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Atomic Many-Body Problem. I. General Theory of Correlated Wave Functions*

LzvzNrz Szf(szl
Strawbridge Observatory, Haverford College, Haverford, Peeesylvania

(Received May 25, 1961; revised manuscript received August 1, 1961)

The purpose of the paper is to present the general theory of atomic wave functions which explicitly depend
on the distances between the electrons. The total wave function for the atom will be written as a composition
of one-electron spin-orbitals, and 2-electron, 3-electron, E-electron functions, respectively. The wave
function has the following properties: (1) It becomes identical with the exact solution of the many-body
problem if one expands the many-electron functions in terms of a complete set of Slater determinants; (2) it
represents superposition of con6gurations if one writes the many-electron functions in the form of linear
combination of a finite set of determinants; (3) one obtains the generalization of the Hylleraas res-method
introducing the interelectronic distances explicitly into the many-electron functions,

It will be shown that the many-electron functions can be orthogonalized with respect to the one-electron
spin-orbitals, without restricting the generality of the total wave function. General formulas for the matrix
components of the Hamiltonian with respect to correlated functions will be derived. The approximation con-
taining only 2-electron correlations will be discussed, and it will be pointed out that in this approximation
all matrix components can be reduced to 2-electron and 3-electron integrals, respectively; and the calculation
of the 3-electron integrals may be simplified by introducing two interelectronic distances as integration
variables.
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Since the exact solutions of Eq. (1.1) for atoms with

more than one electron are not known at the present
time, the only way to obtain theoretical information on
the properties of complex atoms is to calculate approxi-
mate solutions of Eq. (1.1). The most frequently used
approximation is the Hartree-Fock method' (H-F
method). The basic idea of this approximation is to set
up the approximate solution as a determinant built
from one-electron spin-orbitals (Slater determinant).
The application of the energy minimum principle yields
the set of H-I' equations; the solutions of these equa-
tions are the best one-electron spin orbitals.

It is obvious that the H-F wave function is only a
modestly good approximation of the actual solution of

Eq. (1.1). Because of the presence of the second sum

in the Hamiltonian (1.2), the actual solution must de-

pend to a certain degree on the relative position of the

I. INTRODUCTION
' 'T is well known that in the Russell-Saunders approxi-
& ~ mation the atomic many-body problem may be
formulated as follows: We are looking for the solutions
of the Schrodinger equation,

H%= M,
where H is the nonrelativistic many-body Hamiltonian,

electrons and cannot be represented very accurately by
a single determinant. A much more powerful approxima-
tion than the H-F method is the method of superposi-
tion of configurations (S-C method). ' The basic idea
of this method is the following: It is known that the
exact solution of Eq. (1.1) can be written as an expan-
sion in terms of a complete set of Slater determinants.
This fact in itself does not enable us to calculate the
exact solution, because the mathematical treatment of
infinite secular problems has not been worked out up to
the present time. Ke can calculate, however, an approxi-
mate solution as follows: Ke choose as our trial function
a finite expansion of Slater determinants, chosen from
the members of a complete set, and determine the co-
eHFicients of the expansion by the energy minimum
principle. Our task is then to solve a secular problem of
finite order. This procedure will give us a much better
approximation of the solutions of Eq. (1.1) than the
H-F method, and has the property, that —in principle
the accuracy of the approximation could be improved
to any desired extent by adding more and more Slater
determinants to the expansion.

I.et us consider now the simplest many-body problem,
the He atom. The best approximation of the energy
eigenvalue computed up to the present time with the
S-C method is' Egg= —2.90343 au while the exact
eigenvalue is4 Ii = —2.90372 au and the H-F method
yields If.'Hp= —2.861680 au. ' Thus, it is evident that
although the S-C method produces a much better
energy value than the H-F procedure, if we would rely

' See, for instance, P. O. Lowdin, Phys. Rev. 97, 1474 (1.955), or
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~ D. 'R. Hartree, Proc. Cambridge Phil. Soc. 24, 89, 111 (1928); (19/9).
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170 LEVEN TE SZASZ

only upon this method, the capability of the quantum
mechanics, to produce an energy value which agrees
with the experiment, would not be established even with
the simplest many-body problem.

The slow convergence of the S-C approximation was
early recognized by Hylleraas. ' He investigated the He
problem and suggested that the wave function should
depend explicitly on the distance between the two elec-
trons. This approximation which he suggested (Hy
method) has been very successful in the explanation of
the properties of two-electron systems; in particular,
the computed energy value for the ground state of the
He atom agrees completely with the experiment. '

If we want to calculate approximate solutions of Eq.
(1.1) for atoms with a larger number of electrons,
naturally, we should choose that approximation which
has been most successful in the case of the He atom.
Although that is obviously the Hy method, up to the
present time only the H-F and S-C methods have been
developed for atoms with arbitrary number of electrons. ~

It is the purpose of the present paper to develop a
method for the calculation of approximate solutions of
Eq. (1.1) with wave functions of Hylleraas type, for
atoms with any number of electrons (the method of
correlated wave functions).

The necessity of applying the Hy method for the
calculation of wave functions for larger atoms was early
recognized by James and Coolidge. ' James and Coolidge
computed a wave function of Hylleraas type for the
ground state of the Li atom. Later Fock, Vesselov, and
Petrashen investigated how the correlation between the
two valence electrons of a larger atom can be taken into
account. ' Jucys extended the theory of Fock et a/. by
discussing atoms with more than two valence elec-
trons. n Lennard-Jones, Hurley, and Pople suggested a
wave function" in which the correlation, between elec-
trons in the same space-orbital but with antiparallel
spins could be taken into account. The above theories
have this in common: that (1) none of them suggested
a wave function with which the correlation between all
electrons of the atom could be taken into account;

e E. A. Hylleraas, Z. Physik 48, 469 (1928); 54, 347 (1929);60,
624 (1930);63, 291 (1930)165, 209 (1930).

7 For an extensive review of the H-F method, see J. C. Slater,
Quantum Theory of Atomic Structures, I-II (McGraw-Hill Book
Company, Inc. , New York, 1961), particularly Chaps. 9 and 17;
also D. R. Hartree, The Calculation of Atomic Structures (John
Wiley 8z Sons, Inc. , New York, 1957). A list of the publications
on the S-C method is given by J. C. Slater, ibid. , Appendix 16;
see particularly the papers of S.F.Boys et al. and A. P. Jucys et al.' H. M. James and A. S. Coolidge, Phys. Rev. 49, 676 (1936).' V. Pock, M. Vesselov, and M. Petrashen, J. Exptl. Theoret.
Phys. (U.S.S.R.), 10, 723 (1940).

"A. P. Jucys, J. Exptl. Theoret. Phys. (U.S.S.R.), 23, 371
(1952)."J.Lennard-Jones, A. C. Hurley, J. A. Pople, Proc. Roy. Soc.
(London) A320, 446 (1953).See also P. G. Lykos and R. G. Parr,
J. Chem. Phys. 24, 1166 (1956); J. M. Parks and R. G. Parr,
J. Chem. Phys. 28, 335 (1958); R. McWeeny, Proc. Roy. Soc.
(London) A253, 242 (1959).

(2) the relationship between the suggested wave func-
tions and the exact solution of Eq. (1.1) was not in-
vestigated; and (3) the problem of the calculation of
integrals containing more than one interelectronic dis-
tances remained open. In addition, Lennard-Jones et ttl.
introduced an orthogonality condition, which prevents
the use of functions of Hylleraas type.

In a recent paper, a new method for the calculation
of Hylleraas-type wave functions has been suggested
by the present author. "The problem of the calculation
of integrals which occur if we use Hylleraas-type wave
functions has also been discussed. "The theory presented
in this paper is a generalization of the approximation
suggested in reference 12.

In the next section we begin the discussion by writing
the exact solution of Eq. (1.1) as a composition of the
H-F function and of single-, double-, , S-fold sub-
stituted configurations. On the basis of these considera-
tions we shall suggest a new trial function which consists
of one-electron spin orbitals and 2-electron, 3-electron,~, l'lt-electron functions, respectively. It will be
shown that the new trial function becomes identical
with the exact solution of the Schrodinger equation if
we expand the 2-electron, 3-electron, , S-electron
functions in terms of complete sets of (2X2), (3X3),

(N XiV) Slater determinants, respectively. The
generalization of the Hylleraas method will be obtained
by introducing the interelectronic distances explicitly
into the total wave function. In Sec. 3 we shall discuss
orthogonality properties of the correlated wave func-
tions, which are important for the calculation of the
matrix components of the Hamiltonian with respect to
these functions. In Sec. 4 we shall derive general for-
mulas for the matrix components of the Hamiltonian
with respect to arbitrary correlated wave functions.
Finally, in Sec. 5 we shall discuss the approximation
which we obtain if we include in the total wave function
all 2-electron correlations but neglect all correlations of
higher order.

2. FORMULATION OF THE METHOD OF
CORRELATED WAVE FUNCTIONS

Let us consider an atom with X electrons, and sup-
pose that its wave function may be approximated by a
single Slater determinant. Ke introduce the complete,
orthonormal set of one-electron spin orbitals &p, (t7)
(i=1, 2, 3, ), where q means the space and spin co-
ordinates (x,y, s,o.)."Ke shall call the first 1V orbitals
of the complete set the "basic set."In the H-F approxi-

' L. Szisz, Z. Naturforsch. 15a, 909 (1960).
n L. Szasz, J. Chem. Phys. 35, 1072 (1961).

Here and throughout the present paper the single subscript
attached to the symbol of the spin-orbital means a set of quantum
numbers which characterize the spin-orbital in the H-F approxi-
mation. Instead of e;(q) we shall also use e, (q) =—e (i t q) if the sub-
script is a complicated symbol. In the argument of p; we shall use
the condensed notation e;(qz)—= v, (h), and also v(i~qs)—= v(i~h).
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mation the wave function for the atom may be written as and (2.2) may be written in the following form:

~i(1)
i—~2(1)

(»):
V N(1)

~ (2) ~ (»)

y2(2) . y2(») (2 1)

V N(2) V N(»)
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+.„„t——+t;+P P c(k;)Ft'! (k,)
s=l ki=N+1

N $ oct

+Q Q — Q t:(k.k )F"'(k;k,)+
i=-i ~=i+l 2 t a;a;=N+&

The exact solution of the Schrodinger Eq. (1.1) may be
written as the expansion"

Q"! klkg ~ ~ k~=N+1
c(kik2 kN)

XF'N & (kikg kN). (2.4)
+ex.act =

A;I leo . .1!c~=l
c(kik2 kN)

XLv&(kil1)tt (k2I2) v(kNI»)j, (2.2)

F!"'(kk" k )

detLitt(1lqi) tt'(2 Iq2) ' ' '

(»!):

where the c(kik2 kN) are expansion coefficients. We
rewrite (2.2) as a composition of the H-F function, and
single-, double-, X-fold substituted configurations.
By tt-fold substituted configuration (1&m&») we
refer to a determinant, which may be obtained from
(2.1) by replacing the set of e orbitals q (i I q), !t (j I q)
y(mlq), by the orbitals v(k'Iq) tp(ktlq), '' ~(k Iq)
where the latter are chosen from the complete set ex-
cluding the basic set. It may be written as

Let us rewrite (2.4) as follows. Consider the Laplace
expansion of the determinant (2.3) in terms of the func-
tions ttt(k, lq), tt(k; Iq) ttt(k Iq), i.e. , in terms of the
rows of the determinant which contain these functions:

~t"!(k.;k," k )

N N N
~ ~ ~

(» t)' ti 1 tg=tt+1 ttt=t~ —1+1

X( 1)t+t'+ +m+tt+tt+ ~ +t tt(tt!(k,k, . . .k It t2. . . t )

xD!N—"&(ij mlt, t2 . t.), (2.3a)

where p, '"' is given by

ttt"&(k,k; k l12 n)
—=detl v(k'I 1)~(k I2) ~(k-l~)7 (2 5)

and D!N "'(ij all, 2, e) is an (»—tt)x(» tt)—
X v (i—1Iq;-1) v (k'I q') ~(i+1Iq'+1) determinant which may be obtained from(2. 1) by omit-

x!t(j—1Iq;-1)~(k lq;)v(j+1lq, +) " ting the rows containing the tt functions (tt;p," p )
and the columns containing the e coordinates g l, q2 q .

Xp(k Iq ) tt(»lqN)j, (2.3) Then (2.4) may be written

+.*-t=q'~+ 2 2 ~(k') 2 (—1)"'+"p(k'I ti)D'" "(il ti)
(»!)1t 1 tt =N+1 tt 1'=

N N 1 N N

X Q Q — Q c(k,k;) P P (—1)'+t+tt+ttttt'&(k;k, ltiti)D!N '!(i'll,t,)+
(»!)& i=1 t'=1+1 2! ktkt=N+1 tt=l tati+1

1

(» t)k» I tttt'ta. ..ttN N+1
c(kik2 kN)ttt'N'(kikg kN I1,2, V). (2.6)

Let us introduce now a new trial function as follows.
Let

c "'(ill qiq~), c"'(Vil qiq~qt),
c t "& (ij l ttt

I qiqp q.)
be antisymmetric but otherwise completely arbitrary
2-electron, 3-electron, tt-electron functions (it&»).
Ke shall call these functions "correlation functions. "

5 See P. O. Lowdin, reference 2.

In the symbol 4!"'(ijl. m
I qiq2. q„), the letters

ij/. ~ m refer to n sets of quantum numbers which char-
acterize the n-electron function similarly as the single
symbol i characterized the one-electron spin-orbital
p;. The symbols qlg2 q indicate that the 4 ("~ depends
on e set of coordinates (xiyi s„o„). Instead of
C'"&(ijl tidal qiq2 q„) we shall use also the condensed
notation Ct"&(ijl . .ml1, 2, . ti). As the basis of the
theory of correlated wave functions we suggest the
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function
N N 1V hT

11t=1I&r+ P P g P (—1)'+j+'1+tz(ft('& (zj I
t, iz)D(&v—'& (zj I t,t,)

(»!)k i lj==i+1 tt=l tt=tt+1

N N N N

+ Q Q p p p p (—1)'+'+'+"+"+"C ('&(ill
I
tltztz)D( '& (ijl I

tltzts)+
(» I)k t=l j t+&=i=j+1 tl 1 tt=t 1+1 tz=ts+&

|.
+ 4 (~& (1,2t »

I 1,2, »), (2.7)
(»!):

f("&(ijl m)

1 x N
~ ~ ~

(»!)' tt 1 tt=tt+1

N

( 1)i+j+ +m+tt+tt+ ~ +tv

trz ——tn-1+1

&&C("&(z~l mlt, t, . t.)
&&D("—"&(zjl mI tits t„), (2.8)

the function (2.7) may be written as"

+=+.+2 f"&(zi)+2 f"'(zjl)+ "

where the D'~ ') D(~ ') ~ have the same meaning
as in formula (2.6). Introducing the notation

where the various approximations may be characterized
by saying that in the 1-electron approximation we

neglect the correlation between the electrons, while in
the 2-electron, 3-electron, E-electron approxima-
tions we can take into account 2-electron„3-electron,

~ Ã-electron correlations, respectively.
Our next task will be to write the trial function (2.7)

in a form which will be the generalization of the Hy
method. For this purpose we introduce 2-electron, 3-
electron, . - Ã-electron correlation factors" and we
denote the jz-electron correlation factor (2grt&») with
respect to the orbitals ((o;, (oj (o„) by

w(zg "mlr, r, " r„).

Re introduce these functions into (2.7) putting+f'"&(1,2, »). (2.9)

It is obvious that the function (2.7) becomes identical
with the exact solution (2.6) if we expand the correlation
functions in terms of determinants built from the com-
plete set p, (i= 1, 2, ), i.e., if we put'z

C'"&(ij mI1, 2, zz)=A{(o,(1)pj(2)
(o„(zz)[w(ij m

I
r, rz r„)]}, (2.12)

where 2 is the total antisymmetrizer operator with re-
spect to the rz coordinates. Ke obtain the direct gen-
eralization of the Hy method if we put

w(zg.
I
r, r,)=w(zj Ir„r„r»),

~ 1 e;a;".am —I.

c(k,kj" k )jt("&(k,k; k~I1,2, rt),

(2 ~ jz~ »). (2.10)

/ ~ ~

W(Zg mI rlrz r„)
/ 1 ~

=w(zg mI rl, rs r„,rlz, rls, r~ 1, „),

(2.13)

Ke shall call the approximation 1-electron, 2-

electron, . m-electron approximation if we consider
the functions

+0)=+~
+"'=+r+2('j& f"'(zj ),

(2.11)
0'("&=—4N+Q (t"& f"'(ij)+Q (tjt& f~@(zjl)+

+2('jt" -& f'"'(zjl .m)

"We would like to point out that the function (2.7) is ttot de-
rived from the function (2.6). The considerations which lead to
(2.6) were necessary only because we want to show, that if we
expand the correlation functions in terms of complete sets of
Slater determinants, we obtain the function (2.6) which is identi-
cal with the exact solution of the Schrodinger equation (1.1).

"The single substituted con6gurations are included in the ex-
pansion of (f ('&(j~1, )zs2ince, from the limits of the summation
over k; in (2.10),we see that otte of the orbitals of the determinants
tt( &(k;k1~1,2) in the expansion may be identical with an orbital
of the basic set, i.e., those cases in which k; N are included in
the expansion.

where r~2, r~3 f ~, „are the interelectronic distances.
It is easy to see that (2.7) with (2.12) and (2.13)

reduces to the Hylleraas function in the case of the
ground-state of He atom, Denoting the two spin-
orbitals in the ground state of the He by p& and p2 we
obtain from (2.7) and (2.12):

~ {(1(V&)( z(6z) [I+w(1,2l rlrs) 3}, (2 14)
(2!)'

and putting yl(q) =e "'n(o), (os(g)=e l"p(a), where ot

"This is a generalization of the correlation factor suggested by
Lowdin Lace the papers in reference 2, and also Revs. Modern Phys.
32, 328 (1960)j. The correlation factor presented here is more
general than that suggested by Lowdin in two important respects:
(1) It refers to two, three, E spin-orbitals instead of referring
to alt spin-orbitals simultaneously; and (2) It does not need to be
symmetrical in the variables. In other words we introduce dif-
ferent cor~elation factors for every spin-orbital pair, and not an
average factor for the whole atom.
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and P are the two spin functions, and putting

w(1,2~ rirs) = P c(m, n, l)(ri —rs)' (ri+rs) "rig (2.15)
m, nZ

we get

+H, =e "t"'+'»{1+P c(m, ts, l) (ri —rs)'~(ri+rs) "riot
ee, n, l

XL~(~i)tt(~s) —~(~s)!3(~i)j} (2 16)

The wave function (2.7) may be generated also from
the Hylleraas He wave function. Let us start with
(2.16) and let us write it in the form given by (2.14).
If we want to generalize (2.14) for an atom with JV

electrons, the simplest generalization is to introduce
2-electron correlations, i.e., to put"

+=- — %~i(1)v s(2) v~V')
(&!)'

XL1+P w(ij
~
r;r;)]}, (2.17)

and if we introduce 3-electron, . Ã-electron corre-
lations we put

2{yi(1) ios(2)

gatv(1V)

(&t):

X(1+2w(sj~r'rt)+E w(sAlr'r'«)+' ' '

+w(1,2, &~ rirs r~)]}. (2.1&)

Reading the Eq. (2.12) from the right to the left, i.e.,
defirtirtg C&"&,(2&rt&lV) by this equation, we obtain
immediately from (2.18) the function (2.9) or the func-
tion (2.7) with

1—— J.{o,(1)q»(2) . qtt(lV)}=a, ,
(&!)'

A{ioi(1)its(2) ttt&(1V)w(ijl .m(r;r, ri . r„)}
(Ã!)» =f'"'(ij l m), .(2 &ts&$). (2.19)

We may formulate now the method of correlated
wave functions. As an approximate solution of Eq.
(1.1) we suggest the wave function (2.7). This function
has the following properties: (1) It becomes identical
with the exact solution if we expand the correlation
functions in terms of complete sets of Slater determin-
ants Lformula (2.10)J; (2) It is identical with the S-C
expansion if we write the correlation functions as firtite
expansions; and (3) The distances between the elec-
trons may be introduced explicitly by writing the corre-
lation functions in the form given by (2.12) and (2.13).
The actual calculations for a particular atom may be

"This function was suggested by the author in his thesis
LLudwig-Maximilians University, Munich, 1959 (unpublished)g
and the corresponding theory was developed in reference 12.

carried out as follows: We choose as the basis for the
calculations a set of X one-electron orbitals (ooi ~

gatv)

which may be for instance the results of previous H-F
calculations. Then we build up correlation functions
according to formulas (2.12), (2.13) or we can write
some of the correlation functions as the superposition
of configurations also. Finally the trial wave function
will appear as the linear combination of functions with
unknown coefficients. Application of the energy mini-
mum principle with respect to the coeAicients yields us
the secular equation from which we obtain the approxi-
mate energy value of the atom. Having computed the
energy value, we obtain easily the approximate solution
of the Schrodinger equation (1.1).

Finally we wouM like to point out that by introduc-
ing correlation into the wave function we introduce
correlation between the spin-orbitals, rather than be-
tween the electrons. Since the total wave function is
fully antisymmetric, it does not make sense to say that
some particular electron is associated with some par-
ticular spin-orbital. The introduction of the correlation
function tIt"'(sj~1,2) means that we can take into
account the correlation between the orbitals q; and p;
but we cannot associate some particular electron pair
with the two-electron function C ('&.

—,detL~i(1) o s(2) p~(~) pl'(ltf'+1)
(&t):

Xyso(M'+2) . y o(Ã)] (31)

The Laplace expansion in terms of the last m rows,
which contain the nonorthogonal orbitals, gives

N

(A!)i tt-i tt=tt+i tn= fry-].+I

X ( 1)tt+ts+".+t~+(N n+i)+ ~ +tv~ —

Xtt !"!(yi ps' p~'(tits. ts)

XDt -"&(qi'os'- q.'~t, ts" «„), (3.2)

3. ORTHOGONALITY PROPERTIES

In the H-F approximation it is usual to demand, that
the one-electron spin-orbitals should be orthogonal.
Although this is not essential from the physical point
of view, it makes the form of the energy expression
simple. In this section we shall show, that it is possible
to introduce for the correlation functions orthogonality
conditions, without restricting the generality of the
total wave function.

First let us consider the H-F wave function (2.1) and
let us assume, that the first M=S—e orbitals are
orthonormal but the last e orbitals are normalized but
not orthogonal to the first (lV—rt) orbitals, and they
are also nonorthogonal to each other. Let us denote the
6rst M= Ã—n orbitals by p&, p2, p~, and the non-
orthogonal orbitals by p&', q»' p '. Then the H-F
function may be written as
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where p, ("& is de6ned by (2.5) and D( "& is an (N —I)
X (E I—) determinant built from the orthonormal orbi-
tals ql, q2, p~. Let us now orthogonalize the orbi-
tals pl (p2 ' p with respect to pl, q». q~ with
Schmidt's procedure. %e obtain for the orthogonalized
orbitals

orbitals ((t. (s=1, 2, 3II), the determinant p("& fulfills
the orthogonality condition:

p("& (rpio (t 20 (t „'
I
1,2, e) (t,*(1)d(7,—=0,

(s= 1, 2, M). (3.7)

( "(v)= v ~'4) —2 ~"v'(v),

v'*(V)("(V)dV, (k=1, 2, " ~).

Proof. Let us consider the Laplace expansion of p("&
(3.3) in terms of the members of the first column of the

determinant:

Equation (3.3) may be written as

( "(v)= I:1—2 @'(v)j~~'(v),

where the symbol Q, ((7) means the operator

p,
"'=P (—1)'+'(t't, '(qi)

t)(,=l

xp'" "(Pi' ' ' (o~-i'(o~+i' (on'I V2I73' Qn) t (3 8)
(3.4)

and put this expression into the left side of Eq. (3.'7):

p("& tp.*(1)dqi

&'(V)P(V) = v'(V) ("*(C')P(V')dV' (3.5) =Z(-1)"" ( ~'(1)(.*(1)dpi
k=1

LF (q) is an arbitrary function. $ The substitution
pI,' —+ pI,' does not change the Slater determinant
(3.1), and therefore it is irrelevant as far as the physical
situation is concerned. It is useful, however, for the
calculation of the energy expression. Let us now substi-
tute the functions gt, ' into (3.2), i.e. , into the deter-
minant p'"'. Then we obtain

p(")((t '(o2' (o 'I12 '''&)
—=detL bio(1) p2'(2) (t '(e)]

xp("-'&((io ",„oI23 "&)

(s= 1, 2, . M). (3.9)

Because the one-electron orbitals gg,
' are orthogonal to

the orbitals p„we obtain that the expression (3.9) is
equal to zero, which proves Theorem 3.

Let us consider now the correlated wave function
(2 9):

+=+.+2 f")(ii)+Z f")(iji)+ "
n iV

II L1—g a (k)])„(-&(„io(2O" & ol1,2, n
k=1 i=1

We may formulate the meaning of Eq. (3.6) as follows:
Theorem 1.The orthogonalization of the spin-orbitals

qt, ' (k=1, . n) (occurring in the determinant p, ("&)

with respect to the 3f= (X—n) orbitals &pi

(occurring in the determinant 4) ) may be carried out
by multiplying the determinant with the operator

because the H-F function does not change, if we
replace the functions pI,' by p&' we may state:

Theorem' Z. The H-F function (3.1) does not change,
if we replace p'") by p&"' where

p(n)
I

1 0]+(n)

It is easy to prove the following theorem:
Theorem 3. After the orthogonalization of the one-

electron orbitals (t&,
0 (k=1, 2, n) with respect to the

+f(~)(1,2, . Ã), (3.10)

where the functions f &((i2j), f(3)(ijl) are def)ned by
Eq. (2.8), and consider the function

f("&('j m)

1 N N N

( 1)t+t'+. . .qnt+tt+ ~ +tn
Xi

(iV )) t tl=l tm=tl+i tn=tn —l+1

xc("'(ij ml)!,i2

XD("-"&(ij m li,&, i„). (3.11)

This function may be generated from (2.1) by taking the
Laplace expansion in terms of the rows containing the
spin orbitals p;, q,., - . q and replacing in the expan-
sion the (eXe) determinant built from the orbitals
(q, , (t;, (t ) by the correlation function C (").We have
seen that the (rsXe) determinants in such an expansion
fulfill the condition (3.'7). We demand therefore, that
after expanding +g in terms of the rows containing

p, the (eXe) determinants in the expansion
which contain the spin orbitals q;. p, should be re-
placed by a correlation function which ful6lls the or-
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thogonality condition:

C(.)(zj" ml1, 2," rz)z, *(1)dq,—=0,

(s=1, 2, . 7;stijl m).

It is obvious that, in general, the correlation functions
will not satisfy the condition (3.12). We shall show,
however, that it is always possible to build from an
arbitrary correlation function a function which satisfies
(3.12). Let C& & be an arbitrary correlation function
which does not fulfill the condition (3.12). Then we
can prove easily the following theorem:

Theorem 4. The function

f& "& (ij .m)

1

(Ql)2 tl&t2& ~ ~ ~ &te

Xc&"&(ij mltit2 t )D(~ "&

x (ij . m
l
titz t„), (3.16)

f&")(ij m)F")(zj 'm'l 1 2 ' 'zz)

show that a similar theorem holds in the case of the
orthogonalization of the function 4 '"). Let 4 (") be an
arbitrary correlation function and C (") the orthogonal-
ized function defined by (3.13). Let y(") be the corre-

(3 12) lated function containing C &"&, and let f'"& be the func-
tion containing C ("), i.e.,

=(II [1—P «(k)))C(")(ij ml1, 2, .rt),

(tWij m), (3.13)

fulfills the condition (3.12) regardless of the form of
@,(e)

Proof. Put (3.13) into the left side of (3.12); then we

obtain

C'"'z.*(1)d9)= (.*(1)([1—Z «(1))

X(II L1—2 «(k)))C(")(6" ml»2 " zz))dv
k 2 t 1

(,*(1)[1—Q Qt(1))A(1,2, .tz)dpi,

(s, t'ai, j, m), (3.14)
where

n N

A.—= (II [1—P at(k)))4 (")(zj m l1,2, rz). (3.14a)

( 1)t+t'+ ~ ~ .+m+tl+t2 ~ ~ ~ ta

(1V&)~ tl&t2( ~ ~ ~ (te

X@(s)(ij mltlt2 t )D(N 8)

X(zj'''mltlt2 ''t )'(317)
Theorem 5. f'"'=f'"'. In other words, the wave

function does not change if we replace the arbitrary
correlation function C (") by the function 4 ("), where
4 (n) [1 0)C (n)

Proof. For the sake of simplicity let us identify the
indices (ij, . m) with the indices of the last tz orbitals
in the H-F determinant and let us denote the first
M = (X—tz) orbitals again by z i, (o2, z2)tr. The opera-
tor [1—0) may be written in the form of a sum:

L1—0 (ViI&2 V-))

—=II [1-Z ~.(k))=1-Z 2 ~;(k)

+P P P P a;(k)a;(t) —"+ . (3.18)
Ic=l L=Ic+1 i=1 j=l

Taking into account the definition of Qt(1) [Eq. (3.5)) In order to prove Theorem 5 we have to show that
and the orthonormality oi the p;, we obtain

(—1)"0(t,t, .t )C(")(t t, t )
C'"'~.*(1)d(tl

t1&t2&. ~ ~ «n
XD& -")(t tz "t.)—=0, (3.19)

where we have dropped in the argument of 4 (n) and
D(N "' the symbols characterizing the last m orbitals,
and A =tl+t2+ +t„+(1V—rz+1)+ +E.

It is obvious that it is enough to show that the con-
tribution from the first sum in (3.18) to the left side of
Eq. (3.19) gives zero. In order to show this, let us ex-

(3 15) pand C'"' in terms of the products built up from the
~ ~ ~

q,*(1)A.(1,2, . tz)dq, —P (pt(1)(p.*(1)dpi

X ( t*((&)h.(g,2, rz)dt&—=0,

(s=1, 2, 7;s, t'ai j, m),

x f(o(kil1)(o(kzl2) . t)2(k lrt)). (3.20)

complete set y, z 1, 2,
regardless of the form of A, i.e., regardless of the form
of C ("'. Theorem 4 is therefore proved. 00

We have seen above that the orthogonalization of the
determinant t (") with the aid of the operator [1—0)
has not changed 4'r (Theorem 2). We would like to
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Multiplying from the left with the operator
M

2 Z &'(s),
s=l i=l

we obtain

gg~, (s)4&.&=+ g X gi'&
s=l i=1 s=l ks=l ki ~ - ~ ksi=l

Xc(ki k )[q(k&~ 1)q(k2~2) .
q (k ~n)], (3.21)

where the superscript k, on the summation sign indi-
cates that the summation over k, is excllded. Multipli-
cation of both sides with the antisymmetry projection
operator [1/(n!)]P»(—1)"8, where the summation
has to be extended over all permutations of the n co-
ordinates, converts the expression (3.21) into a sum of
determinants

of the Schmidt procedure, which would make it possible
to orthogonalize 2-electron functions with respect to
each other, in the sense of Eq. (a,).The equation (a) can
be of course satisfied if f„and Pt& are products of one-
electron functions. We can characterize Eq. (a) by
saying that it prevents the use of Hylleraas-type func-
tions and so restricts the generality of the wave function
seriously.

On the basis of the results of this section, we shall de-
mand throughout this paper that in the wave function
(2.7) the one-electron orbitals should be orthonormal:

q '*(q) q~(q)dq= ~'., (3.24)

and the correlation functions should satisfy the or-
thogonality condition:

n M n M

ZZ~'(s)4'"'= —2 Z X E"' c(kk~" k-)
s=l i=1 n ~ s=l k =1 kl. . .k =1

4 '"'(ij nt
~
1,2, n) q,*(1)dqi=—0,

(ski, j nt). (3.25)

n M oo

(—1)~—Q Q X Q&"' c(kikm k.)
n t s=l k =1 kj.k2. ..k =1tl(t2( ~ ~ (tsar 4&" (i&j nt

~

1 2, n)

Xdet[q (ki
~
1)q (k2

~
2) q (k,

~
s) q (k„~n)]. (3.22)

It is always possible to construct one-electron orbitals

With this expression we obtain for the contribution which fulfill the condition (3.24). Starting with an

from the first sum in (3.18) to the left side of Eq. (3.19): arbitrary correlation function 4 &"&, we can always build

up a function 4&"& which fulfills the condition (3.25),
by means of the operator [1—0]:

Xdet[q (kilt&)q (km~tm) q(k, ~t,)

X q (k„~ t )]D&~ "&(tit2 t )

1 & M o0

=—p Q X pt'& c(kik2 k„)
s=l ks=l ky ~ ~ ~ kqt, ——1

=[1—0]4&"&(ij nt~1, 2, n)

=(g [1—Q Q&(k)]) &4" (ij&. m~1, 2, . n),
k=1 t=l

(t'ai, j, . nt), (3.26)

and it is established that the orthogonalization does not
restrict the full generality of the wave function (2.'/).Xdet[q(1I1) q (2 I2)" q'(M IM)

Xy(kiiM+1) q(kmiM+2) q (k. iM+s)
4. MATRIX COMPONENTS OF THE HAMILTONIAN

X q (k i lV)]. (3.23) WITH RESPECT TO CORRELATED
WAVE FUNCTIONS

But this expression is equal to zero, because the orbital
q(k, ~q) has to be selected from the orbitals qi. qsr,
i.e., two rows of the determinant will become identical.
Thus we obtain that the left side of Eq. (3.19) is actually
equal to zero, which proves theorem 5.

In their paper Lennard-Jones et a/. " introduced 2-

electron functions demanding that they should satisfy
the orthogonality condition:

p *(1,2)pt&(2,3)dq2—=0.

Let us suppose that we would like to introduce r12

explicitly into f and fs. It is clear that in this case they
will not satisfy the condition (a). From the discussion
of this section it is evident, that the condition (a) could
be postulated only, if there would exist a generalization

In this section we are interested in the formulas for
the matrix components of the Hamiltonian (1.2) with
respect to the correlated function (2.'7). All matrix
components which occur can be derived from a formula
given by Jucys, "which we now state. Let

CA(kik2 k„tqiq2 q„) and Ci&(kikg' ' 'k tqiq2' ' 'q )

be n-electron functions, where (kik~ k„) is an arbi-
trary selection of n indices from the indices of the basic
set q iq 2 q ~, and we assume that 4 g and 4 e fulfill
the following conditions:

(1) They are antisymmetric:

(4.1)

where I';k is the operator exchanging qi and qk, and qi
and-qk are any two coordinates of 4~ and 4 ~.



ATOMIC MAN&-BO PROBLEM I

conditio2) They fulfill the orthogona y
(—1)k +kt+. . .+kn+ l+

( l l tt&tk«'''™
k

,
'12 . . N)q, *(1)dqi—=0,C'~(kikz.

XC'~(ki knl ti tn

(4.4)X t~--i k "k.lt, "t.).(4 2)"k I12 ~) &,*(1)dq,=0—,C's (kikz

2 . 1V sAkikz . .k ).(s=1, 2,

Consi er'd the eigenfunctions

(Fy t) & tl&tt& ~ ~ ~ &tn

rated from the H-Fn & may be genera e -I
La lace expansion o.1 b taking the ap a

in-orbitalst whih oti the pi-ot ms of the zz rows w ic

Cg,s in-orbitals by Cz and
1)kt+kz+ ~ ~ .+kn+tl+t2 ~ n&2+ ~ ~ +&n

from these m spin-or i
rt of the

~ ~ ~ ~ ~ ~

y ' g

XDt"-"&(k,. k„l t,

f~*(E Ht jfadqv=
a=1

. k. l1,2, . N)dqn.k„l1,2, tz)H, Ctt(ki .4 g*(ki
(zz —1) t

q,*(1)H, tp, (1)dq, ,

m

4.5)+ +A @'BdqnX tttt
eI

1
f& —2 —fttdq~ =

-2 '1 re-
k„l 1,2, zz)dq„"k

I
1 2, tz)—4.(k,"4 g*(k,

k, k„
I
1,3, 6+1)dqn+,.k„

I 1,3, zz+1)C tt (k,2 I z.(2) I'—+~*(ki. . -—1g ! ~-1 ~],2S g f

k„l 2,3, zz+1)dq +i—4 * ki k„l1,3, zz+1)Cled(kiZ ..(1).. (2)

S 12 ~ 46
1) *(2) (z.(1) I'I v t(2) I'—z.1

2 s=it=1g, f„
(s gt)

4*Cdf 'kf (4.7)

& m—=dg]dg2dg3' ' '
/zest)

~ ~ d andIn te oh f rmulas above q =
1&m&X

in of (4.3), we utilize the results
tion We have seen that

into the form of
of the previous section. e

+nt+tl+ ~ +tn . (4 g).( 1)t+t'+

T I k g1g~2&- ~ ~ ~ &.gzz

XC t"&(z~. m
I
t,t,

2.12tn& ma have the form given yThe funct o '"' y

between eth electrons r12, 13,

D' "'(zj mlt t, ).

4a. &agon. D' onal Matrix Components

trix componentla for the diagonal matri p
f t e a

'
res ect to the correlated waveof the Hamiltonian with respect o

function (2.8):

ft"&(zj . m)

Ct"&(zj "ml1,2, . ~)

ect to the orbitals
b ofth o

lized with respect o
era-'

d h.gthe orthogonalizatio
). W t, th fo,the function ft"'(zj m . e pu,

Ct"i(zg . ml1, 2, . tz)

= (II I
1-2 ~t (k)))~t'(V I

1,2, .
A,=1 t=l

(tWzj m), (4.9)

condition (4.2) which is re-
f

and now
to satisfy, an aquire ord f the function
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in (4.8) C'"& by tTt'"', f'"' will have the same form as

f, in (4.3).
We obtain, therefore, the diagonal matrix component

with respect to f'"'(ij m.) from the formulas (4.5) (4.—7)
by putting

&o(a&lq), " ~(a lq):

t &"&(k, k„l12 . n)

'tt ](tt 2(~ ~ ~ (Zl a

—1)at+au+ ~ +as+nt+nt+ ~ +nr

4=—4'tt= 4&"& (ij m
I 1,2, n), (4.10) Xt&t &" (a& a,,

I
u, u, )

where C&n&(ij ml1, 2, n) is defined by (4.t&). The
symbols (ki,k2, ,k„) in the formulas (4.5)—(4.7) are
identical with the indices of the correlation function
C'"&(ij ml1, 2, n), i.e., ki =i, k—2

—=j, k„=—m.

4b. Off-Diagonal Matrix Components

Matrix components of this type can occur if we

want a formula for the integral with respect to corre-
lated functions of the same order I by "the order of
f'"&(ij m)" we refer to the number n5 but referring
to two different sets of orbitals I e.g. , f"'(ijl) and

f"'(kmn) 5, or if we calculate the matrix component with

respect to correlated functions of different order Le.g. ,

f"'(ij) and f"'(ijmn)5 Bot.h cases can be treated as
follows. Suppose we want a formula for the matrix
component with respect to a correlated function
where the orbitals &p(at I q), &p(a, I q) q (a, I q) are
"correlated" and a function where the orbitals &p(b& I q),
&p(b2lq) &p(btlq) are "correlated, " i.e. , we consider
the matrix component with respect to the functions
f&'&(ai. a,) and f&'&(bi b,), where among the mem-

bers of the two sets a; and b; some might be identical.
Let us consider the combined set k~, k2, k„which is

built from the two sets (ai a,) and (bi bt) in such
a way that those indices which appear in both subsets

appear in the combined set only once. For instance, if
the first set is (ij lm) and the second is (jku), the com-
bined set is (ij lmku) We suppos. e that the order of the
indices in the two subsets, as well as in the combined

set, is the same as in the function 0'p. Evidently
n&s+t Let us con.sider the Laplace expansion of the
H-F function (2.1) in terms of the rows which contain
the functions of the combined set, i.e., in terms of the
rows which contain the functions &p(kilq), &p(k2lq)," &p(k-lq):

+p = g ( 1)t'I+&'2+ ~ ~ +t n+tt+tt+ ~ ~ +tn

(E!)~ tt(t2( ~ ~ ~ (tn

Xt &-&(k,

xD&"-"&(k, k-
I
ti t-) (4 11)

We can obtain both f&'& (at. a,) and f«& (b, b,) from
(4.11) as follows. We expand t&t& &(k& k„l 1,2, n)
first in terms of the rows containing the orbitals

Xd&" '&(at a u, u ) (412)

where d&" '(ai a, lui u, ) is an (n —s)X(n —s) de-
terminant which may be obtained from p, ("& by dropping
the rows containing tp(at I q), y(a2I q), tp(a, I q) and
the columns containing q~, q2,

. q, ; and where o, ~, o,~,
~ n, are the numbers characterizing the positions of
the rows containing &p(a&I q), &t&(a2I q), &p(a, l q) in

&&t &

"&.Let us replace tt &' in (4.12) by the correlation func-
tion C(', and let us denote the resulting function by
P&") i.e.,

p&"'(ki k. I1 2 n)

tt] (M2( ~ ~ ~ (O, tt

x@&'&(a, a,
I
u, .u)

Xd'" '(a& a,
I
ui u, ). (4.13)

Obviously if we replace tt&
"& by p& "& in the formula (4.11)

the resulting function will be identical with f&'& (a& a,)
since the f&'& is defined that way. We may write,
therefore,

f&'&(a& a )

( ] ) t:t+ ~ +t'n+tt+ ~ +tn

(,$~!)~ tt&tt&. . .&tn

xp&"&(k, . k. lt, t.)
XD&~-"&(k, k„l t, t.). (4.14)

What we have done here is the following. By defi-
nition f&'&(ai a,) may be generated from Or by
expanding C~ in terms of the rows containing the
orbitals &p(ailq), q(a2lq), y(a, lq) and replacing
the (sXs) determinant in the expansion by the
correlation function C &'&(a& a,

I 1, s). But f" can
be also generated by expanding 4& in terms of
the larger set &p(ktlq), &p(k2lq), . &o(k Iq) Dormula
(4.11)5, then expanding the (nXn) determinant

t&t&n&(k, . k„l1,2, n) again in terms of the orbitals

y(atlq), tp(a2lq)t &o(a, lq), and then replacing the
(sXs) subdeterminant tt&'(ai a, l1,2, s) by the
correlation function 4 &'(at a, I 1,2, s).

We obtain f"(bt b,) similarly. We expand tt&"&

in (4.11) now in terms of the rows containing the orbi-
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tais &&2(bii q), &I2(b2i q), , &p(bti q):

tt&
"& (ki .k„i1, .n) ( 1)et+Ps+ ~ +Ps+st+22+ ~ +st

vI&v2« vt
( 1)Pt+Pt+ ~ +et+st+22+ ~ +st

v1&VQ& s ~ ~ &V)

XC""(bi btivi vt)

X&tt'"(bt ' 'btivl' vt) Xd&" '&(bi bt
i
vi vt). (4.18b)

Xd'" "(bi btivi' ' 'vt) (415) It is easy to see that the functions (4.18) fulfill the
orthogonality conditions (4.2). Let us put 8P&"& into

Let us replace tt&'& by the correlation function C&'& and
h l f d f F (42)

let us denote the resulting function by p""):

tt'&"&(k, k-I 1 ' ' 'n)
& -*(1)[et '"'Ed&72

v1&v2&, , ~ &vt

XC&'&(b, btlv, v,)

Xd&"-'&(bi bti vi vt), (4.16)

and we obtain f&'& (bi bt) from (4.11) replacing
tt&"&(ki'''k l1,2, n) bytt '"'(ki'''k I1 'n)

With these simple manipulations we have brought
the off-diagonal matrix component with respect to

f ' (ai a,) and f&" (bi bt) into the form of a di-

agonal matrix component, i.e., we have broughtf' (ai a,) and f&" (bi bt) into the form of fg and

fe [(4.3) and (4.4)j where tt&"& corresponds to Cg and
p, '"' corresponds to 4». The analogy is not complete,
however, because p&") and p'(") contain the arbitrary
correlation functions C" and C"), from which it fol-
lows that p'"' and p,

'("' will not fulfill the orthogonality
condition (4.2). However, we can use the Schmidt pro-
cedure again and put

C&&(a, "a, l1," s)

8 N
= (Q [1—P a„(u)j)C "(ai a, i1, s),

v=1

(v W ai, a,), (4.17a)

C&'&(b, btl1 ' t)

t N

u1 &u2& ~ ~ ~ &ug

XC'&'&(ai .a, oui .u, )

Xd&"-'&(ai a, oui u, )}dqt,

(m=1, 2, 7;mdki, k„). (4.19)

Because of the summation P(ui, . u, ) the coordinate

q» is either in 4 &' or in d("—') If q1is in C" the integral
becomes zero because, as we see from (4.17a), the
function 4') is orthogonal to all orbitals y for which
m=1, 2, . 3T, mgk1 k„. If the coordinate q1 is in
d&" '&, the expression (4.19) becomes zero, because
d'" '& is a determinant built from the orbitals t&2(ki i q),
tt&(k2

i q), ~ ~ ~ tp(k„ i q) excluding &&2(a] i q) ~ ~ ~ tt&(a, i q)
these orbitals are orthogonal to all orbitals p for which
m= 1, 2, -N, m&k1 k„. Thus it is evident that
ep&"& satisfies the orthogonality condition (4.2). Simi-

larly, it is easy to show that also 8p'") satisfies the
condition (4.2). Since both ettt&"& and ett'&"& are anti-
symmetric, they satisfy also the condition (4.1).

On the basis of these considerations we may formu-
late our result with regard to the off-diagonal matrix
components:

The off diagonal matri-x component with respect tof"(ai .a,) and f (&bt&tbt) may be obtained from
(4.5)-(4.7) putting

= Z [1—& & (u)j)C't&(bi "btl1, t),

(v/bi . bt). (4.17b)
C,= 8P& "&(k, k„l1,2, .n),

C,= 8& '&"&(k k„l1,2, . n),
(4.20)

We replace C&' by C&'& in (4.13) and C "& by C&" in
(4.16). This substitution, as we have seen in Sec. 3,
does not cause any change in the total wave function.
Let us denote the resulting functions by 8p'") and
5p, '&"), i.e., let

8P&"&(k, k.
l

1 n)

—1 ) s'1+ss2+ ~ ~ ~ +s.'s+zsl+ss2+ ~ ~ ~ +sss

where ep&"& and ettt'&"& are given by (4.ltd) and (4.1$b)
and the set of nindices (kik2 . k„) has to be formed from
the members of the two subsets (aia2 . a,) and (bib2 b,).
in such a way that those indices which occur in both sub-
sets have to be taken account only once in the combined
set.

S. TWO-ELECTRON APPROXIMATION

u1& u2 «. ~ ~ ut&

XC&'&(ai a, lu& . u.)

Xd&"—'&(a, a,
I u, u, ),

The theory of correlated wave functions developed
in the previous sections enables us to introduce into
the wave function correlation of any order. It is clear,

(4.18a) however, that the matrix components of the higher ap-
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+ +—Q Ktt" ~ (51)
jj) ~ ~ om

Let Hr(i) be the H-F Hamiltonian operator expressed
as a function of the coordinates of the ith particle, and
let t)28 (k=1, 2, . ) be the complete set of the solutions
of the H-F equations. Let us denote the H-F determin-
ant by +0 and the complete set of determinants formed
from the one-particle spin orbitals 82& (4=1, 2, ) by
4'8r (M=O, 1, 2, ). The Hamiltonian (5.1) may be
written as

with

H=Hp+H', (5 2)

Hp—=Q; Hr (i), (5.3)

H'=—Q H;+—Q 8;t.+ +—Q 2;t."
eg' n f sg. . .m

—p HF (i). (5.4)

Suppose we want to make a perturbation calculation
starting with +p as the unperturbed function and H' as
the perturbation operator, and suppose we want the
energy up to second order. Then we obtain

E2 Ep+ 0'p H'%——pdq~

e8r*H'@pdq8t (Ep Esr), (5.5)—
where B,& is given by the equation

2(') Hz(&)+8r=E8r+81.

The complete set of determinants 0'0, %~,
includes, besides Co, all single-, double-, , Ã-fold
substituted configurations. It is known, however, that
if the perturbation Hamiltonian H contains only n-
particle interactions, the matrix component j'+8i*
XH'Vpdqti vanishes if 4'8i differs from Np in more than
n one-electron orbitals. Therefore, if the Hamiltonian
contains n-particle interactions, the formula for the
second order perturbation energy contains only those

proximations are expressions of formidable complexity,
and the calculations become increasingly difficult if we
introduce higher approximations. Fortunately there are
some arguments which indicate that the major part of
the correlation can be calculated with the relatively
simple 2-electron approximation.

Let us consider a Hamiltonian, which contains 1-
particle, 2-particle, n-particle interactions:

1
H =Q H;+—Q H;t+ QH—,; t

2f && 3~ i~i

types of integrals which occur in the n-electron approxi-
mation. In the case of our actual Hamiltonian (1.2)
the formula for the second order perturbation energy
contains only single and double substituted con6gura-
tions. There exist therefore a close correspondence be-
tween the 2-electron approximation, as it was defined
in Sec. 2, and the second order perturbation theory.
This fact indicates that a large part of the correla-
tion energy may be computed with the 2-electron
approximation.

In this section we note some characteristic properties
of the 2-electron approximation. The wave function was
given by (2.11):

For C&') we put

4 (') (ij ~
1,2) = [tt;(1)(p;(2) —p8t (2) pp;(1)]

X P e(ij tt)zrtl) (rl —r2)2™(rl+r2)"r»', (5.7)
m, n, l

where the c(ijmnl) are variational parameters.
The calculation of a correlated wave function of the

type (5.6) may be carried out as follows. After choosing
a set of one-electron orbitals y», y2, yN we put the
eigenfunction (5.6) into the Schrodinger energy expres-
sion and apply the energy minimum principle with
respect to the parameters c(ij t)8Nl) The re. sulting secular
equation may be solved with standard methods. The
main difficulty lies in the calculation of the matrix
components of the Hamiltonian which occur in the
secular equation.

Formulas for these matrix components may be ob-
tained from the general formulas of Sec. 4 and may be
found also in reference (12). If the eigenfunction has
the form given by (5.6) and (5.7) the matrix compo-
nents, in general, will be 2-, 3-, 4-, and 5-electron in-
tegrals containing the distances between the electrons.
The general analysis of integrals containing inter-
electronic distances is reserved for a forthcoming paper,
but we note here an important result concerning the
2-electron approximation.

IN the Z etectron approxirlati-ort all ocelrririg matrix
corrtjortertts of the Hartsiltoriiat8 cart be redlced to the

followit8g two tyPes of irttegrals:

Il Pl(rl~lpl)P2(r2~242)r12 dvldv2 (5.8)

I2 Pl(rl81$1)P2(r282A)P(r8884'8)

X (r18'r28 r12 ')dvldvpdv8, (5.9)

N
@(2) @&+g P Q ( 1)i+t+tl+tl

it' (Q!)» tl=l tl=tl+1

XC"'(ij~tlt2)D(~ "(8j~tlt2) ~ (5.6)
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where the F,(r8$) have the form

F;(rgb)= g;(r)l'~, , (PQ); (5.10)

F~,„,(tie) are the normalized spherical harmonics, and
a and b are positive integers or zero. Integrals of type
(5.8) have been investigated by Hylleraas, ' Breit" and
recently by Calais and Lowdin, "and it has been shown
that the calculation may be simplified by introducing
r~2 as integration variable. The present writer has in-
vestigated (5.9) and has shown that the calculation of
these integrals can also be simplified by introducing r»
and r» as integration variables. " Thus we may char-
acterize the 2-electron approximation by saying that
the calculation of the matrix components is relatively
simple, because only 2-electron and 3-electron integrals
occur, and in the 3-electron integrals two of the inter-
electronic distances may be introduced as integration
variables.

0. CONCLUDING REMARKS

By developing the method presented in this paper,
our goal was to generalize the highly successful method
of Hylleraas for the calculation of wave functions for

"G.Breit, Phys. Rev. 35, 569 (1930).
' J. L. Calais, and P. O. Lowdin, Technical Report No. 50,

Quantum Chemistry Group of the University of Uppsala, 1960
(unpublished).

atoms with any number of electrons. The mathematical
technique developed in Secs. 2—4 provides the basis for
calculations of Hylleraas-type wave functions. There
are several basic problems, however, which still remain
to be investigated. First, in general, the matrix com-
ponents of the Hamiltonian will be integrals containing
—,1V(1V—1) interelectronic distances. The investigation
of these integrals is reserved for a forthcoming paper;
some results, on integrals containing 3 interelectronic
distances LEq. (5.9)$ are published already. "The next
question concerns the symmetry properties of the cor-
related wave functions. Obviously even if the H-F
function (2.1) was an eigenfunction of the total orbital
and spin angular momentum operators, the correlated
wave functions (2.8) would not necessarily possess these
properties. The best method for the investigation of the
questions concerning the symmetry properties of the
wave functions seems to be the projection operator
method developed by Lowdin. " Using the projection
operator method we can start with an arbitrary corre-
lated function like (2.7); application of the angular mo-
mentum projection operators will ensure that the result-
ing function will be an eigenfunction of the angular
momentum operators. The details of this procedure will

be discussed in a forthcoming paper.
'0 P. O. Lowdin, Phys. Rev. 97, 1509 (1955).


