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A formalism recently developed by the author is used to simplify Kohn’s derivation of an effective
Hamiltonian. The new derivation is valid for arbitrary symmetry and with the inclusion of spin-orbit effects
and for bands with degeneracies. The actual form is obtained to second order in the magnetic field. It is
explicitly shown that the procedure is asymptotically convergent. This Hamiltonian is then used to obtain
the susceptibility in a convenient form. The nature of the actual energy levels is discussed with particular
attention to the broadening, gaps in the continuous region, and magnetic breakdown.

INCE the early days of solid-state physics it has
been customary to treat the motion of Bloch
electrons in a magnetic field by a Hamiltonian
H(#k+ (e/c)a) obtained by substituting %k (e/c)a for
7k in the energy function for a band. This was first
justified by Peierls! within the limitations of the tight-
binding approximation. Since then a number of further
efforts have been made to justify this procedure
culminating in the work of Kohn> who, by methods
which he called “shockingly complicated,” was able to
establish that the Hamiltonian can indeed be written
as a function of H (k- (e/c)a), where H (k) is itself a
power series in the magnetic field B.

A major purpose of the present paper is to reduce the
complication of Kohn’s method. We shall also demon-
strate explicitly that it is asymptotically convergent.
Our procedure is applicable also to bands which do
have degeneracies with other bands and to electrons
obeying more general wave equations than the non-
relativistic Schrodinger equation. These results will be
applied to the steady susceptibility of a crystal and to
the determination of the energy levels.

1. THE EFFECTIVE HAMILTONIAN

In this section we shall derive the effective diagonal-
in-bands Hamiltonian for electrons described by any
of the following one-electron Hamiltonians.

(a) Schrodinger: :

1 e \?
&§=—(p—]——a> +U, (I.1a)
2m c
(b) Pauli:
1 e \? &
@=—-<p+—a)+ [p- (eXVU)]+U, (IL.1b)
2m c 8m?2c?
(¢) Dirac:
D=ce-[p+(¢/c)al+pme+U, (L1c)

where U is the periodic crystalline potential. In the
absence of the vector potential a, each of the Hamil-
tonians has a velocity operator 8, such that

where H is the Hamiltonian with a=0, whose eigen-
values are E(k). All the above Hamiltonians can be

1R. E. Peierls, Z. Physik 80, 763 (1933).
2 W. Kohn, Phys. Rev. 115, 1460 (1959). Additional references
will be found in this paper.
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written in the form
O=H+(e/2c){B- a}+e2a?/2mc?, (1.3)

except that for the Dirac case we must set 1/72=0 and
the last term disappears. We now transform this
equation to the crystal momentum representation
(CMR). [A detailed discussion of this representation
in the form used in this paper has been given by the
author in another paper® which will hereafter be referred
to as (F).]In the CMR, x has the representation R+ %
where R=19/0k and ¥ is diagonal in the wave vector
k, but not in the band index #n. Correspondingly, we
shall write a= A+ A, where 4 depends on R and A on
%X. H and ¥ are diagonal in k, and H is diagonal in #,
while ¥ is a matrix in #. Finally,

O=H+3{B- (A+W}+ (A+A)*/2m,

where we have also chosen units such that e¢/c=1, or
alternatively we have absorbed ¢/¢ into a.

We will make much use of another object from the
CMR,

Snnr (K K)= / Ui tnrdr,

where the #’s are the periodic parts of the Bloch
functions ¥,k (r) =™ T, (r). S is related to %:

X (k) =0(k—Kk")i(9/0K) S (K k). (L5)

The whole difficulty in treating the Hamiltonian
(L.4) is that a and in particular 4, can be very large.
Thus normal perturbation theory cannot be expected
to give good results. The author has developed a
procedure for treating perturbations which may be
large, if they vary slowly from cell to cell [ (F), Sec.
IIT]. In this formalism one transforms from the CMR
to a mixed representation to which we shall refer as
pseudoclassical (PCR), in which an operator is written
as a function of two variables R and k, which can be
treated as numbers. The quantum mechanics then rests
in the multiplication rules, which are nonlocal. A
typical operator then becomes On. (kR). x is still
written as R+ ¥, but R can now be considered a
number not an operator, while X is still a matrix and
depends only on k.

Alternatively, one can continue to regard k and R
as operators, and our formalism provides a recipe for

3E. I. Blount, in Solid-State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1961), Vol. 13.
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obtaining other operators in the form of matrices each
of whose elements is an operator function of k and R.
Our multiplication rules then are equivalent to treating
these functions as fully symmetrized Taylor series in
k and R and multiplying them accordingly. Our
formalism is valid asymptotically, however, in cases
where the Taylor series diverge, as shown in (F).
We write

O (k,R)=H (k) +3{B (k) - LA(R)+ A (k) ]}
+LAR)+AK) /2m. (L6)

(F) gives a procedure for removing interband matrix
elements to arbitrary order, and we could proceed
immediately in this direction, but we also wish to
assure that our final expression is a function only of
f= (k1 4) in analogy with the free-electron problem.
To this end we make the transformation .S,. (0k).
This has the effect of expressing the Hamiltonian in
terms of functions whose periodic parts are the Bloch
functions at k=0 or Kohn-Luttinger functions. H, B,
and x are altered as follows:

H(k) — H(0)+B(0) -k+£2/2m. (1.7)

(We now choose #=1.)
B — B0)+k/m, (1.8)
x— R. (1.9)

As a consequence of the last of these, A+ A is replaced
by A and § becomes

O'(k,R)=H(0)+B(0)- (k+A)+ (k+A4)*/2m
=H(k+A). (1.10)

Thus we already have §’ as a function only of ¥, and
our procedure as discussed in (F) will be to diagonalize
this by successive transformations, each of which will
depend only on §; thus our final result will be of this
form. This follows from the fact that commutators of
the components of f obey the following rule:

Lt 8 Jo=1e:1Bs,
and are thus constant.
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We now observe that (I.10) is of the same form
as (I1.7) with k replaced by . Thus we can diagonalize
it to lowest order, in the sense of (F), by applying the
transformation S, (¥,0). This transformation itself is
not unitary for it depends on both k and R, and the
Poisson bracket {S,ST) does not vanish. It will thus be
necessary to use the perturbation procedure of (F).

Before doing so, however, it will be desirable to obtain
some simplification of certain formulas in (F) which
arise from the fact that we will be using functions only
of (f). In (F), we used the Poisson bracket of two
operators IV and O,

dN 00 9N 90
OR; 0k;  Ok; OR;

where we use the summation convention. If V and O
are functions of ¥, we obtain

(1.11)

AN 30 AN 90\da;
(N,O)=<—— — ﬂ—)—
of; of;  of: ot/ ok
AN 90
=—B-—X—, (1.12)
ot ot

where B=Va is the magnetic field.
This also makes it clear that in higher-order terms,
where we also have such terms as

(aN dP ON BP)

OR; 0k; Ok; OR;

where N, O, P can themselves be derivatives, we can
replace this sum by

(6N 0P ON 6P>

(1.13)

ON 9P
= ——Blem—O—.
k; 9

% 7

—O— — —0—

We now write from (F) the formula for the operator
product (SHST)o to second order in B. [In (F), we
used “order” to indicate the number of differentiations
with respect to R in a particular term. Here, this
coincides with order in B since R appears only in 4.]

(1.14)

aS aSt  aS aSt\ 17 #S St aS oH oSt
(SHST)ozSHST+%i((S,H>S‘”+S(H,ST)—I——H— — —H—)— —( +2——
OR; Ok: Ok; OR;) 8\okidk; OR:OR; Ok; ok; IR:OR;
°H oSt H 95t ®H oSt oS o°H s oSt
+5 —25 +S + t+ H
okOk; OR:OR;  OkOR, 0k;0R: ORIR; 0kidk; OR:OR; 0k:dk;  OROR; Ok:0k;
9°S  oH 3S 9°S oH oSt %S ol . S o°H . s st
—_—— —_—— -2 92t
OR:OR; Ok; 0k;  Ok:OR; OR; 0k;  Ok:OR, OR:0k;  Okik; OROR; 0k OR; Ok;0R:
@S oHoS' aS oH @St 0S oH &S’ aS ®H 3S' oS oH oSt
OkidR; Ok; 9R;  Ok; OR; R:9k; OR: AR, 0kidk; Ok, Ok:dR,; R Ok, OR:OR; ok
aS oH aSt  aS oH oSt 9°S 9H ST 9S 9*H oSt

OR; Ok:0k; OR;

OR; Ok; 0k;0R;

—), (1.15)

2 — 42—
Ok:iOk; OR; Ok;  OR; Ok;0R; Ok:
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where all products on the right are matrix products. Using (I.14), this equation can be considerably simplified:

(SHSY) o=SHSt—1iBie1i;(S:H ;ST+SH,S 1+ S:HS ;")

—3BiBnétiiennp (SinlS jpt+SH S jpt+SinH jpSt+2S:H .S jpt+ 2S5 i H ;S pt+25:H ;S ,1),  (1.16)
where we have used subscripts to indicate differentiation with respect to f. To obtain (SSt)o, we merely set H=1
in (1.16):

(SST)OZ 1- %iBlelijSiSjT—%BleelijemnpSinSjpT- (117)

We can now remove the first-order term in (SSt)p by multiplying .S on the left by (14g®), where
gV =2iB€1;;5:S;1, which is Hermitian. Applying this to (I.16), we obtain to second order
O=E(¥)+%iBieii{S:(S;ASHST— H :ST— HS i)+ (SHS1S;— S:H—SH;)S ;t—S;H ;St— SH.S 1}

—1BiBerisemnpl (SinHS ipt+SHinS ipt - SinHl ipSt+2SH uS 1+ 2SinH 1S i+ 2S:H S, 1)
—[SiSit, (SalpSt+SuH Sy +SHwSp1) Iy — [(SinSiT+SaSial), (SHS)p]c
+3S:SASHSS wSp =3[ SiaS ip WSHS 1)+ 1SS 1S0Sp W, SHS ]y}, (1.18)
where the subscripts + and — indicate anticommutators and commutators, respectively. Here the first group of
terms in second order comes from (I.16), the second group from [g® (SHS) ]y, the third from {(g® SHS)

+(SHS1,g®), the fourth from g®SHSTg®, and the last two from [g® SHST]y, where g® is chosen so that if
H=1"the second-order terms vanish. That is, g® is chosen to make (SSf)o unitary to second order:

g(Z) = ﬁBleememnp (S'[nSjpT_%S{SjTSnSpT).

The addition of g and g® to .S does not remove interband terms to second order, but before proceeding we

rewrite (1.18) in terms of the ¥’s and L’s, using (1.2) and (L.5).

O=E()+iBiei{[X:,0; 11+ [X,B,11} + BiBmerijemnp{ 32 Xi Xn,aip 1 1+ 16 [0 [ X0,0%:/9E, 11 1+
+16[ X, (9/0F)[ X0, By 1i 11t (8,n/8m) XXy — 55 [ 9%/ 0%, [0,/ 0F,,E] ]

where v; is the intraband velocity operator 1;=90E/9f;.
The first-order term is obtained straightforwardly from
(1.18), while the second-order term requires complicated
rearrangements. The last term has only interband
elements and can be removed immediately.

Equation (1.19) can now be put in a very convenient
form if we introduce the following notation:

1Bie;iXi= 7, (1.20)

where the superscript indicates that this is the part of
the vector potential associated with X in the symmetric
gauge, regardless of the gauge we started with;

1Bieii [ X,8;],=—B- W, (1.21)

where I’ is the nonsingular part of the magnetic
moment operator. Equation (I.19) becomes to second
order

O=E(t+ A (++A))— B- W (F4+-A)+ (A*)/ 2m

+5[(0U;*/ 0kn) [ 0N/ Ok5, 11,  (1.22)

+16i[((0X:/ 91, XX+ XX 0%,/ 0F5), SHST] },

(1.19)

where E(f4+A*) and I (t+ A*) are defined by the
power-series expansion of E and IN’ about £. We have
left out the last term of (1.19), which can be easily
removed by a transformation. This expression except
for the last term is exactly what the Hamiltonian of an
ion in an external magnetic field looks like, the first
term corresponding to (1/2m)[p-+(e/c)a P for the
center-of-charge-and-mass motion, the second term
being the magnetic moment, and the third the molecular
diamagnetism. The fourth term is a specifically crystal-
line effect as is the appearance of A® in the first two.
While (1.22) is a particularly concise expression it is
not very convenient for computation, and we now show
a different rewriting of (1.19) using a different magnetic

moment operator IN.
*

M= —ei[ X, Vil (L.23)

where V; has only interband matrix elements. This
leads us to the form

O=E@R)—3[(BXv) &1 —B-MALAe, [ A0 T It (A)/ 2mA-300,, [ Ay, 057/ 0kp 11 11

+3[[As0p 10U,/ 0k 1-+FL0As/ 0k, [0Ap*/ 0k, E]-1-—3[ A%, (0/0F;) B-M ],

In this form the various orders of B are kept separate
and terms involving v are separated from those involv-
ing V, which occurs only in IR.

It is interesting to note that the second term can be

(1.24)

written

—3L(BX V) ¥ =—3[F-X],.

This is the energy of a dipole ¥ in the Lorentz force Fy,

(1.25)
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without the factor 4 which occurs in the magnetic
moment term. It means that if we add an electric field
to the problem, the Hamiltonian to first order in both
fields is

E(f)— E-R—3[(E+F.), -¥],—B-I, (1.26)

that is, the electric and Lorentz forces appear on an
equal footing. When the procedure we have used is
applied to the Dirac equation, treated as a band theory,
it is found that the intraband part of the first-order
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term is

—3LvX ¥ —M=1r0/m*c,

where m* is the transverse mass, this equation being
valid for all k. Thus, here it is the rather peculiar
combination I[vXX],+i[VX¥];. which is simply
related to ¢ the spin.

It is now appropriate to remove the first-order
interband matrix elements, and for this purpose we
simply use second-order perturbation theory, obtaining

O=E(H)— (BXv): x—B-m—+§[W[A;% 005 14 e+ (U2 2m~+-3[v;, [ Up®, 0%/ kp 11+ s

+Evp+illA4:0,],04,°/0k;]1-— 5[ U, (9/9k)B- M1 +3[04 2/ 0%, [ 04,/ 0%, E] 1,

(1.27)

where the lower case g and m designate intraband matrix elements of ¥ and I (which for bands degenerate
throughout k space is taken to mean a twoX two matrix in the degenerate bands?), and Eyp is defined as follows:

|B-M,+[(BXV); Xuw ]y |2
En_En’ .

EVD,nn= —'% Z

n'#n

(1.28)

The term in Eyp containing |B-M .. |? is the Van Vleck paramagnetism, the term in | X?| is like a dielectric
effect of the Lorentz force, and the cross term is an interference between these effects. The symbols M, X, A refer
to interband matrix elements. We have left out some terms involving intraband matrix elements of U because
they vanish in the diagonal terms.

This is still not the most useful form for the second-order terms. As a first step, we eliminate all factors of the

form 84,/0k, for u#v. Then the second-order terms have the form

(A)?
2m

f)‘2= - %[a#VI:A w4 rs:|+]++

=3[ Vi ALA*v] 1+ Evp+3[ Vi A B-M .43 Vi A[ Vi A%, E ]

+ilawlaa ] 1 +30v.,[a,°00,°/0k, 1 1. —3[ a.°,0B-m/dk, ],

19
+E B;(EA Va:l:A #s:v#_—.‘+]+_‘%[‘4 VS;[Vk : Asan—:]~_ [A P87B : M]—i—); (129)

where a° is the intraband part of e.

Vi-As and B-M have very similar structure which can be exploited to obtain a very simple form for the total

Hamiltonian.

O=H(t+2a°(f4+2a°))—B-m(f+2a%)+as- va+Evp'+ A%/ 2m—Lta,,[ A4,

— 3L (Rt 1), (AeBd, + 4, B4+ [4,04, 1) -

In the first term, the argument is to be interpreted
as f, plus 2a evaluated at f-+2a. Furthermore, Eyp’ is
defined as follows:

| (Ao VH{v-A%})nr |2

(1.31)
'=n E,—E,

EVD,n =

n

We note that the operator As-V is nof Hermitian.
v4 is defined as

Vo= — (1«/%)[8, H_B'm](b

the operator commutator of g with § evaluated to
first order.

va=+(/B)[g,B-m]+(i/n)[x, BXv)- (x)].

We have used the form a-v4 to emphasize that v, is

(1.30)

a part of the total velocity operator and this term thus
has a natural place in the Hamiltonian. It was pointed
out at the beginning that 1/m must be set equal to
zero for Dirac electrons. We, nevertheless, expect a
term like A%/2m in the Hamiltonian. We now see that
it comes from Eyp’. For the sum over #’ must include
negative energy states, for which E,— E, ~2mc?. The
sum then becomes approximately (A-VV-A)/2me.
For the Dirac electron VV~1¢2 and the total contri-
bution of the sum over negative energy states is
approximately A42%/2m.

In (1.30), the first two terms are the only ones which
exist for free electrons, while A%2/2m and Eyp' are the
only ones for molecules and atoms. A different cate-
gorization is that the first three terms are determined
by simple one-band parameters discussed in (F). These
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parameters have their analogs in the Dirac theory (F).
The next two terms are explicitly interband or “mo-
lecular” in origin. The sixth and seventh terms are
specifically connected with the interaction between
intraband and interband effects.

The form (1.30) is valid for any choice of phases of

BLOUNT

the Bloch functions, and is indeed insensitive to the
generalized phase transformation discussed in (F). The
establishment of this fact serves only as a check on
our result and will not be performed here.

One final rearrangement of (1.30) will be given
which will be useful in the next section.

O=H(f)—B-m—BXv-a+(42)/2m+ Eyp'—tau[4,°4,° ],
=3[ (Rut1a), (4084, + 4,84, +0,[4,4,10) 1+ (8/0k.) (vuL a,00,7])

— v a0, [ 10,0, 1T +3i[2R,+ 1y, [0°,B-m], ] —§[B-Q,B-m],,

where
Q=—i(R+)X R+1)

and has been discussed in (F).

At this point we have accomplished our first objective,
to show that an effective Hamiltonian can be found
without interband matrix elements, to any desired
order, and we have carried it out to second order.

Some final remarks are in order concerning the first-
order terms in (1.27). In a crystal with inversion
symmetry and no spin-orbit coupling, m vanishes and
¢ is a gradient Vie. For such a band, which in addition
intersects no other bands, ¢ and g can be made zero.
In a band which has intersections, this cannot usually
be done, though V.-x can be made zero. In crystals
with inversion symmetry and spin-orbit coupling, all
bands occur in degenerate pairs throughout k space,
and we consider such pairs of bands to be one band of
two-component wave functions. Then, in general m
will not vanish nor will g, but the trace of m for each
band vanishes everywhere, while the trace of g behaves
like g in the absence of spin-orbit coupling. (In such
bands m and g, like all other operators, are treated as
2X 2 matrices, just as in the Pauli theory of spin.)

So far we have simply taken over the procedure of
(F) without concerning ourselves with matters of
convergence, either of the multiplication procedure
(1.14), or the perturbation procedure. We now consider
these in order.

In (F) it is pointed out that the multiplication
formula (I.14) cannot be expected to converge if one
factor has Fourier components O(k; q) for q outside
the range of convergence of another factor N(k; q) as
a function of k. In our present problem let us consider
the first step when we take the product .S(k-+4, 0)H (k
+A)St(k+A4, 0). H(k+ A) is quadratic in k and 4 and
thus gives no trouble, but S(k+A4, 0) and its adjoint
have Fourier components over the whole Brillouin zone

(1.32)

(BZ), whereas as a function of k it does not in general
have such a large range of convergence as a power
series. We can, however, explicitly see that it is asymp-
totically convergent at small field. This is done in
Appendix A.

Each step of the perturbation procedure involves the
introduction of a new pair of operators, which must be
multiplied by the expressions already obtained. These
new operators are all functionals of .S and the poly-
nomials H and 8. Consequently any finite number of
them will not disturb the asymptotic character of the
expressions obtained. Likewise, the removal of inter-
band elements is asymptotic in that the error in the
nth order is of order B** or higher at small B. This
establishes the asymptotic convergence of our total
procedure.

One exception must be made to this statement. At
degeneracies we have established the asymptotic con-
vergence of the multiplication rules, but of course the
perturbation theory will break down. In such cases,
we usually use degenerate perturbation theory. Thus
in the present problem, we might try to use degenerate
perturbation theory at degeneracies. Unfortunately it
does us no particular good, for in such neighborhoods
the derivatives with respect to f of the transformations
become very large and there is no possibility of a
development in power series. Indeed, the interband
matrix elements have an important meaning in such
places as we shall see. Of course, (1.24), which gives a
Hamiltonian depending only on £, is valid and useful
near degeneracies.

Finally, it is desirable to show what the basis function
in the transformed representation looks like. We shall
content ourselves with the zeroth order approximation
since this contains the basic physical idea. From S(k,R)
=S(k+A4, k) we must calculate the matrix elements
S(k')k’") and apply them to the Bloch function. We find

V=2 | & Sun (KK Wi (r)

k4K
= [aF SW(—+A
n',R 2
=etry | & S,m,(k+A+

n',R

k4K

' )eiR K gik"eryy L (F)

(k'—k)

(1.33)

)ei(k,—k) Ry (1),
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This can be expanded as a series in B just as the
multiplication rules can, and the result is

Vi = €5 Tty g a(O) 4+ - . (1.34)

This first term shows that the basic transformation is
to change the periodic function #,x to the nearly
periodic function %,k characteristic of the crystal
kinetic momentum k-+A. This is entirely in accord
with one’s intuitive feelings, and some authors have
used this as a basis for attacking the problem of this
paper.

Note added in proof. In the case of a band whose en-
ergy range does not overlap that of any other band, it
is easy to see that the matrix elements with other bands
can in principle be removed exactly. This follows from
the fact that for fields below a certain B,, the exact
energy levels will be so arranged that a number of states
equal to the number of states in the band will have
energies well separated from the remaining states.
Linear combinations of these wave functions can then
be taken which will be infinite in extent and similar to
our modified Bloch functions. Since these functions have
no strict requirements to obey such as being of the form
e’ X periodic function, there is no difficulty. For this
case, then, our proof gives an asymptotic form of the
Hamiltonian, but we know that the removal of inter-
band elements is exact.

If the bands do overlap, on the other hand, we cannot
guarantee the exact removal of interband elements and
this part too is only asymptotic. This distinction is
important in connection with magnetic breakdown (see
Sec. III).

II. THE STEADY SUSCEPTIBILITY

The first use we shall make of (1.30) is to calculate
the susceptibility. This is determined from the free
energy by the relation

M 1 oF
X=—=———, (IL.1)
B B 9Bl;
while F is given by
F=N{+Trf(9), (I1.2)

f(©)=—kT In{1+exp[ ¢ —9)/kTT}. (IL3)

To obtain f correct to order B? we would like to
expand it as a power series in § and use our multipli-
cation rule [(1.16), with § substituted for S and St].
f has only a small finite radius of convergence however,
which indeed vanishes at 7'=0. Therefore, we make use
of the Laplace transform of f, since exp(s9) has an
infinite radius of convergence. Thus we write

cti0

¢(s) exp(sD)ds, (IL4)

f=

c—10

exp(s9)=5 %@ (ILS)
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As shown in (F), the operator product £ evaluated
at (kR) is not equal to the nth power of 9(kR).
Treating each term by the expansion procedure of (F),
we obtain

exp(s©)=2@~_%[6§ (B, R) T (3i(9,5) — 1(HON)
n k,R n—3
" ORI ooy
n (n—3)! 6
n k’R n—4
py S BRI e eyt Lo
- (i—4)! 41

where the prime indicates that only terms in which
each § is differentiated at least once are to be included,
the others being in the previous term. We note that
(9,9)=0; summing over %, and inserting the result in
(I1.4), we find

f&R)=f(D(%,R))
—3B\Buer€ury (3 favare3 [ arrvrvr).  (IL7)

The integration over k and sum over bands yields

1 143
F(R)=F0_ ZSB}\Bﬂe}\LKe#Vp(;) /dsk Trfola“'a'fp’

T

where Tr signifies the trace of the matrix at fixed k, R;
fo is f' the Fermi function, and F, is the trace of the
first term in (I1.7):

(5

F0=F(B=0)—|—(51—>3 / &k Tr{ FohO+ £y ] (IL.9)

™

H® and H® are, respectively, the first- and second-
order terms in (I.30). The first-order contribution of
H® vanishes by time-reversal for any nonferromagnetic
material.

The procedure outlined could in principle be extended
to higher orders, but would remain asymptotic at best.
In particular it would not be able to pick up the
de Haas-van Alphen effect. This is most readily found
by making use of the actual spectrum and has been
done by Lifshitz and Kosevch! for arbitrary $(¥).
There is no need to reproduce it here.

The asymptotic character of our power series in B
differs from that in the free electron case, however, for
in that problem exp(—B9) has a convergent power
series in § and the asymptotic character arises only on
taking the inverse Laplace transform. In the present
case exp(—QBY) itself is given only asymptotically by
(I1.6). The reason for this difference is that for free
electrons each term in (IL5) is a polynomial and is thus
exactly evaluable by the series (I1.6) which terminates
for each order #.

41. M. Lifshitz and A. M. Kosevch, Doklady Akad. Nauk
S.S.S.R. 96, 963 (1954).
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The total susceptibility can now be written in detail :

(1) The first term is Xzp, the Landau diamagnetism
with an effective mass tensor, given by the second term
in (IL8). As a term in the free energy, it is written

1 14\3
FLP= - _B)\B[Ae)\n(eyvp(_> / Trf(),anvaxpdsk- (IIIO)
48 2

(2) The contribution of the last term in (I1.9) is
partially cancelled by some of the second term, namely,
that part coming from the eighth through the eleventh
terms of (1.30). (This requires the nonobvious result
that J fov, Tr{a,[x,,a,]}d%%=0.) The remainder will
be called the Pauli paramagnetism, and it involves an
effective magnetic moment

143 (B-m)?
Fp,=— Trfy" @k.
(2#) / o 2

(3) The Van Vleck-dielectric paramagnetism comes
from the fifth term in (1.30):

1 3
FVD=<—)/TerEVD,d3k.
2w

(4) The atomic diamagnetism, from the fourth term
of (1.30), strictly speaking from the Dirac point of
view, arises from the previous term, as discussed
following (1.30). The split is nevertheless useful since
in solids, electrons are far from the relativistic region.

11\3 ( As)?
Fo= (——) / Trfo k.
2w 2m
(5) The next term is similar in appearance to the
last but involves an effective mass so that its sign is
not definite, a characteristic common to the remaining

terms, which distinguishes them from the previous
terms. We shall call this contribution pseudoatomic:

Fpa= (;;)3 / Tr fo(—a) {A";A"s}dsk.

(6) The last term in (1.30) has no simple description.
We shall denote its contribution by Fg:

(IL11)

Fn=<zi)3 / Trfo(—2)[B-Q,B-m],d%.

T

(7) Finally we have another term whose existence
depends on that of a Fermi surface for we can integrate
by parts, obtaining

F (13 T '(v“ (4,°B,4
"~ 27r)/ e 2) S

+A4,B,4,54v.{4,°4,5}dk.)
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The relative importance of the various terms will
differ considerably from one type of substance to
another. In particular, of course, in insulators and
intrinsic semiconductors the terms (1), (2), (7) are
zero. When the band gaps are large in such materials,
the atomic diamagnetism (4) will predominate. Narrow
band gaps will increase the sizes of (3) and (5), which
will tend to cancel, however, as (3) is definitely para-
magnetic while the largest contribution to (5) will come
from regions of large negative mass. Term (6) will be
large only if, in addition to a small band gap, the
material has strong spin-orbit coupling.® Otherwise,
m will be about the free electron value and Q will be
small. The contribution when large should be predomi-
nantly diamagnetic.

In a metal on the other hand the terms (1) and (2)
may be comparable to or larger than the atomic
diamagnetism. A discussion of the comparison between
calculations and theory has been given by Wilson.® In
the good metals the remaining terms are expected to
be smaller, as the energy difference between energy
levels at given k is generally large, while these terms,
having effectively three such factors in denominators
are increased by small energy differences.

In the case of doped semiconductors one has the
opportunity to study the contribution of small numbers
of added carriers, unmasked by the atomic and Van
Vleck terms. This has been done in particular by Yafet
and Bowers.” Any of the terms can be large in this case,
though at small concentrations, the first two are
especially enhanced by a factor of approximately the
energy gap over the Fermi level.

In the semimetals one has effectively a doped semi-
conductor in which the intrinsic susceptibility is
unknown. In Bi, for instance, it has long been supposed
that the susceptibility is predominantly due to the
carriers, but since it is now known that the electrons
have a large magnetic moment,® these would appear to
give a net paramagnetic contribution. On the other
hand, the term (5) above could give rise to a very
large diamagnetism from electrons in the filled bands
near the band edges. But this is not the only possibility,
since the atomic term should also be increased by
small energy gaps, this contribution possibly coming
from a larger region of k space. Term (6) Fq will also
be diamagnetic in this case and comparable in size to
(5). Whichever of these terms is the primary source of
the diamagnetism, it should remain large if the electrons
and holes are removed. This can apparently be achieved
by making Bi-Sb alloys,® and the experiments of
Shoenberg and Zaki Uddin® on such alloys provide some

5 M. H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960);
G. E. Smith, J. K. Galt, and F. R. Merritt, Phys. Rev. Letters
4, 276 (1960).

6 A. H. Wilson, The Theory of Metals (Cambridge University
Press, New York, 1953), 2nd ed.

7Y. Yafet and R. Bowers, Phys. Rev. 115, 1165 (1959).

8 A. L. Jain, Phys. Rev. 114, 1518 (1959).

9D. Shoenberg and Zaki Uddin, Proc. Roy. Soc. (London)
A156, 687 (1936).
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confirmation of this prediction, though they did not
examine specimens in the range which later proved to
have well-defined semiconducting properties. Further
experiments on such alloys are strongly indicated. In
the semimetals in general, more information can be
obtained about specific group of carriers from more
specialized experiments such as de Haas-van Alphen
effect, cyclotron resonance, ultrasonic attenuation,!
and anomalous skin effect,”® but the steady suscepti-
bility then serves as a check on the completeness of
this information.

III. EIGENFUNCTIONS AND EIGENVALUES

Having now determined the effective one-band
Hamiltonian, it is of interest to look at the eigen-
functions and eigenvalues as well. As a first step in this
process, it is convenient to consider what constants of
the motion can be determined in advance. At this
point the simplicity of the problem depends on the
choice of gauge. In particular, if we choose a doubly-
singular gauge (see Appendix A), the effective Hamil-
tonian depends only on one component of R. This is
not quite the same in general, as to say that we have
two constants of the motion as we shall now see.

Consider first the case where the magnetic field is
along a lattice vector of the crystal which we shall call
the z axis. We choose the gauge so that a¢,=0, ¢,= Bx,
a,=0. Then our effective Hamiltonian is H(k,, ky
+Bux, k.). k, and k. are constants of the motion, and
the CMR wave equation is one dimensional. We could
have come to this conclusion by considering the original
Schrédinger Hamiltonian, so it does not depend on
any of our approximations. If we now suppose that B
is not along a short lattice vector but along a long one,
so that its direction cosines have large denominators,
nothing is changed in principal, but the simple state-
ments can be made only in reference to a different unit
cell. For we can obtain crystal momentum components
as constants of the motion only if the Hamiltonian is
periodic in the corresponding space directions. Thus
we would proceed as follows for such a B as we have
just described. We choose the z axis parallel to B and
the shortest lattice vector in that direction as one edge
of the unit cell. This determines a plane in reciprocal
space which is perpendicular to B. If the lattice vector
is large, the unit cell in this plane will also be large
and the spacing of the planes small. Thus the BZ will
be thin in the z direction and of great area, becoming
thinner and more extensive as the sz-lattice vector
increases in length, that is, as the denominators of the
direction cosines of B become larger. Finally, if the
direction cosines are irrational, the zone has no finite
thickness, and the BZ becomes in effect an infinite
plane. An intermediate case exists if B is perpendicular

107, K. Galt, W. A. Yager, F. R. Merritt, and B. B. Cetlin,
Phys. Rev. 114, 1396 (1959).

1D, H. Reneker, Phys. Rev. 115, 303 (1959).

12 G, E. Smith, Phys. Rev. 115, 1561 (1959).
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to one reciprocal lattice vector, but has some irrational
direction cosines. In this case, the BZ becomes a strip
of infinite length but finite width. If the BZ has a
finite thickness and @, is chosen zero, and the other
components of a are independent of z, k-B/|B| is a
constant of the motion. As the BZ becomes thinner,
the range of values of k-B/|B| decreases and the
variation of wave functions and energies with k-B/|B|
becomes unimportant, until in the case of irrational
orientations, it can be neglected. The eigenfunctions in
all cases do not fall off at large z. For rational orientation
their z dependence is like Bloch functions, albeit with
very large periods. For irrational orientations, the
eigenfunctions remain large at large z, even though not
periodic. This reflects the fact that as the BZ becomes
a pancake, the unit cell becomes a long thin rod, so
that the periodic part of the wave function becomes a
function only of 2, assuming reasonably decent be-
havior; conversely the z dependence relates only to the
periodic part. Thus, the Wannier wave function f(R)
should show no z dependence, but only depend on %
and y. The preceding discussion will probably require
some getting used to and is most easily seen by imagin-
ing the irrational orientations as a limiting case of
rational orientations.

We have then that £ can be written as (f,,1,,“k.”),
where the quotation marks are intended to mean that
there is a k., dependence only for rational field direc-
tions. At this point, we have reduced the problem to
two dimensions, without in general, however, having
any constants of the motion. We can now choose our
gauge in such a way as to reduce the equation to one
dimension, namely by picking the vector potential to
have only one component and to vary in only one
direction. We will choose ¢,=a,=0, a,=Bx, so that
k, is a constant of the motion. In general &, will have
an infinite range, but when the BZ is a strip or a
finite rectangle, the range of %, is finite.

Thus, the situation is not unlike that for free elec-
trons. In the latter case, there is only one other quantum
number left », which is discrete, and on which alone
the energy depends. # labels the “harmonic oscillator
states.” In our present problem, we have yet no
guarantee that » is a discrete quantum number, and
it must clearly do the work of both the harmonic
oscillator number and the band index. To see that n
cannot be so simple, suppose we have a state ¥
=y¢(n,kyk.;x). If wenow make a gauge transformation,
adding Bx, to the vector potential, the original Hamil-
tonian (pupype;X) becomes H(ps, pytBn, o X)
and the wave function ¢(n, k,+ Bxo, k.;x) has the
same energy as ¥i1. If we now translate the system
by a lattice vector R, the Hamiltonian is (ps, py
4+ B(xo— R.), py; x) and the wave function is ¥(n, &,
~+ Bxy, k.; x—R). Thus, if we choose xo a lattice vector
R, we obtain from ¢ (n,k,,k. ; X) a different eigenfunction
v(n, ky+BR,, k.; x—R) with the same energy. The
spectrum considered as a function of %, is then periodic
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with a periodicity Br, where 7, is the minimum R,
(which is zero for irrational orientations). The spectrum
also has the periodicity K,, where K, is the minimum
reciprocal lattice vector in the y direction. We now
distinguish three cases:

(1) K, and K, are infinite; r, and 7, are zero. The
spectrum is independent of &, (or of %, had we chosen
the “opposite” gauge a,= — By, a,=0).

(2) K, and K, are finite; 7, and 7, are also finite.
Then the occurrence of two periodicities K, and Br,
means that unless they are commensurate the spectrum
is independent of &,, and likewise of %, in the “opposite”
gauge. The periods are commensurate if Br,/K, is
rational, that is, if the flux through a unit cell in the
plane perpendicular to B is a rational multiple of kc/e.
The spectrum is not independent of %..

(3) K, is finite, K, infinite; 7, is zero, 7, finite. Br,
is zero so the spectrum is independent of %, but in the
opposite gauge; Br, is finite and the spectrum is not
constant, but may have a periodicity Br, as a function
of k..

Since we have only been able to show that a level at
k, is related to one at k,+ Br, by translation symmetry
and gauge invariance, we must suppose that for rational
orientations, the corresponding levels at other (%, Bxo)
have different energies, though for small x, they must
be arbitrarily close. This will soon be verified. We have
seen, however, that except for particular values of B,
the spectrum is independent of &,. This leads to the
conclusion that the spectrum for given %, and %, is
not discrete.

The reader may have gotten the impression that
there is a remarkable difference between rational and
irrational orientation which seems physically unreason-
able. This difference is only apparent, and is one of
mathematical simplicity alone. If we did not attempt,
at rational orientations, to make the most convenient
_choice of gauge, we would not notice the discontinuity.
As we have seen, however, it is possible at rational
orientations to make a choice of gauges, such that we
greatly simplify the mathematics. In both cases, there
is a continuous spectrum when all quantum numbers
are considered. Because of the degeneracy of eigen-
values, it is possible to use very different-looking sets
of eigenfunctions. A somewhat analogous situation
would arise in a crystal, which we subject to a constant
sinusoidal perturbation, whose repetition vector is T.
If T is a lattice vector, the problem is still periodic,
and the eigenfunctions can be written as Bloch func-
tions. For other values of T this is not so, but we
expect no discontinuities at the preferred values.

The above reasoning has not used the effective
Hamiltonian, but rather has proceeded from the
Hamiltonian (I.1). It will soon appear that the results
from the effective Hamiltonian are in agreement. They
will also give a more detailed picture of the spectrum
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and eigenfunctions than can be deduced from invariance
arguments alone.

We have seen that the effective Hamiltonian can be
written in the form $(k., k,+ Bx, “k.”). For purposes
of solving the equation of motion we can now forget
about k., immediately. We also wish to get rid of %,.
This can be done by making the transformation
e~ thvka/B which replaces the above Hamiltonian with
H(k.,Bx). This is generally permissible, but not when
K. is finite, for in that case the wave function must be
periodic in %,. When %, is removed from the Hamil-
tonian, we require that this boundary condition be
replaced with one, that the wave function change by
the factor e~*vX+/B when k, is increased by K,.

Thus, we have replaced a set of different Hamil-
tonians with a set of different boundary conditions.
When K, is infinite no such action is required. The
effect is that in either case we consider all the energy
levels of H'(k.,B.) not merely those corresponding to
eigenfunction periodic in k.

We now have a Hamiltonian H(k,,Bx), which is
defined over a plane or set of planes, and which may
be periodic in one or both arguments. Since the Hamil-
tonian is not simple, but involves only one pair of
conjugate variables, the WKB procedure is indicated as
a method of solution.

It is well known that the straightforward application
of the WKB method leads to the familiar semiclassical
quantization rules for the energy levels, and thus to
the de Haas-van Alphen and related effects. It is also
well known that some orbits called open extend indefi-
nitely in & space and that the spectrum is continuous
in the region of these orbits. It has been pointed out
by Zil’berman and others® that the quantized levels
are in fact subject to a slight broadening, while Kohn?
has found that there are gaps in the open orbit region.
Finally, it has recently been noted by Cohen and
Falicov* that in strong fields the energy levels and
wave functions can change in a qualitative way. These
subjects are closely related and a unified discussion is
desirable and appropriate at this point, because they
are also closely related to the problem of the effective
Hamiltonian.

We start with our two-dimensional Hamiltonian
O(%,Bx) which we rewrite as 9(p,q) where ¢g=F and
p=Bx and p,q satisfy the commutation relation
[#,g]=1B.

In applying the WKB method, we suppose in effect
that we have a relief map of energy as a function of p
and ¢g. We then make a two-dimensional plot of the
contours for a particular energy E. The contour will
consist in general of a number of curves which we

shall call orbits, some closed, some open, that is infinite

13 G. E. Zil'berman, Soviet Phys. (JETP), 3 (30), 835 (1957);
5 (32), 208 (1957); 6 (33), 299 (1958). P. G. Harper, Proc. Phys.
Soc. (London) A68, 874, 879 (1955); A. D. Brailsford, ibid. A70,
275 (1957).
(1;1631/1)' H. Cohen and L. M. Falicov, Phys. Rev. Letters 7, 231
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in extent. For the moment, we consider only closed
orbits. If any orbit encloses an area of (n+%)B where
7 is an integer it corresponds to an eigenfunction. By
going through this procedure for all energies, we obtain
the quasi-classical energy levels. The procedure is only
approximate, of course. The Hamiltonian has off-
diagonal matrix elements; there are also overlap
integrals since the wave functions are not exactly
orthogonal. If we consider two neighboring orbits with
w’s differing by &x, then as B— 0, the overlap and
off-diagonal Hamiltonian matrix elements between
them decrease as B? in the usual WKB approximation;
by proceeding to the indicated higher approximations,
they can be made to decrease more rapidly than any
given power of B. For orbits differing by a given energy
¢, or for orbits about different centers, on the other
hand, these matrix elements fall off as e~¢/B, where ¢
depends on the contours, but not on B. Its nature is
discussed in Appendix B. This cannot be significantly
improved by going to higher approximations in the
WKB procedure.

On the other hand, the situation we have described
is very similar to one encountered in certain idealized
problems in solid-state physics, which are discussed by
the tight-binding approximation. We have a number of
approximate wave functions on different centers, which
overlap very slightly, the matrix elements connecting
them being small compared to the energy splittings
between states on a given center. Two situations must
be distinguished. In the first, the field is in an irrational
direction and there is no periodicity. Neighboring
orbits will have different energies in the WKB approxi-
mation and the spectrum is a continuum in that
approximation. Then each level will be slightly shifted
by interaction with its neighbors, somewhat as a
nuclear spin may be thought of as having a slightly
different local field from that of its neighbors. Since
the spectrum is already continuous, no change in this
characteristic will occur. When the field is in a rational
direction, the WKB approximation will make orbits
displaced from one another by a reciprocal lattice
vector degenerate and although the over-all spectrum
is continuous, the spectrum for a given %, is discrete.
In this case, discussed by Zil’berman, Harper, and
Brailsford® interaction between neighboring orbits will
produce a broadening into a band just as in the tight-
binding treatment of bands. The width of the band
will essentially be determined by the matrix element
between neighboring orbits. In complex cases where
not all the orbitals are identical, the band structure will
also be more complicated, but can easily be determined
in any given case. The physics of this broadening can
be described as follows. The WKB levels do not take
account of the atomic structure, but levels correspond-
ing to different values of %k, have their centers at
different positions relative to the unit cell (this point
is meaningful only when the field is perpendicular to at
least one reciprocal lattice vector), and thus have
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different energies. An additional broadening arises
because levels whose &,’s differ by K, have finite matrix
elements, even though they are far apart. There will
then be an interaction between them, and they will be
somewhat mixed. These two sources of broadening are
not actually different and appear so only in a given
gauge. If the opposite gauge is chosen, the two types of
broadening are interchanged. Our analysis in particular
makes clear that at small field the bands are sharply
defined with regions densely filled with states, alter-
nating with energy gaps. The width of the levels is
evidently of the order of ¢=¢/3, like the interorbit
matrix elements.

We now turn to the case of open orbits. These are
of two types: (1) Periodic open orbits which have
periodic orbits in k space; these can occur only for field
orientations such that the BZ in the plane is finite or a
strip. (2) Nonperiodic open orbits, which can occur for
irrational field directions. The latter are in no sense
quantized. The former, with a proper choice of gauge,
have k, as a good quantum number ; periodic boundary
conditions on %, result in a discrete spectrum for fixed
ky, though in the WKB approximation there is a
continuous spectrum when all &,’s are considered.!s As
in the case of closed orbits, the open orbits will have
matrix elements with each other, and with any closed
orbits which may coexist with them, which decrease
like ¢~¢/B, For the nonperiodic orbits, this results in
shifts but does not change the character of the spec-
trum. For the periodic orbits on the other hand, the
interactions introduce gaps in the spectrum.? This can
be seen easily as follows. Just as we pictured the closed
orbits as analogous to tightly bound electrons, we can
imagine the open orbits to be analogous to nearly free
electrons. Their orbits in (p,q) space are essentially
identical to the orbits in phase space of nearly-free
electrons in a weak one-dimensional periodic potential.
The open orbits can be considered to belong to groups.
These groups are separated by regions of closed orbits,
and alternate groups represent electrons whose net
velocities have opposite directions. We may suppose
that the interactions between orbits within a group
have been diagonalized to any desired degree and
consider only interactions between orbits in different
groups. So far there will be no energy gaps. But matrix
elements will exist only between orbits for which %,
differs by BR,. They are so small that we need only
consider the interaction of orbits of practically the
same energy. Two such orbits will now be split in
energy by the amount of the matrix element between
them. Thus just as in the one-dimensional nearly-free
electron case, the energy levels will be practically
unaffected, except for those orbits which have matrix
elements with degenerate levels. At these points gaps
will be introduced into the spectrum. For this purpose
only neighboring groups of orbits need be considered.

15 E, 1. Blount, Phys. Rev. Letters 4, 114 (1960).
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So far we have seen that for closed orbits the energy
levels are broadened by an amount which decreases
exponentially in 1/H, and that similar gaps are opened
in the open orbit spectrum for fixed k.. Actually of
course, when %, is taken into account—or the infinite
extent of the BZ in the plane when there is no k,—the
over-all spectrum is continuous. Finally, we must
consider what happens in the transition region between
closed and open orbits. This corresponds to the region
which neither the tight-binding nor nearly-free electron
approximations are very good, and requires more careful
analysis. This can be done by an extension of the WKB
method to cover the case where the energy is nearly
equal to the height of a barrier. The necessary con-
nection formulas can be found in Landau and Lifshitz.1¢
Essentially this method has been used by Kohn, who
found that there is a symmetry between energies above
and below the barrier height, such that if an energy e
measured from the barrier height is permitted, the
energy — e is forbidden and conversely. This applies to
periodic open orbits and the corresponding closed
orbits, and is strictly true only for energies so close to
the saddle point that the classical period is proportional
to In|e|. It also considers interaction between only
two adjacent groups of open orbits and the closed
orbits between them. (The derivation of this result has
not been published by Kohn, and the author is indebted
to him for a discussion of it.) For low fields, the regions
of validity of this approximation and our tight-binding
and nearly-free-electron procedures overlap and they
give equivalent results.

Since the broadening is, at low fields, negligible
compared to the Landau splittings, it can for most
purposes be neglected and the orbits treated as isolated.
It is then much easier to map them back into a compact
Brillouin zone and reintroduce k., for purposes of
calculating densities of states. Only for open or very
extended orbits is the mapping into a plane or flat zone
necessary or useful in this approximation.

The final topic of this section is magnetic breakdown,
which also represents the breakdown of the effective
diagonal-in-bands Hamiltonian. For this discussion we
revert to the Hamiltonian of (1.24) which includes
interband matrix elements of order B, and consider
the case where orbits of nearly the same energy in
different bands also approach very closely in k space.
To first order the Hamiltonian is

OE)—3{BXv-X}—B-M,

where we have absorbed the diagonal first-order terms
of (1.24) into the zero-order term. The last two terms
give rise to matrix elements between two orbits. We
now choose directions so that the line of closest ap-
proach between the orbits is in the y direction and set
ky=0 as before. Then the normalized WKB wave

(I11.1)

L. Landau and E. Lifshitz, Quantum Mechanics—Non-
relativistic Theory (Addison-Wesley Publishing Company, Read-
ing, Massachusetts, 1959).
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function for one of the orbits will be

¢1(k)=<m11vyl)% exp[g— A kkl(k)dk], " (II1.2)

where % stands for k,, R for R, a function of k, for a
given orbit, m; is the effective mass of the orbit,
mi= $dk/v1,, and v,1 the y component of velocity.

The matrix element between two such orbits in
different bands is then

B / 3 (v to2)X—M

(1,02,)

7 k
Xexp[;/ (Rl—Rz)dk/jldk, (I11.3)

0

where X is the x component of X;; and M is the z
component of My,. It is shown in Appendix B that if
the orbits do not overlap Q1, decreases at small field as
¢~¢'/B. Here we consider the important special case of
two bands, which are nearly degenerate. In fact we
further suppose that they can be obtained from two
bands which “cross” each other, by the addition of a
small perturbation A. To a sufficient approximation,
the Hamiltonian then looks like this in the unperturbed

representation:
(k Vi A >
A k Vo ’
with eigenvalues
Ei=%k' (V1+V2):i:{A2+%[k' (Vl—Vz):P} 5 (IIIS)

Then for any field direction not in the direction of
vi—Vy the orbits are hyperbolas and the bands have
equal values of »,. Furthermore the X term in the
Hamiltonian is much larger than the M term. Thus
for values of R near the turning point, our Hamiltonian
becomes

(IIL.4)

H(k)—FR—F.X, (IIL.6)

where F = Buv,. This is identical in form to the Hamil-
tonian which produces Zener breakdown in insulators.
Thus magnetic breakdown is essentially Zener break-
down, where the electric force is supplanted by the
Lorentzforce. We can then obtain a good approximation
for the asymptotic behavior at low field by substituting
in the formula for Zener breakdown as given by Kane";
the important factor is the transmission amplitude
which we write

a=eXp<_ ZF,I;[A)I([)

We further have X=v,/2A in our simple model,
where |v,| is |[3(vi—v2)XB/|B|]| and Fz= By, so

(=S 57m)
a=exp| — — .
2 B|v.v,|

(II1.7)

(TIL8)

17 E. O. Kane, J. Phys. Chem. Solids 12, 181 (1960).
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This result is obtained by approaching from low
fields. Alternatively, we may approach from high fields
and consider the effect of A on the orbits which are
present when it is zero. We can indeed calculate the
matrix elements for any perturbation A, (k’,k") if we
show how to do it for the case when k', k" differ by .
We then write An, (K k")=A,. (k) where k= (k'
+k'’)/2. We also choose our gauge so that the x
direction is parallel to k’—k"’=x«. Then between two
wave functions f1(g) and f2(g), the matrix element will
be

Q12= /flm(q_%K)Ann’ (Q)an’ (q+%’c)dq (III9)

If we suppose that the orbits for A=0 belong to a
particular band we have n=#' and drop the index.
Now assuming that A(g) is slowly varying, we use
WKB wave functions and the saddle point method to
find that the matrix element consists of a contribution
from each intersection of the orbits, with the orbit 2
displaced by «. The absolute value of each contribution
is
wABY/ [m*| 5 (vig0ey—v1y022) | 1],  (1TL.10)

where m* is the geometric mean of the cyclotron masses
of the orbits and the v’s are evaluated at the points of
intersection. (This formula breaks down, of course, if
one of the velocities gets very small.) This quantity in
particular is quite insensitive to whether 1 and 2 are
the same orbit. Provided 2 is a neighboring concentric
orbit, the matrix element is nearly constant and m* is
simply the cyclotron mass of either. The ratio of this
expression and the separation between neighboring
levels is then

w30 /[2 B (v1202y— v20015) JE (I11.11)

In our previous model, then this is just the square root
of twice the exponent in (II1.7). This corresponds to
choosing « to be a reciprocal lattice vector in the final
structure.

The significance of the parameter we have found is
more easily understood when we note that the matrix
elements we have evaluated have had the form B/m*
multiplied by a function of the parameter, where B/m*
is the geometric mean of the frequencies of the two
orbits involved. Now for degenerate orbits, the matrix
element is the frequency of transfer from one orbit to
the other in the simple-minded resonance picture,
provided it is small compared to either orbit frequency.
Thus, when we divide by either frequency, we obtain
a sort of switching coefficient, the probability that the
electron will jump from one orbit to the other on a
given passage through the intersection or point of
closest approach. When we divide, instead, by the
geometric mean of the frequencies, we obtain a mean
switching coefficient. Thus, in the low-field limit the
switching coefficient between bands is given by (II1.7),
while in the high-field limit, the switching coefficient
between “unperturbed” orbits is given by (II1.11).
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We have derived the latter as applying between two
“oscillator” levels of the same k,, k.. The same value
would have been obtained had we considered the
periodic potential to vary in the y direction and calcu-
lated the matrix element between equal oscillators at
values of %, differing by «. This latter quantity is more
closely related to the orbit picture as drawn in phase-
space. It was the observation by Priestley of an orbit
corresponding to the free-electron orbits in Mg that
led Cohen and Falicov to postulate breakdown. These
authors used the parameter A/%w, as a criterion. We
now see that the correct parameter is much more
favorable to breakdown. For some cases we can give a
simpler form of our parameter. When the ‘“unperturbed”
orbit has an energy that can be written E=m%?/2,
and v, and v, are comparable, we have

O~ /hwe~A/ (Ehw.)?,

where in experimentally attainable cases, £ will usually
be the Fermi energy which is much larger than %w..
Our derivation shows that this weakening applies not
only to the case of breakdown, but to any interaction
with long wavelength perturbations such as acoustical
or optical vibrations.

From the emphasis we have put on magnetic break-
down it should not be inferred that this is the only
case where the perturbation theory of (F) and Sec. I
breaks down, though it is very likely unique in being a
qualitative effect. Whenever 3{BXv)-X,,/} or B-m is
comparable to E,—E,, care must be exercised. In
such cases it will probably frequently be possible to
devise methods better suited than that used here.

IV. SUMMARY

In this paper we have presented what we feel is a
simple, even intuitive approach to the establishment
of an effective one-band Hamiltonian for a Bloch
electron in a magnetic field. Some of our manipulations
are complicated, but we would emphasize that this
complication arises only in an effort to simplify the
actual expressions for the second-order terms. The
actual proof that interband matrix elements can be
removed to arbitrary order leaving a Hamiltonian
() is completed in the paragraph following (1.10).
Of previous attempts to accomplish this objective,
we single out two for particular discussion. Zil’berman'®
has used a procedure equivalent to our zeroth-order
transformation and showed that in the cases he con-
sidered, inversion symmetry and no spin-orbit coupling,
the correction terms are of second order. Kohn! has
used series of transformations in powers of f and
rearranged them to a series in powers of B to remove
interband terms formally to all orders. There is a close
relation between his method and ours. The simplifi-
cation in our method arises from connecting the series
in ¥ to one in B in the general formalism of (F), namely
in the derivation of our basic multiplication rule. This
has also made possible the systematic discussion of the
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validity of the rearrangement of the series, and in
particular has made it possible to demonstrate the
asymptotic character of its “convergence.” This is of
some importance both positively and negatively. For
on the one hand, Zil’berman showed that for a particular
model the eigenstates are broadened exponentially in
—1/B, while working with a Hamiltonian accurate
only to order B at best, whereas we have now established
that the effective Hamiltonian can also be given with
a similar asymptotic behavior. Also, the de Haas-van
Alphen effect is associated with nonanalytic behavior
at small B. On the other hand, if Kohn’s procedure
actually converged, the phenomenon of breakdown
would be seriously modified, if not eliminated.

The difficulty in trying to treat the magnetic problem
previously has been that one would like to “get one’s
hands” on both k and R simultaneously, because one
has intuitively felt that the basis functions should be
chosen differently at different positions in the lattice.
With the usual techniques this has been difficult to do,
whereas this is just the great merit of the PCR. The
bands are defined as functions of k and R from the
start, and our transformations are essentially a pertur-
bation-theoretic approach to the diagonalization of the
Hamiltonian for each point in “phase space.” The
noncommutativity leads to some specifically quantum-
mechanical effects because one cannot completely
localize in both k and R, but basically one is “locally”
diagonalizing the bands. We personally find it con-
venient to work with objects for which k and R can
both be treated as ¢ numbers, but this point is not
essential and they can be thought of exclusively as
operators if preferred.

Note added in proof. Recently, Roth [J. Phys. Chem.
Solids (to be published)] and Wannier and Fredkin
[Phys. Rev. 125, 1910 (1962)] have written papers on
the subject of Sec. I, which also greatly simplify the
proof. Basically, both of these methods amount to the
same thing as ours, though approached from quite
different points of view; in both cases the method is
applicable only to the present problem, rather than
being a special case of a more general formalism.

The expression for the susceptibility in Sec. II is so
far as we know, the first one given which is valid for
electrons with spin-orbit coupling. It has also been
possible to put the expression in what seems to be the
most concise form yet given. We have also used simple
one-band parameters whenever possible to facilitate
comparison with experiments. It will also be noted that
the PCR permits a relatively simple derivation of the
Landau-Peierls formula.

Essentially equivalent formulas for the susceptibility
have been given by Adams,'® Hebbornand Sondheimer,?
and Enz.20

18 E. N. Adams, Phys. Rev. 89, 633 (1953).

1 J. E. Hebborn and E. H. Sondheimer, J. Phys. Chem. Solids
13, 105 (1960).

2 C. P. Enz, Helv. Phys. Acta 33, 89 (1960).
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APPENDIX A

In order to discuss the convergence of the multipli-
cation rule (I.15), we start with a result of reference 3.
Suppose we have a product P=NM where N and M
can be considered as belonging to families of functions
N(&R;)\) or N(k; q;\) where \ is some parameter.
Then consider the integrals

kc(M)—e
Il=/ [N (k; 2q;0\) | |g| "d?q,
0
(A1)

7

Iz=/ [N (k; q;\)|d?g,
BZ

when the prime on the integral in I, means that the
region of integration of Iy is to be excluded. This
region, in turn, is to be interpreted as one which extends
to within some finite distance € of the range of conver-
gence k(M) of the power series expansion of M as a
function of k (sic). If both I; and I, are O(\») for all
n at small A, and the same is true of analogous integrals
of M the series expansion of the product is asymptoti-
cally convergent in N. In particular, if N(k;q;)\)
~eclal* where e is a positive number, and M is
similar, the series is asymptotic. We are concerned with
establishing such inequalities for the S(k;q) corre-
sponding to S(k,R) =S (k4 4, k) since (1) they are the
only nonpolynomial functions of k and R used in the
first steps of our derivations, and (2) each later step in
the perturbation theory involves beside polynomials
such as Ho(f) and V(¥), only a finite number of S’s
and derivatives thereof.
From S(k,R)=S(k+A4, k) we obtain

Sk; @) =2 S(k+A4;, k)e®i-a, (A2)
R

while S(k+4;, k) can be expressed as

Sk, )= / S(k; Q) exp(iQ-4)PQ, (A3)
where

s(k; Q)= / SO+, K exp(—iQ-Dd,  (A4)

the last two integrals being carried out over all space
and all k space, respectively. These equations yield

Stk =% f 30 $(k; Q) expli(Q- Art-q-R)T. (AS)

Now for a linear vector potential we can write

where G will be called the gauge tensor. We further
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define T(Q)=Q-G and write

S(k;q)=§ / @*Q 8(k; Q) exp[i(q+T(Q))-R:] (A7)

-% / s(k; Qs+ K+TQ)P0.  (A9)

If T(Q)=q+K had a unique solution, this would take
a simple form. In fact, however, the tensor G may be
and almost always is a singular matrix, with one or
two zero eigenvalues. In such cases the solutions Q of
this equation fill a one- or two-dimensional manifold,
respectively. Before discussing these complications
however, we want to know what $(k; Q) is.
Starting from its definition we have

S (I3 Q) = / 1S (k1 K) exp(—il-Q)

- / ol / 07 U it exp(—i1-Q),  (A9)

where the spatial integration extends over one unit
cell. This can now be rewritten as

Snnr (k; Q)

=/d3l/dT ‘I’n,k+l*‘1’n’k exp[z] (X—Q)] (AIO)

_ / & / o / PF o ¥ exp[il- (x—Q)], (Al1)

where the space integral is now over all space, as is the
integral over I, while k’ is integrated over one BZ.
This last integral is now performed, yielding

Sun(k; Q)= / a3 f &% 0,V exp[il- (x—Q)], (A12)

where a@,(x) is the Wannier function for the #th band.
Finally, we obtain

San (I Q) =a,*(Q) ¥ (Q). (A13)

We now have the basis for asymptotic convergence.
For, as shown in reference 3, ¢,(Q) for a band which
has no degeneracies with other bands, falls off expo-
nentially in Q. Since G is linear in |B| we can write its
inverse as |B|~'g~%, for nonsingular gauges (that is,
those with nonsingular gauge tensor). Then for this
case, we have

S(k; q)
=X« 8(k; | B¢ (q+K))
=k a.*(|B| g (q+K))¥.i(| B| g7 (q+K))
<Y kla.(|B|7g2 (a+K))[). (A14)
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Each term in this sum decreases exponentially in | B|L
At small B, the sum will be dominated by its largest
term, and it is clear that |B| plays the role of X\ and
that the conditions.of Iy and I, are satisfied. If we
now consider singular. gauges, there are no serious
differences.

If however, we consider bands with degeneracies,
there are serious difficulties because for them the

- Wannier functions will not fall off rapidly enough.? At

this point the singular gauges play an important role,
for with them we can demonstrate the asymptotic
convergence.

To see how this comes about, we substitute (A10)
in (AS), obtaining

Sk; @)= | d7 ¥y ¥ nrx
R
Xexp[i(q-Ri+4;-x)]. (A15)

As in the passage from (A10) to (Al11), we now intro-
duce k" and extend the spatial integration over all space.

S(k; q)=[8(0)]3 % /d%c/dlk’

X,k expli(q- Ri4-4;-x)].  (A16)
In this equation, however, k' need not extend over a
whole BZ, but only over points k4m where m is the
general vector of the form m=G-r for all r or equiva-
lently we simply integrate m over a fundamental region
in extended % space. The factor [5(0)]*3 is required
to assure that

S (k+0, k)=[S(k; qQ)d*q=1.

To clarify this point, a digression is necessary. In a
singular gauge, the vector potential cannot take on any
value but is restricted to a line or plane in extended k
space. In the case of a plane, when the points outside
a BZ are mapped into it, they may lie on a family of
discrete planes, if the direction perpendicular to the
plane is parallel to any lattice vector (not reciprocal
lattice vector). Otherwise, the points will be dense in
the BZ. In the case of a line, three alternatives are
possible; the points may lie on a discrete family of lines
(this requires that the line be parallel to a reciprocal
lattice vector), may be dense on a discrete family of
planes (this requires that the line lie in a plane deter-
mined by two reciprocal lattice vectors), or may be
dense in the BZ.

In the case of planes, the first possibility corresponds
to a finite fundamental region, which is adopted because
all points on the plane outside it are equivalent to a
point inside. This means that the fundamental region
is a section of a special BZ chosen to have faces parallel
to the plane. The second possibility corresponds to the
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fundamental region being the whole plane. Likewise in
the case of lines, the first possibility corresponds to a
finite fundamental region, the second and third possi-
bilities to the fundamental region being the whole line.

If the line or plane of m maps into discrete lines or
planes in the BZ, we can easily see that there is a
possibility of improving convergence. For if for given
k we can choose the gauge so that the line or plane
passing through k does not pass through a degeneracy,
then the arguments used in (F) to prove the exponential
fall-off of Wannier functions will work for these func-
tions of the form

a,(r; k,G)=/d’m W, tepm (1), (A17)

These functions behave like Wannier functions in the
direction corresponding to the manifold of m (which
depends on G) and like Bloch functions perpendicular
to it. This failure to fall off in the perpendicular direc-
tions does not hurt us, as the integral over that compo-
nent of x simply kills the offensive §(0)’s.

The trouble with this procedure is that it is not
generally applicable. To be sure, we can for any
direction of magnetic field require the vector potential
to lie in any desired plane, but it is not always possible
to choose a plane which will avoid all degeneracies,
still less to find a family of planes nearly all of which
will avoid degeneracies. On the other hand, if we could
confine a to a line, nearly all of the resulting family of
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lines would avoid degeneracies unless there were a
plane of degeneracies, for which special measures are
available. However, one cannot freely choose the line
on which a must lie, for it is required to be perpendicular
to the field direction. If as is true except for a set of
field directions of measure zero, the ratios of the field
components along crystal axes are irrational, there is
no reciprocal lattice vector perpendicular to the field.
Thus, if we wished to utilize the advantages of a doubly
singular gauge, we would have points distributed
densely in a BZ and thus passing through or arbitrarily
close to degeneracies.

Fortunately, however, the doubly singular gauges
have an additional advantage which offsets these
difficulties. Namely, it permits us to use a one-dimen-
sional integration, albeit over an infinite domain. Thus
we have in effect a one-dimensional band structure
over this domain. In reference 3 it is shown that in a
one-dimensional band structure the Bloch functions
are analytic functions of % even in the neighborhood
of degeneracies on the real axis, though not in the
neighborhood of those in the complex %k space. The
bands can be so labeled that this is true in our problem
also. Thus the integration over m passes through no
singularities. On the other hand it passes arbitrarily
close to branch points, since the branch surfaces come
right up to the real axis near degeneracies in real %
space.? Thus, we cannot expect an exponential fall-off
but we expect one which is faster than any power of .

At this point we return to (A16) and rewrite it as

Snnr (k; @)=[6(0)]2 RZ @x a,(x; G)¥ i (x) expli(q- Ri+T(x)-Ri)]

=[6(0)]? % /d%c @, (x; G)¥ i (x)0(q+ K+ T (x)).

(A18)

It will now be easier if we choose a set of axes and a gauge. We pick B in the 2 direction and a in the y direction
depending only on x. The crystal axes now have no particular relation to %, v, 2. We have also specialized to the
case of an irrational field orientation, so that there is no k dependence of a. Then

- ) g-+K.
Sun (3 =[O T £ / dxds an(x, B

¢:+K,
) %5 G)\I/n/,k<x, 5 2)5 (g,+K,)é(q-+K.).

(A19)

Consider now one term of this sum. By the Schwarz inequality we have

[ S (k; q; K) 2=

<[8(0)1? / dxdz

Qx+K:c q:c"l_Kz
[6(0)T? | dwdz ax x,T,z;G Vil 2, > .3

( ¢=+Kz
an\ %, )
B

2

2
dxds.

T /

( ¢ 1+K, )
Un'x| X, ) %
B

z;G)

(A20)

For irrational orientations the second integral is independent of (¢.4-K.)/B and simply cancels [§(0)]2 We
now require the explicit form of a more general pseudo-Wannier function

an(x,y,z; G; Y):f dr ‘I’,.kre"ik’Y,
—o0

(A21)
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where ¥ is a continuous variable. These functions are orthogonal for different values of ¥. Furthermore, consider

the integral

Ply; 1)=[6(0)T f |an (9,53 G; V) dids

= [6 (0)3_2/dkdk16i(k"“k)(v—y)( /‘unk* (x)y)z)unk’ (x:y,z)dxdz)'

As in (A20), the integral over x and z is independent of
v and cancels [6(0)]2 so that P(y;¥) depends only
on (y—7Y), and P(y) is simply the Fourier transform of

Snn(Ky):/Snn(ky+Ky, ky)dky. (AZS)

Since our one-dimensional bands are analytic for real ,
this is an analytic function of «, for all real «,, which,
however, cannot be continued into the complex plane,
because branch points are arbitrarily close to the real
axis. This P(y) falls off more rapidly than y~* for any
n at large y, but more slowly than ¢ '*! for any .
(Of course, if the band has no degeneracies, the branch
surfaces are not close to the real axis and the fall-off
is exponential.) This is sufficient to show that S (k; q; K)
and S(k; q) vanish faster than |g/B|~™ and that the
integrals I and I, with S substituted for » satisfy the
conditions for an asymptotic expansion. Thus the
multiplication rules are asymptotically convergent at
small B for all products used in this paper and for all &
and R, provided we have chosen a doubly singular
gauge. This is true even for points of degeneracy.

/ QS (k; Qe 9 RPg=>" /d3Q/ @q ¢'8(k; Q) exp[i(Q-A+q- (Ri—R))]
BZ Ri BZ

-y [ #0 f Pq $(k; QT (Q)-+K+q)g'e 0™,
K

The true derivative would be given by
$LS

These expressions differ by the presence of K in the
term with K#0. Since all such terms get small very
rapidly, however, the error is less than any power of B,
and thus quite acceptable to us.

APPENDIX B

In this Appendix, we are concerned with the matrix
elements between states represented by single orbits in
the (p,9) plane. It is convenient to work in the PCR
which also yields an intuitive appreciation of what is
going on. We define the object

Pnn’(q7q’) =\bn(q)¢n’*(q,)a (Bl)

e / #0[T(Q)T exp(GT-R)S(k; Q)= / g 5(k; Q)p(T(Q)+ K+ @)= g+ K)-
k! K

(A22)

Although our proof has used a special gauge, it is
clear that after obtaining the expansion in that gauge
one can make the transformation

U(R)=ex®), (A24)
which will change the vector potential by Vx for
arbitrary x. Thus the product expansion will be valid for
any gauge; presumably a guage-invariant proof exists.
However, we have not seen it and do not consider it
necessary to look further.

Our proof for degenerate bands has assumed an
irrational field orientation, since any other has zero
probability. The proof is no more difficult for rational
orientations, but we leave it to the interested reader.

Finally, we should note that our differentiation of
S(k,R) with respect to R has been somewhat cavalier
for we have differentiated S(¥) with respect to ¥ and
then f with respect to R, thus treating S(¥) as a con-
tinuous function of f. In fact, however, in reference 3
it was shown that the fact that S is defined only on
lattice points is vital in giving it an infinite radius of
convergence. In fact, we should use instead of 'S/ dR?,

(A25)

(A26)

(A27)

and transform it into a PCR operator Pn.(p,9) as in
Sec. III of (F). The matrix element O, of an operator
O is simply Tr{P.,0O} and it is easily shown that

Ofm’=//dpdq Pnn’(qu)O(Paq)’ (BZ)

a result obtained by Moyal® for the continuum case.
Since most O of interest are slowly varying functions
of p and ¢, one is encouraged to attempt the integration
by the method of steepest descents, since P, may be

2 J, E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).
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expected to vary rapidly with p and ¢ at small B. Thus
in the WKB approximation a wave function for an
orbit » is written

‘/’n(Q):

eisna(q)/B
z—
mn*% @ [vna(q)]%

where Sna=J/ Pra(9)dq, pua is a branch of the function
#(¢) defined by H(p,g)=E.,, and m,* is given by

dgq
L / el
@ Una

where the sum is taken over all real branches and the
integral is limited to the values of ¢ for which p, is
real. This can be converted to

m,ﬁ:f dg ,
.(q)

(B3)

(B4)

(BS)
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v is dH/dp. Equation (B3) as it stands, is valid only
for values of ¢ such that all p.(¢) are real. When some
are complex, more care is required in order to assure
that the wave function can be said to belong to only
one orbit, but Eq. (B3) will give valid results for our
purposes. We then obtain for Py, (,q)

Pt )= [ar

XeXPE(i/B)(SM(Q“I-%f)—Sn's(q—%r)—ﬁf)]

(vnavn'ﬂ)%

(B6)

We will restrict ourselves to pairs of orbits such that a
straight line can be drawn between them, and we choose
our axes so that p is perpendicular to such a line. The
integral over 7 can be performed by steepest descents,
yielding

exp[ (i/B)(Sna(g+37)—Sns(qg—37)—pr)]

Prw(p0)=v/1 2

o (Unatn8) (| e’ — purs’ )}

where 7,g satisfies the equation.

Pralgt37)+puws(qg—37)—2p=0. (B8)

In an integral involving P,,  the integration over p can
also be performed by steepest descents and the major
contribution will come from the region where

Tag= 0,
and is given by

7 expL(5/B)(Sna(q)—Sns(q))]

Pnn'( )== Z
g 2 a8 ('I)na'l)n/ﬁ)%

(B9)

In this form it is clear that only the two branches of
each orbit which are closest to each other will be
important; for the exponential factor in the contri-
butions from other pairs of branches will be much more
rapidly varying and will give negligible integrals over
g at small B.

Finally the main contribution of (B9) on integrating
g can be made to come, on deforming the contour, from
the point ¢go where

Pro(go) = Pup(qo).

We distinguish two cases.

(1) Orbits # and #’ are in the same band. Then
(B10) can be satisfied only if they have the same
energy. In this case, the important factor is

eXP[@/B) (Sn (90) _'“Sn’ (90))]

If the orbits have different energies but are kept
within a few level splittings of each other as B— 0,

(B10)

(B11)

» (B7)

r=rap(p,q)

the error in using this factor is small. If their energy
difference is large compared to level splittings, more
detailed treatment is required, but the matrix elements
will then be small compared to the energy difference,
so that such matrix elements will act only as small
perturbations, shifting levels, but not capable of
producing banding.

If the orbits have essentially the same energy the
factor exp[ (2/B) (S (go) —Sx(¢o))] has a simple geomet-
rical interpretation, for

0
Salg)= / »da,

where @ is some point on orbit #. S,(go)—Sn(qo) is
then /g?pdq, where b is a point on #/, and the path is a
surface of constant energy. If we choose the path in
imaginary ¢ space, the integral is the area of the
projection of the path on the real p—imaginary ¢ plane.
The imaginary part which determines the exponential
fall-off of Ona is invariant to our choice of end points
on the orbits, but can be most easily visualized if we
choose the points with the shortest distance between
them.

It should be noted the main contribution to the
Hamiltonian matrix elements will be H (po,g0) = EX the
integral of (B9) which is just the overlap integral
between the two orbits. Additional terms will be of
order B smaller. Thus the principal effect of the matrix
element is removed by orthogonalizing the orbitals
without changing their energy.

(2) If the orbits are in different bands it should
usually be possible to find solutions of (B10) even if
their energies are different. In this case then, the
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saddle point method is immediately applicable, and if
the energies are nearly equal gives the same result
(B11), with the same interpretation. In the special
case considered in Sec. ITI, it gives the same exponential
factor as was found there. For the M term in (II1.3)
this analysis is sufficient. The X term is somewhat more
complicated, however, because X has the energy
difference between the bands in its denominator, and
the integral thus has a pole where the band energies
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are equal namely at ¢o. This complicates the evaluation
procedure, but only modifies the factor by which (B11)
is multiplied. The actual evaluation for our model
(IIL.4) is identical to that of Kane for Zener breakdown.
If the orbit energies are unequal, the orbits may even
overlap so that the integrals become larger, but this
has no serious effects, because the energy difference
required is so much greater than the matrix element
that the orbits cannot be appreciably mixed.



