particle 1 with all the
other particles (neglecting spin). Note that (12) only
uses the minimal second description for all the pairs not
including particle 1, and it uses the first, more informa-
tive description for all pairs including particle 1.

To use (12) in calculations we must use ¢’s and x’s
which are descriptive of the physical properties of the
system.

IV. THE PLUVINAGE METHOD APPLIED
TO HELIUM ATOMS

Pluvinage® introduced a method of finding a function
in the form of (7) which approximately satisfies the
Schrédinger equation for the electrons of He* The
method has been applied by Walsh and Borowitz®® to
some multi-electron systems. Their zero-order energy
results fall within 2 or 39, of experimental values. Many-
parameter variational functions give only slightly better
results, within about 19, of experiment.

Following Pluvinage, we treat the 7,; in (7a), as inde-
pendent variables, on the same footing as «;, ¥i, or z;.
However, we also apply the constraints (7b) to prevent
introducing redundant variables.

We seek the true wave function fo(#1,y1,%1,%2,92, - *2x),
a function of the positions of all the particles. Using

3P, Walsh and S. Borowitz, Phys. Rev. 115, 1206 (1959);
Phys. Rev. 119, 1274 (1960).
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a set of intermediate variables 7;;=7;;(%:,9,%:,%},3i,%i)
we can write a function fi(%1,y1,%1,%2, * *Zn, 719,713,
-+ 793,72 * * 7x—1n), and require that fi= fo everywhere.
Then by the usual rules of differentiation, we have

dfo df1 df1 Orj

0%; 9x; 7 (97’,-]' 0%;

(13)

If we can obtain the function f;, then we also have fo,
the true wave function.

The true wave function is determined by the Schrod-
inger equation Hfo=Hfo, where

HEZ— (hZ/Zm)Vi2+Z;’ %Vij(rqjj). (14)

Here
V=00 2+0%/3y 2+ 05

Since the operator H includes the variable 7;;, we
should investigate the possibility of performing our
calculations by using the function f; and relation (13).
We do this by rewriting the Laplacian in (14), applying
(13) twice in succession, with the result

92 2 9
o e A =]

i Ldr? vy O

Si;* Vs,ij O Sii*Sir 0 0
+Z’[ ——]+Z’[ ————] (15)
i 7 (91’-;. ik Vif¥ik 71 (97’,',

Here, primes indicate that no two indices are equal in
a sum. The vector s;; is the displacement between par-
ticles ¢ and j, and V., i;=(8/0s,,i;)i4 (8/3sy,:)]
+(8/9s.,45)K, ssi=x;—; Note that 9/dr;; operates
only on 7 and that 8/9x; and V,;; operate only on
X4 Vi %i, €tC.

We write the Schrédinger equation for the wave
function f1, in the form of (7):

Hf,=Ef. (16)

Here, since we have the parameters 7;; in fi1, we use the
transformed Laplacian in H.
Let us divide H into two parts, H=Hy+H’, where

#? #? ? 2 9
(g ()
@ 2m if 2m ('97'1']'2 Vij arij
+2 Vig(ry), (17)
%)
N 2m i ¥ij 61’1']'
, 855 Sik aJ

+x —3—]. (1)

itk ¥y ik orx ahj

The function ¢ of Eq. (7a) is a simple function of the
type fi. If we use ¢ in (16), the resulting simplified
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equation is not separable because H’ contains mixed
derivatives. However, if we can treat H' as a small
perturbation, we may approximate y closely by solving
the separable equation

Hyy=Eg.

In using (19), we must keep in mind the role of the
parameters 7;;, and follow these rules:

(a) First, solve (19) for ¢.

(b) In applying Ho and H’, let 8/dx; operate on
x; alone, and let 8/d7;; operate on 7;; only.

(c) After differentiating [step (b)], introduce the
constraint 7;;= (s;;-8;;)%.

(d) After performing the derivative and constraint
operations, evaluate matrix elements by integration.

(19)

In what follows, we use the definition

N[ 2 9
]
2m 01’1‘]'2 735 67’4;]'

In (19), H@ contains terms depending on 7;:

2 2 [TtV T x(ri)IT én(xs).
P i >7 k

These terms contain the singularities of the inter-

particle potentials. We can easily make each of these

terms vanish by requiring that x (7;;) satisfy the equation

[Tiri"%vijjx (7’ ij) =0. (20)

Equation (20), with the right-hand side taken to be
E.;ix(7:;), would be the Schrédinger equation describing
a pair of interacting particles in an s state of energy
E;;. If we were to take E;; to be a positive quantity,
there would be oscillations in x at large distances, and
attendant difficulties with interference of the correla-
tions of different pairs. The choice E;;=0 places each
pair in the lowest state available to them (there being
no bound state), and leads to the lowest energy for a
system satisfying (19) (neglecting interactions of three
and more particles).

Writing (20) in detail, using the potential in (2), we
have

AL MO e

Our particles are most likely to be in regions where
r>a, so we seek a series solution of x which converges
in that region. Defining ¢=o/7, B=4mo?%/#2, (21)

becomes
d*x/d¢*=BL¢*— ¢ Ix. (22)

For He?, B=16.60; for He?, B=22.2. There are two
independent solutions of (22) which converge in the
region r>g.

x=CoFo(9)+CigF1(q), (g<1). (23)

SAUNDERS

Here
Fo(q)=1—B(4X3) '¢*+B*(8XTX4X3)¢*
+B(10X9)"1g"— B3 (12X 11 X8 X 7TX4X 3)q™
4o FCogr -,
Fi(g)=1—B(5X4) g*+B2(9X8X 5X4)1¢8
+B(11X10)71g°— B3 (13X 12X 9X 8 X 5 X 4) ¢'2
+- o+ Cognt- -,

B
Co=——(Cr10—Cns), n=14,16,18---.

n(n—1)

For r= o, ¢=0, correlation effects have no effect on
the wave function and x is unity; therefore Co=1.
The term C1¢gF1(g) gives an outgoing flux at large dis-
tances, an unsatisfactory characteristic which cannot
be permitted in ¥. We thus choose C;=0.

In Fig. 1, we show x(r), x2(r) and xx'/r for He?
atoms, obtained from (23). Jastrow* and others find that
of several used, the variational function X,=1— (ry/7)
Xexp[—vy(r—7o)] gives the lowest energy in liquid
He!. If we take y=0.696 A and ry=2.52 A, our x and
that of Jastrow are indistinguishable out to r=35 A,
where his curve rises slightly above ours. The similarity
in these functions is not surprising, since X, is the ground
state of a Yukawa-type potential, which can be fitted
very closely to our Lennard-Jones potential.

For 7<g, the series of (23) does not converge, but
inspection of Fig. 1, together with the observation that
relative distances between helium atoms less than
2.5 A are most unlikely, justifies assigning a vanishingly
small value to x(r) for values r <o.

V. APPROXIMATE SOLUTION FOR THE
SINGLE-PARTICLE DENSITY

According to assumption 1 of Sec. II, we should seek
an approximate form for the single-particle probability
density peaked near lattice sites. A simple function of
this type is

N
v(r)=(n/8°)} 2 exp[ —0*(Rj—r)"].  (24)
1

Note that Sy(r;)d*(x;)=N, and this function has
normalization according to Lowdin’s scheme.

Let us define

vi(ri)= (w/8)% exp[ — & (R;—r.)*];

then (1) =3 ;v;(r).

If |R;—1;| )a, the function v;(r;) is without meaning
(here @ is the lattice constant or distance between
nearest neighbors). When a particle is equally distant
from two lattice sites, we must use a two-particle den-
sity, if three sites must be included, a three-particle
density matrix must be used and so on. Hence, in the

(25)
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single-particle approximation we can say v;(r;) vanishes
for l Rj_ lf'il Zd.

Our purpose is to use (24) in (12), and obtain v(r;)
by calculating &% Since we will find that §>>1/a?, all
the terms of D zy;(r;) are negligible except the term
with the smallest value of |R;—1;|. (When we consider
exchange, we will limit our concern to the two largest
such terms, with the smallest and next smallest values
of |R;—r;|.) Hence we can get the functional form of
v(1) by taking y(1)=v1(1) in Eq. (12). Since x(r:j)
vanishes for small values of 7;;, only one particle may
be near each lattice site, and the ground state has all
lattice sites occupied. Therefore, in the product mxy (k)
of Eq. (12), each atom appears near a particular lattice
site, for each number of the product.

We may therefore write (12) in the form

v:(2) = (const)w ()ms[fr (#ir) . (206)

Here
w(r)=2;|¢;(r:)]? (27)

and,
Sr(ui)= /yk(k)XZ(m)dxk, (28)

where u;; is the distance from the field point at r; to
the lattice site at Ry.

Since we will learn that x2(7;;) is slowly varying com-
pared to the peaked function vx(k), where v(k) has
appreciable value, we take yx(k) in (28) as a Dirac &
function, as a first approximation.

Then

Se(ua)=x* (%ik)+0(

’ 2 2 2
xx' x* exp[—6* (u—0c)*]
—, > (29)
0%u ou

Here we have shown the form of the lowest order cor-
rection terms to the é-function approximation, obtained
by expanding x2(r) about #=u. These correction terms
are of higher order, and can be shown to have negligible
effect on our results.

We now perform the product indicated in (26), and
in that way build up y(1). We expand fi(%i) in a
Taylor series about #;,=R). R\ is an arbitrary length;
later we will take Ry to be the distance from lattice
point 7 to a shell of atoms equidistant from 7. We then

have
Fe(w)=fr(R))Gr
= fr(Ry) exp[InG].

Gi= (+2uf /382 + ),
AkE (| u,-k[ —R)\).

(30)
Here,

The quantity Ay is the difference between (a) the dis-
tance from particle 4 to the lattice point at k, and (b)
the distance from lattice point 7 to lattice point k.
Writing an expansion for In Gj in terms of (1—Gu),
performing the product as a sum of logarithms, and
rewriting the terms involving second derivatives, we

1729

1.0

r (A)

Fi16. 1. Correlation function x, correlation density x2, and (xx’/7),
plotted against particle separation 7, in A.

obtain

IkIfk(uzk) = [IkIfk(Rx)]

LA L (u)] +} 31)
i) 2 du fi(u) Ju=pg,

The redundant variables 7, do not appear in (31)
because in performing the product over & in (26) [or
the sum over k in (31)], we have fully imposed the con-
straint 7;,= (Sik' Sik)%.

We now perform the sum over . It is convenient to
perform the sum over all atoms at a distance Ry from
the lattice site <. In general,

>k Ap=>"%(| wir| —Rux)
=3[ (Ru2+q2—2q:Rix cosbir)}*— Ry ). (32)

Here, Rix= |R;—Ry|, and we have introduced the quan-
tity ¢s;, the distance from the particle of interest
(particle ) to the lattice site 4. The angle 6, is the angle
subtended at lattice site ¢ by the lines to particle ¢
and lattice site .

We expand the square root in (32), and assume that
Sk cosi=0 (correct for a Bravais lattice, e.g., body-
centered cubic; correct in the spherically symmetric
approximation for an hexagonal close-packed lattice.)
We take 31 cos?i,=3, and assume that (¢2/Ru)<1.
Then, we have

2ok Ar=2a[mg /3R], (33)

where there are #, atoms in the shell of atoms at dis-
tances R from lattice site 7. Similarly, we can obtain

Zk Ak2=Zx %%x%z- (34)

To obtain (34) we need not assume that Y cosf=0.
Using (33) and (34) in (31), (26) becomes

vi(1) = (const) (I} Lf (RN I™)w(2)

<ol Gt a0

In (35), we have excluded terms of higher order than ¢2.

ol

k
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The ¢; in w(7) are occupied in order that the Pauli
principle may be obeyed by y. They are therefore
analogous to the Fermi sphere used in considering an
electron gas. The ¢; must be N/2 in number if doubly
occupied, must have the symmetry of the lattice, and
hence cannot have a node at a lattice point. They must
distinguish between any two particles so that their
minimum wavelength is double the lattice constant.
Such a set of waves for a simple-cubic lattice is

iji (1) =Coji, cos[ (mx,/n:a)+B8(n:)]
Xcos[ (wy,/nia)+6(n;)]
Xcos[ (rz,/n1a)+B(nr)].  (36)

Here #,=1,2,3, ---(N/2)%. The phases 8(n.) are
chosen to place maxima at lattice sites for even %, and
maxima midway between lattice sites for odd n. If
these states are all equally occupied, it can be shown
that all the Cy; are essentially equal if 6%¢2>>1. Then,
although the ¢; are not a complete set, we find that

2i|¢i(r) [P~ exp(—n'g?/8Na?) ~1.

Hence > ;|¢i(s:)|? contributes a term, insignificantly
differing from unity, to the coefficient of ¢? in the argu-
ment of the exponential on the right side of (35). The
term [Ta[ /A(Rx)]™ is a constant dependent only on the
average density. Hence we can take, after comparing
Eqgs. (35) and (25):

F=—2 M\ 37
o={[1/u+3(d/du)If'/f} r\ (38)
We obtain g, by putting (30) into (38). The result is
Bo* Bs* o% 2B%8
Q= ———-l:1+ +
R)\S OR)* R)® 189R)®
2 Bg!
_Z T ]
27 R\® 14553 R\
¢Xp(~52[Rx—ao]2)5360(R)—0'0)
{14+ G[Ra—o0])}2Ry

By ¢(x) we indicate the error integral ¢()=1. We
have provided a correction term containing & which
contributes about 29, to the final sum over A, and it is
relatively insensitive to changes in the lattice constant
a. We henceforth drop it from g,.

We perform the sum in (37) by making use of the

relation
23 I/Rim=2"\ m/Ry"=Cy/a™, (40)

where C,, is a coefficient depending upon the lattice
structure of the R;. Hirschfelder ef al.9 give tabulations
of such constants for many lattice types.

13 Bis'?

(39)

We get
BO’4 BC100’4 C120'6 2B2C140'8
52=——cs[1+ ——t +- ] (41)
3ab 9Cea* Coa® 189Cead

SAUNDERS
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8%(a7?)
1
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LATTICE CONSTANT a(A)

3.9 4.0

Fic. 2. The single-particle density parameter 82 vs lattice con-
stant ¢ in A, The single-particle density of the solid at r; is pro-
portional to Z; exp[82(R;—1:)], where R; is the position of lattice
site j.

For He’, B=16.60 and with the C, for a body-centered
cubic lattice, we have

#=10.4(c/a)[1+1.44(c/a)*—0.745(s/a)®
+4.44(c/a)*+---], (8 in A2).

Using (42) in (26) we express the probability density
of the ground state of solid He? in the single-particle
approximation, where correlations of all pairs of atoms
have been taken into account. We have assumed that
the particle interaction is given by the Lennard-Jones
potential, that the ground state satisfies a Schrédinger
equation with a Pluvinage-type Hamiltonian, and that
(¢%)/ @K1, or (2a?8*/3)>>1. For solid He? 3.55a<3.8 A;
(42) converges rapidly in this range, and the condition
(2426%/3)>>1 is satisfied.

In Fig. 2 we show Eq. (42), plotting & vs a.

(42)

VI. ENERGY DENSITY

To obtain the single-particle energy density we write
the N-particle energy-density matrix, using the wave
function of Eq. (7)

1
B~ f 5 ATAHE [TVt )

X PE PLo(1): - o (V1) (V)]
Xisix (rei )x (rs)dxi.  (43)

Here A is a normalization integral, and the operator
(T'ij+3%V ;) makes no contribution because of Eq. (21),
Then, neglecting exchange effects, we have for (43),
noting that the sum over ¢ contains /V identical terms,

(EY=(T1+X; Hif/)N
_N/4 / [Tt S Ty TS 6 (V1)
X ORI PE PTo2) ()

Xp2(2) - - dn(V)x2(res) - - - x*(rwv—1v) 1}

Xx (1) (r12)dxs- - - (rin’)x (r1v)dxn. xx (44)
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Again, as in Eq. (10), the curly bracket of (44) is the
(N—1)-body density matrix, neglecting overlap with
r; and the spin of particle 1. Putting (11) into (44) and
defining Ey=T143Y {H1; )av over j, We have

<E>—N/d E, 3 o7 (1)5(1)
_A X; g - ¢‘J ¢]
11 / Y@ rd(x). (45)
k

The terms involving the derivative operator E; acting
on ¢; are very small, because

2il#i(1) [*~exp(—constg?/N) ~1.

In (45) the operator E; is to measure the kinetic
energy of particle 1, using the description of the motion
of particle 1 relative to all the other particles contained
in [I;x(7:;). In obtaining the single-particle probability
density, we learned that y(k) is essentially a delta
function in each of the integrals of (45). We therefore
get

N
(E)=——/dx1 1T x (o)) Ey TT x (2012). (46)
A 7 k

Again, uy, is the distance from lattice site & to particle 1.
In performing the product over &, we must use the same
care as in obtaining the probability density of Eq. (31).
For each member of the product over k, E; contributes
kinetic energy for a single degree of freedom, corre-
sponding to motion along the line connecting lattice
point 1 and lattice point & as measured by the distance
#1. The function exp(—8%?/2) gives a good approxi-
mation for JRxx(u1x), but Vi exp(—&4?/2) contributes
kinetic energy of relative motion as though the particle
described by exp(—8¢?/2) involved three degrees of
freedom instead of just one. The function is spherically
symmetric, so that for the one degree of freedom we can
simply take, say V2— 39%/9x2, so that
5 72 J exp(—8%¢%/2m) (V:%/3) exp(— 8%/ 2)dv,
2m J" exp(—6%?)dv,

= (72/4m)3™.

(47)

The result of Eq. (47) is an approximation. The
effect of approximations incidental to the calculation
[e.g., assuming vy is a § function in /v (&)x2(r:x)dx;]
are undoubtedly small compared to the physical as-
sumption that H' is a small perturbation. It can be
shown, by estimating the matrix elements involved,
that 3~ j{H1; (7)) is of the order of and is somewhat less
than (E) for values of lattice constant @ of interest to
us. This perturbation energy is much less than either
YTy or | i(3Vi)|. We may then say with some
confidence that H' has a small modifying effect on the
function generated by H,.
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We now proceed to consider exchange energy. The
¢i(r) given by (36) are introduced to ensure that ¢
conforms to the Pauli principle. In our treatment of
exchange, we shall limit our attention to two-particle
exchange. Such a description is the next refinement to
the single-particle scheme of Sec. IV. Further, we shall
consider exchange with nearest neighbors only. To
consider next nearest neighbors requires a description
of the wave function more detailed than that provided
by the single parameter § (corresponding to spherical
symmetry). Otherwise the overlap integrals cannot
account for the lack of spherical symmetry in the effects
of nearest and next nearest neighbors.

The single-particle density v (1) was obtained by re-
quiring that each particle and its neighbors stand in a
correlated state of low energy. We shall consider these
correlated states where the spins of particle 1 and its
neighbors are antiparallel, and second where these
spins are parallel, and compare the energies of these
two states. We shall require each nearest neighbor pair
to obey the Pauli principle.

Let us say that the energy of the pair for spins anti-
parallel is E,,, and the energy for spins parallel is £_;.
We define the exchange integral J by

J=Eq—FE_,. (48)

Our calculations will yield an expectation value for the
energy of a pair (E) p.ir where spin is averaged over,
plus a correction term e resulting from including spin.
The correction term will be of opposite sign for each
of the two cases of spin orientation. There is also a
spinless normalization integral (I), with a correction
term A which shows the (small) effect of spin and sym-
metry on normalization. We can write

(EYy={(E)pairtne and {I),;={)pairtnA.

Then the spin-sensitive energy is E,=(E),/{I),, where
7 assumes the values 4+1 or —1 as in the definition of
J given by Eq. (48).

We therefore have

E,= ((E)+ne)/ ((I)+nd).

Then we have

(49)

S e A/
(H—m/I)y

Exchange in the many-body case is somewhat dif-
ferent from the two-particle case, for which we have
just defined J. We consider exchange as exchange with
respect to a class of neighbors, for example, exchange
energy with next-nearest neighbors.

We will compare the energy of the solid in two cases:
one, when the spins of 1 and the class of neighbors are
parallel; and two, when these spins are antiparallel. If
the exchange energy with respect to a given set of
neighbors is positive, that exchange integral is termed
ferromagnetic.

(50)



1732 EDWARD M.
We proceed by writing down the Hamiltonian. We
delete the term [7;;+3V i ], because such a term yields
zero in the product with x;. We take V;(r;) to be a
constant. The Hamiltonian (for lowest order exchange

energy) is then
H=3Y;E.

We arrange these operators as:
H=E+3 "3 ™ E;x

Here X includes all of a class of neighbors like, say, next
nearest neighbors of the same spin, which cannot be
distinguished within our symmetry of space and spin.

We have
Sy mM1=N—1.

We have learned in obtaining the energy without
exchange that we could get {(E) by putting v(1’|1)
=[v(1")y(1)]%. We shall use this idea to deduce a valid
two-particle density matrix from the single-particle
form. We want to build up a nondiagonal two-particle
density matrix and have a result which shows the
necessary conditions

T'(12'[12)=T(2'1’[21) = —T' (1’2’| 21),
I'(12]12)=~(1)y(2)+overlap terms.

(1)

(52a)
(52b)

We recall that y(1)=3_;v;(1). The antisymmetric
form of the density matrix which we seek is

re(1'2']12)
={[va(1)7s(2") P+nlyva(1)7: (1) 14}
X (same, prime — unprime)
= (const){exp[—3((Ra—71)+ (Ro—172')?) ]
+n exp[ =3 ((Ro—71)*+ (Ra—72)) 1}

X {same, prime — unprime}. (53)

Formula (53) yields the conditions (52), and gives
the correct single-particle effects within the approxima-
tions used to obtain the Gaussian representation for
v(1). Although spin does not appear explicitly, Eq.
(53) includes spin through the parameter 7.

We shall use the form in (53) as a first approximation
valid only so long as the spherically symmetric approxi-
mation has little effect on overlap of adjacent v’s.

We can rewrite (53) as T® = |¢/|?, where

V.= (const){exp[ —262((z1— )+ (20+0)2) ]
+n exp[—38((z14+0)+ (2.—)*) ]}
Xexp[ =38 (w2+w?+y2+y.2) |
Here b=a/2. The z axis joins the two lattice sites 1 and
2, and 2; and 2z, are measured from the midpoint of the
line joining the lattice sites (that is, there are lattice

sites at 3=-b==a/2). The energy for the pair is

S [Ei+EJr (12| 12)dx:dx,

S T(1'2'12)dxdx,

(54)

(E)y , (55)

SAUNDERS

where the subscript # specifies the spin state for which
the space integrals on the right side are evaluated.

We can use the function ¢ to form the density matrix,
but in going from the operator E; to (—#%/2m)V?, we

must remember to introduce the factor % as before.

Hence the energy of the pair is

Ly= / Vo (=72 2m) (3) (V24 V)Y dvidv,,
' (56)

I,= /¢ﬂ*¢ﬂdv1dv27

using the notation of Eq. (49). We get, performing the
operations,
E,= (const)#2/6m
X [362—n (2602 — 36%) exp(—26%%)], (57a)
I,= (const)2[ 147 exp(—28%%)]. (57b)
The unspecified constant is the same in both instances.
We can identify the following quantities in Eq. (50):
e= —712(6m) 1 (26%2— 38?) exp(—26%?),
A=2 exp(—2622),
(E)=17(2m)~'3",
{I)=2.
Neglecting A%?/(I) compared to (I), we have for J
=E,—FE_
J=— (#2/3m)8*(8%a?/2) exp(—2a?/2). (59)
Equation (59) cannot be expected to be valid in the
high-density case, since the overlap of the functions
v(k) enters strongly in (59) and we have assumed
spherical symmetry near lattice site k.

A better approximation would consist of using less
than spherical symmetry in (1), for example,

Y1(1) = exp[— 812 (@i 9P-+ ) — 02 (g yiai-tata) ]

VII. COMPARISON WITH EXPERIMENT

(58)

Experimental values of the cohesive energy are not
available. However, we can apply some data on the
temperature dependence of the spin-lattice relaxation
time 7'y and the spin-spin relaxation time T, reported
by Goodkind and Fairbank! and by Reich.1

With the creation of a vacancy in our body-centered
cubic lattice, nearest neighbors will relax toward the
vacant site. The vacancy will reduce the kinetic energy
of neighbors, but will dispose the nearest neighbors
further from their nearest neighbors, making the po-
tential energy less attractive. To lowest order, we can
assume that these effects cancel so that the energy to

4 J. M. Goodkind and W. M. Fairbank, Phys. Rev. Letters 4,
458 (1960).

15 H. A. Reich, in Helium Three, edited by John G. Daunt (Ohio
State University Press, Columbus, Ohio, 1960), p. 63.
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create a vacancy is the cohesive energy E¢, which must
be exerted to install the vacating atom in a lattice site.
At constant volume, PdV=0. We further assume that
there is an energy barrier to diffusion of this vacancy Es.
(We can guess Eg by imagining an ex-nearest neighbor
moving across to the vacant site with an energy saddle
of a few degrees Kelvin.) The vacancy diffusion coeffi-
cient Dy is then Doy "8/KT, Assuming that Goodkind
and Fairbank and Reich are correct in attributing
their relaxation times 7 and T to diffusion, the rate
of energy transfer from the aligned spins to the lattice
will be proportional to NvDy, where Ny is the number
of vacancies and Dy is the vacancy diffusion rate. For a
dilute system of vacancies Ny=Ne #¢/KT hence NyDy
=D,y Ec+ER)KT Tf we define E4 as the activation
energy for diffusion and for spin relaxation, we have
Es=Ec¢+Es.

In Fig. 3, we show the experimental data for Ej,
and our theoretical curve for E¢.

The value of the cohesive energy of the solid is not a
good check of the theory, because any theory which
would confine a He? atom to a volume of the order of
that external to the hard-core radii of the interactions
would get about the same value. However, the pressure
vs density is easily observed and can be readily calcu-
lated from our theory

P=—93E/aV
=—(1.30/3a%) (0E/da), (ain A).

In Fig. 4, we have plotted pressure results, and we
show the few experimental values reported by Sydoriak,
Mills, and Grilly,'® and by Edwards, Baum, Brewer,
Daunt, and McWilliams.'” The agreement with experi-
ment is good.

r= We have also compared the cohesive energy for the
face-centered cubic lattice with that for the body-

ACTIVATION ENERGY FROM T,

ACTIVATION ENERGY FROM T2
ENERGY
(°K) r

[ COHESIVE ENERGY (THEORY) -
51
|

1
3.5 3.6 3.7 3.8
LATTICE CONSTANT a(A)

F1c. 3. Cohesive energy and activation energy of spin relaxa-
tion. The T activation energy is taken from the data of Good-
kind and Fairbank™ and of Reich.’® The T, activation energy
point was reported by Goodkind and Fairbank.

16S. G. Sydoriak, R. L. Mills, and E. R. Grilly, Phys. Rev.
Letters 4, 493 (1960).

17D, O. Edwards, J. L. Baum, D. F. Brewer,*J. G. Daunt, and
A. S. McWilliams, in Helium Three, edited by John G. Daunt
(Ohio State University Press, Columbus, Ohio, 1960), p. 126.
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F16. 4. Pressure (atm) vs lattice constant e (A). The experi-
mental points were reported by Sydoriak, Mills, and Grilly,!® and
by Edwards et al.17

centered cubic, and find that the latter is energetically
preferred. This is done by inserting the C,, for the face-
centered cubic lattice in Eq. (36).

Additionally, making assumptions covering the ratio
of transverse to longitudinal sound velocity, we have
calculated the Debye temperature from the second de-
rivative of the cohesive energy (bulk compressibility),
and get a value of approximately 57/+/a °K (a in A),
valid for the range 3.45<@<3.85. Near the melting
curve the Debye temperature is approximately 30°K.
Specific heat data are not available, hence no compari-
son with experiment can be made.

This theory can be compared with the experimental
susceptibility data of Adams et al.'® Figure 5 shows their
data. In Fig. 6, we summarize certain aspects of their
data, showing the value of the Néel temperature 7'y or
the Curie temperature T¢ given by their data. To ob-
tain the plotted experimental points, we have applied
the conclusions of other investigators,'® which are valid
for antiferromagnetic materials in general.

The Néel temperature 7'y is the temperature below
which spontaneous antiparallel alignment of spins
takes place. The susceptibility curves of Fig. 5 at 68.0,
81.6, 95.3, and 112.2 atm are seen to pass through a
maximum, or achieve a constant value, at Ty, without
developing a range of values which fall off from the
straight line x=1/T of the Curie law. The other curves,
on the other hand, fall off from the Curie law accordingly
to the relationship for the experimentally observed
susceptibility, xo,

x0=Cp/(T+T¢), (Tp>T>Tw). (60)

We use (60) to define the quantity T¢, and T is the
temperature below which the breakaway from the Curie
law has been passed (about 0.3°K for P=357.8 atm, for
example). Values of T'¢ are plotted in Fig. 6 for P=35.7,

18 E. D. Adams, H. Meyer, and W. M. Fairbank, in Helium
Three, edited by John G. Daunt (Ohio State University Press,
Columbus, Ohio, 1960), p. 57.

19 . H. Van Vleck, J. phys. radium 12, 262 (1951), and T. Naga-
miya, K. Yosida, and R. Kubo, Advances in Physics, edited by
N. F. Mott (Taylor and Francis, Ltd., London, 1955), Vol. 4,
p- 1, give comprehensive reviews of antiferromagnetism.
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47.6, 57.8, and 64.6 atm, obtained from Fig. 5 by plot-
ting 1/x vs T, and observing the zero intercept of the
extrapolated curve on the 7" axis. Cp is 1.1 for the first
two pressures, and 1.2 for the other two.

Formula (60) is of the form of the Curie-Weiss law
for antiferromagnets.

x=C/(T+6), T<Ty. (61)
Here C is the Curie constant, and
0=—22J2/2, (62)

where J denotes the exchange integral with neighbor A.
For the data taken at 35.7 atm and 47.6 atm, Cp=1.1C
~(C, and we assume the Curie-Weiss law to be valid
here, so we expect that T¢=6. In our case §=—4J.

In Fig. 6, we have plotted 4/ from theory and see
excellent agreement with the data at low pressures.

At high pressures we must plot 7w, estimated from
the shape of the susceptibility curve, rather than T,
because in these cases Ty is so high that no dependence
such as (60) can develop over an appreciable part of
the T vs 1/x curve. For these points, I'y—and therefore
J—varies rapidly with density. This may reflect itself
in a temperature dependence of the apparent exchange

EDWARD M.

SAUNDERS

integral, since the average value of J during the period
of a sound wave density fluctuation will depend on
9%J/da. This is so because

J(a)=J (ao)+ (a—ao)(8J/da),
+((a—a0)?/2)(0°/9a?) ay+ - - -

and
<J (@) >av:](a’0)+ ((a_aﬂ)2>aV%(62J/aaz)ao+ Tt

At elevated temperatures ((a—ao)?),y has a finite value.
Hence, the value of Ty in the range 3.5 A to 3.65 A
cannot be readily used to calculate a value of J to be
expected from experiment because §2//da* appears to
be large there. However, it is undoubtedly of the order
of 0.1°K where our theoretical curve is of the order of
0.001°K. Our theory assumes that the probability
density near a lattice site is spherical and it therefore
cannot treat exchange with nearest neighbors (NN)
and next nearest neighbors (NNN) simultaneously.
Correlations between NN at high densities reduce over-
lap (and exchange), as our theoretical curve shows.
However, at these high densities the probability density
near lattice sites must assume a nonspherical shape,
permitting overlap with NNN in a configuration favor-

X 35.7 atm
ev 47,6 atm
o 57.8atm

Fic. 5. Bulk susceptibility
of He® vs 1/T, reported by
Adams, Meyer, and Fairbank
(reference 18).
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ing an attractive potential. Hence, an antiferromagnetic
exchange integral is again expected, as in the nearest
neighbor (NN) case.

It is known that when the interaction between NN
and NNN are both important, x(T'=Ty)=3x(T=0).
The curve at 68.0 atm possesses this quality, and it
may thus be evidence for a NNN exchange integral at
a=3.60 A of the same order as that for NN. In Fig. 5
the curves at 81.6 and 95.3 atm pressure might repre-
sent an antiferromagnet with the NNN interaction
strongly predominant.

The 112.2-atm curve shows a Ty somewhat lower than
those at 81.6 and 95.3 atm. Carrying the picture of the
last paragraph further, this curve could indicate that
the NNN correlations have become sufficiently severe
to reduce the exchange integral.

It is also interesting to note that if one assumes a
lattice constant @ in the liquid at a pressure of 27.6 atm,
corresponding to a body-centered cubic lattice, and one
fits the susceptibility data x vs T to a low of the form
of Eq. (60), one gets T¢=0.07°K at a~3.87 A, in fair
agreement with the theoretical prediction for a (non-
existent) solid at that density. Hence, the model of the
present theory constitutes support for the idea that the
exchange interaction in the liquid is stronger than in
the solid, and favors antiparallel alignment.

Finally, we have plotted the theoretical prediction
of exchange energy due to Bernardes and Primakoff®
on Fig. 6 for purposes of comparison.
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Frc. 6. Characteristic energies, T, T¢, and 4J vs lattice con-
stant ¢ (A). The points are obtained from the data of Fig. 5.
Points (a), (b), (c), and (d) are taken from the curves for 35.7
atm, 47.6 atm, 57.8 atm, and 64.6 atm, respectively, by fitting the
Curie-Weiss law, Eq. (60). The points (e), (f), (g), and (h) corre-
spond to 68.0 atm, 81.6 atm, 95.3 atm, and 112.2 atm, respectively.
They are obtained by estimating Tx from Fig. 5. Ty is taken to
be the location of the maximum susceptibility. The dashed line is
T¢ (theory) obtained from the work of Bernardes and Primakoft.%
The solid line is given by the theory of this paper, and is the
?gantity 4J, corresponding to 6 in the Curie-Weiss law, formula

1).
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VIII. CONCLUSIONS

We have obtained a single-particle description of the
ground state of solid He? in the body-centered cubic
configuration at zero temperature. We find that the
strongly repulsive interaction results in strong correla-
tion effects. By considering the correlations of pairs,
each in a zero-energy state, we have built up the quan-
tum-mechanical probability density of the solid.

Our solution employs an approximate solution of the
wave equation. We find that the neglected part of the
Hamiltonian can be treated as a reasonably small
perturbation in the density range of solid He? in the
body-centered cubic phase. We find that the physical
parameters of He? are such that our formal solution for
the probability density has an approximate solution in
a simple analytic form, expressed in a single parameter
8. We obtain a single-particle energy from the density,
using a plausibility argument and basic principles. The
effect of exchange on the energy, though small, is
appreciable compared to the single-particle energy,
and results in a magnetic transition temperature of
approximately 0.02°K for densities near the melting
curve.

We employ the symmetry of the cubic lattice to the
fullest extent possible and thereby simplify the calcula-
tion. We find that for a less dense system than ours,
the approximations used in calculating & breakdown.

SAUNDERS

As the next improvement, cubic symmetry should
be included in the single-particle density, with an
attempt to calculate exchange with next-nearest
neighbors. A workable way of distinguishing between
hexagonal close-packed and face-centered cubic lattices
has not been developed.

We find that particle correlations result in a proba-
bility density for He?® which is strongly peaked at lattice
sites, but with sufficient overlap to give an exchange-
dependent part of the energy, favoring antiparallel
alignment of nearest neighbors. We obtain good agree-
ment with experimental pressure-density data, and we
obtain an exchange energy consistent with experimental
susceptibility data taken at low density.
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