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From the de Boer model of the F center, one can calculate a
spin Hamiltonian to describe the hyperfine interaction of the
F-center electron with an arbitrary nucleus in the lattice. This
Hamiltonian was discussed in the preceding paper. In this paper
we shall use this Hamiltonian to construct a spin Hamiltonian
describing the hyperfine interaction of the F electron with all
nuclei in the lattice in the presence of a constant and uniform
magnetic Geld. From this we shall deduce the electron-nuclear
double resonance spectrum for the F electron. The negative-ion
vacancy (in a cubic lattice) is an inversion center, and the mag-
netic field is a pseudovector. Consequently, nuclei at sites which
are mapped into each other by an inversion in the vacancy are
physically equivalent. If this fact is accounted for, then the entire

electron-nuclear double resonance spectrum may be viewed as a
set of spectra, each one of which is associated with the interaction
of the F electron with a particular pair of physically equivalent
nuclei. This contrasts with the present theory which assumes that
the F electron interacts with individual nuclei. The new theory
leads to a marked improvement in the agreement between the
ca/culated and observed spectra. An even more interesting result
is that the calculated spectrum is now sensitive to the relative
sign of the nuclear g factor and the electric quadrupole coupling
constant. Thus the experimental data can be used to determine
not only the magnitude but also the sign of the electric field
gradient at lattice sites close to the F center.

I. INTRODUCTION our technique applies also to these special cases. The
algebraic computations involved in these cases are,
however, excessive. In practice the orientation of the
uniform magnetic field is varied over all distinct
orientations in a given crystal plane. Hence, for a
given run only a few special orientations will occur for
which an analysis considering only pairs of equivalent
nuclei is invalid. The eGort in analyzing also these
special cases is not warranted since no additional
physical insight is to be obtained from the analysis of
the experimental data involved. We, therefore, shall
restrict ourselves to the discussion of the general case
involving only pairs of equivalent nuclei.

The most interesting feature of the new eftective
Hamiltonian is that it predicts the "ENDOR" spectrum
to depend not only on the absolute magnitude of the
electric quadrupole coupling constant but also on
the sign of the product of this constant and of the
nuclear g factor for the given pair of equivalent nuclei.
This implies that the sign of the electric Geld gradient
at lattice sites close to an F center can be determined
from the "ENDOR" data. This result was invoked in
the preceding paper during the discussion of the
contribution of the lattice polarization to the electric
Geld gradient at lattice sites close to an F center. ' This
feature is a direct consequence of the fact that we
include in the treatment of the hyperfine interaction
of the F electron with the nuclei terms of the second
order in the electronic spin operator. This observation
follows from the simpliGed analysis of the hyperfine
interaction of the F electron with a single nucleus.
Such an analysis is presented in Appendix A.

We shall now outline the derivation of the effective
Hamiltonian from the complete spin Hamiltonian.

In the presence of a static and uniform magnetic
fie1d Hp the spin Hamiltonian describing the interaction

HE Grst investigation of the P centers in alkali
halides by means of the electron-nuclear double

resonance (ENDOR) technique was made by Feher. '
Feher interpreted his results by means of the spin
Hamiltonian describing the hyperGne interaction of the
F electron with a single nucleus in the lattice in the
presence of a constant magnetic field. From this
Hamiltonian he deduced an effective Hamiltonian
depending only on the nuclear spin operator. The
"ENDOR" spectrum is then assumed to correspond
to the magnetic dipole transitions between the states
of this effective Hamiltonian. '

The experiments performed at the University of
Illinois' resulted in spectra with considerably more
lines than predicted by Feher's theory. It is the purpose
of this paper to show that the observed spectra can be
interpreted as magnetic dipole transitions between the
states of an effective Hamiltonian which depends on the
spin operators of pairs of physically equivalent nuclei.
Specifically, this operator includes an indirect spin-spin
coupling between the two equivalent nuclei. This
Hamiltonian is derived from the complete spin
Hamiltonian by means of a generalized perturbation
scheme due to Pryce. 4 It should be noted that when
the uniform magnetic field is oriented parallel to an
axis of rotation symmetry, one or more of the sets of
equivalent nuclei may be larger than 2. In principle

*The research was made possible by the support extended to
the University of Illinois Coordinated Science Laboratory jointly
by the Department of the Army (Signal Corps), the Department
of the Navy (Office of Naval Research), and the Department of
the Air (Air Force Once of Scientific Research) under Signal
Corps contract DA-36-039-SC-85122.

G. Feher, Phys. Rev. 105, 1122 (1957).' See reference 1, Eq. (2).
See W. C. Holton, thesis, University of Illinois, 1960

(unpublished). Also C. P. Slichter, Phys. Rev. Letters 5, 197
(1960).

' M. H. L. Pryce, Proc. Phys. Soc. (London) A63, 2S (1950).
e See Sec. III of the preceding paper LPhys. Rev. 126, 1616

(1962)3.
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of the Ii electron and the nuclei of the lattice with each
other and with the magnetic 6eM can be written in
the form

H(S, I ) = H(electron Zeeman)+P $H (hyperfine)

+H (nucleus Zeeman)]. (1)

Here we excluded any direct interaction between the
spins of different nuclei. The hyperfine interaction
between the Ii electron and the nuclei of the lattice is
written as a sum over the lattice sites of the hyperfine
operator introduced in the preceding paper, ' ~

H (hyperfine)

/4')1
=~-S i.+21 —

I 2 (—1)"b-,-3="'(S,i.),
&Si =-s

2 $4ir
+-I — 2 (—1)"Q...S .&"(I.), (2)

3&5

where the operators 'JJ "'(S,I ) are defined by

qjp")(S,I.) =-', (5/4ir)l(3Spis, —S I,),
'JJ~in)(S, I,) =-,'(15/4m)&(SsI+i, +S+iIQ, ),
g„& )(S,I.) = (15/g ):(S„I„,.),

x=xpg.x.. (6)

Note that X is an eigenfunction of the following
operators

group of 3-dimensional rotations' and

(—1)'L (2+ted)! (2—n)!(2+m)!(2—m)!]'*
d-'"(g) =E

s!(2—s—e)!(2+m —s)!(e+s—m,)!
)(Leos (g/2)]4+m —n—saf sin (g/2)]n m+28

where s assumes all integral values allowed by the
requirement that no argument of the factorials shall
be negative.

In a cubic lattice each site is an inversion center.
Furthermore, the magnetic 6eld is a pseudovector.
Hence, the Hamiltonian indicated in Eq. (1) is in-
variant under an inversion in the vacancy (origin).
Thus the nuclei at sites o. and o.' which are mapped
into each other by an inversion in the origin are
physically equivalent. Consequently the proper zero-
order spin functions g for the entire lattice are products
of an electronic spin function Xp ——~SM, ) and sym-
metrized pairs of nuclear spin functions, "
X = (2) *Pi I Mr, ,)!I .M'r„.)

~~I M'r, )~I..Mr, )] (5)
That is,

and
Sp= S, Syt =& (2) '(S &iS„). F, .=I,, +I,, ~; (I...)'

+ (I., )', I '; (I )', Parity. (7)
Analogous expressions define 'g "'(I ) and I„,)ti=0, +1.

The coefficients b, and Q„are components of
two irreducible spherical tensors of rank two. These
components were defined in the preceding paper' in
the nth local coordinate system. We shall 6nd it
convenient to refer all quantities to an external frame,
which has its origin at the center of the vacancy and
its polar axis parallel to Hp. The Hamiltonian in the
external frame has the same form as in the local frame
except that the coefficients are now b„, and Q, .
From the definition of b, and Q, as spherical
tensors, it follows that

That is, I belongs to the eigenvalues

Mp Mr, +Mr, ——~, (Mi, )'+(Mr, )';
I (I +1)=I (I +1);I'

of the operators indicated above. X ~ can be de-
composed into a linear combination of eigenfunctions
which belong to the same eigenvalues

Mp Mr, +Mi, ~, ——I (I„+1)=I (I +1);I'
of the operators

F, , ; (I,)'; (I )', Parity,

2

b,.= Q D.„is)(q,g.,0)b, .
n=—2

(3)
and to different eigenvalues of the operator

F.'= (I.+I.)'.

D (2) (ip g lb)
—e inyd is) —

(g)e imp— (4)

is the 5-dimensional irreducible representation of the

s See Fq. (9) in the preceding paper.
7 The following convention concerning the local coordinate

systems is implied in Eq. (1):If sites n and P are mapped into
each other under an element of the lattice point group which
leaves the vacancy (0,0,0) fixed, then the same transformation
maps x;, into x;, p, i=1, 2, 3.

See Eqs. (11) and (12) in the preceding paper.

(The same transformation law also relates Q to
Q„, .) Here (g, q ) are the polar angles of Ho in the
0.th local coordinate system,

Thus in the representation defined by Eq. (6) the
Hamiltonian matrix consists of a direct sum of sub-
matrices II(n,n', I'). Each such 'submatrix couples only
states X for which all factors Xsp, P&n are identical
and for which the remaining factors X. have the same

9 See M. E. Rose, Elementary Theory of Angular 3Eomentum
(John Wiley R Sons, Inc. , New York, 1957), Chap. IV.

"When H0 is oriented parallel to an axis of rotation symmetry
there occur larger sets of equivalent sites (per shell). Thus, if
Ho is oriented along the L100] direction the sites (0,1,0), (0,1,0),
(0,0,1), and (0,0,1) are equivalent. In this case the proper zero-
order spin functions are more complicated, and involve factors
consisting of linear combinations of four single spin functions
which transform according to the irreducible representations of
the group C4„. We shall not consider such special cases.
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parity. Hence our problem reduces to the diagonaliza-
tjon of the spin Hamiltonian for the interaction of the
F electron with two equivalent nuclei at sites o. and n'

in the presence of a magnetic field Hp.
We shall assume Hp is strong enough to make the

hyper6ne and the nuclear Zeeman interactions small
perturbation of the electronic Zeeman term. This
problem is most conveniently solved in two steps.
First, an effective nuclear spin Hamiltonian is con-
structed. This Hamiltonian is to operate on the mani-
fold of states belonging to one (of the two) degenerate
states of the unperturbed electronic Zeeman Hamilton-
ian. Then the effective Hamiltonian is treated by
conventional techniques. Clearly the totality of magne-
tic dipole transitions with AM', =0 corresponds to the
collection of such transitions between the states of the
individual effective nuclear Hamiltonians. "

The method of calculating such effective Hamilton-
ians is formally equivalent to the perturbation expan-
sion of the eigenvalues of the full Hamiltonian in terms
of the eigenvalues of the unperturbed Hamiltonian.
The difference between the conventional expansion
and the present formalism is that the terms in the
series now consist of operators which operate on the
manifold of states belonging to a given (degenerate)
eigenvalue of the unperturbed Hamiltonian. Since we
wish to include in the effective Hamiltonian the
electric quadrupole term of Eq. (2), it is important to
include all other terms of comparable order. It turns
out that this consideration requires us to retain some
of the second-order terms in the perturbation expansion
mentioned above. " Some of these terms resemble the
electron coupled nuclear spin-spin interaction discussed
by Ramsey. "The importance of this term is due to the
fact that it couples nearly degenerate states of the
first-order effective Hamiltonian. We shall see that the
second-order terms are responsible for two previously
mentioned improvements of the present theory over
Feher's theory.

In Sec. II, we shall calculate the effective Hamilton-
ian for a pair of equivalent nuclei. In Sec. III, we shall
approximately diagonalize this Hamiltonian, and cal-
culate the "ENDOR" spectrum associated with a
given pair of equivalent nuclei. In Sec. IV the calcu-
lated spectrum is compared with a typical experimental
spectrum.

II. CALCULATION OF THE EFFECTIVE SPIN
HAMILTONIAN (FOR A PAIR OF

EQUIVALENT NUCLEI)

In the following derivation we shall omit some
intermediate steps in order to preserve the continuity

of the main discussion. The more important steps are
reproduced in Appendix B.

We shall concern ourselves with those terms of
Eq. (1) which relate to the nuclei at sites n and n'

which are mapped into each other by an inversion in
the vacancy. These terms are rewritten below in a
form that exhibits explicitly their dependence on the
electron spin operators:

H (S,I,I )=2PHpS, +(—H, "&St

+Hpo&S Hr(t&S t)+Hs(t& &4 (9)

Here (x,y, s) are coordinates in the external frame (in
which the s axis is parallel to Hp). The small operators
(H„"&;p= —1,0,1,2) involve only the nuclear spin
operators I, and I

Pryce' has shown that the eigenvalues and eigen-
states of a Hamiltonian H=H"&+H&'& corresponding
to a given degenerate eigenvalue E of O'P& are, to
third order in H& ', given by the corresponding quanti-
ties of the effective Hamiltonian H' deined below.

H'= E„+P„H~'&P„—P . (10)
ngtn

Here P is the projection operator onto the linear
manifold of states belonging to E ."For the Hamilton-
ian def&ned by Eq. (9) the sum in Eq. (10) reduces to
a single term since H&p&=2pHpS, has only two eigen-
states. Hence, if we combine Eqs. (9) and (10), we
obtain the following effective nuclear spin operators:

H+.(I.,I.)=PHp+-,'Hpo&+Hs&'&

+(2PHp) 'H t&'&H& "& (11)

H, (I.,I. )= —PHp ——,'Hp"&+Hs"'
—(2P~p) &H& o&H in&. (11a)

Here Eqs. (11) and (11a) refer to the manifolds of
states in which the spin of the F electron is, respectively,
parallel and antiparallel to Hp." With the help of
Eqs. (1)—(3) we can rewrite Eqs. (11) and (11a) to
exhibit the dependence of H~, on the nuclear spin
operators I, I and F=I +I . From now on we
shall suppress the subscript o. whenever this is not
likely to introduce confusion.

+CF ~Qo$(Ig, ) +(I....) —(I +1.. )/3)}

~2&(I&,.I i, +Li Ir )av3Re(L, F,)

1
+—0~(F„F„F,), (12)

2A
14 S~I——~(2)&(S +iS„), SP= S,."Note that H' operates only on the manifold of states belonyngtoE.
"That is with M, =+-,'.

"These transitions comprise the "ENDOR" spectrum.
"Note that A '/pHp may be O(Q, l for some &&& and n A.

similar situation occurs in the calculation of the spin Hamiltonian
for a paramagnetic ion in a crystal, where it is responsible for the
anisotropic electronic g factor. This is discussed by A. Abragam
and M. L. Pryce, Proc. Roy. Soc. (London) 205, 135 (1951).

"N. F. Ramsey, Phys. Rev. 91, 303 (1953l.
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TABLE I. Approximate ranges of values for the parameters in Eq. (12).

Nuclei in
shell number 5=2pH pb 8 $0 gg p~+p

1, 2 =9000 10-100 1-15 0.6-1.3

=9000

A~ B C Qp

=a/2 =a'/4A =9bp'/4A =Q,
(5—50) (0.003—0.3) (0.002—0.06) (0.02—0.2)

&1 0.6—1.3 =a/2+bo+gvp~Hp=o(1) L(a —bo)/455(a+2bp)

a The shell number n = (R„/c)', where Rrx =distance from ath site to the vacancy, a =interionic distance.
b Energies are in Mc/sec.

where the following abbreviations were used:

A=2PHp the elec——tronic Zeeman splitting, (13)

A~ ',a+——bp-&P~g~H pWB,

8= (1/4A) P(a —bp)' —6i b, i'1,

(== (3/») [b, ('

0+= (a—bp)

Xv35biF, F,+b,F,Fi—&2(b,F i'+bsFi') j
—3v2 (b,b,F,F,+b,b,F,F,), (17)

0 =(a—bo)

XV3Lb iF,F,+b,FgF,—&2(b sF is+bsFis) j
—342(b ib sF iF,+bibsFgFi). (18)

In Eq. (12) the terms in the first set of curly braces
are diagonal in the representation defined by Eq. (5).'r
The next term couples sets of nearly degenerate
(zero-order) states having equal values of My=Mr
+Mr, . Note that this term can be written as

w28(I. I.—I...I...).
Here the second term is diagonal in the present repre-
sentation and the first term is a spin-spin coupling of
of the type discussed by Ramsey. "One may interpret
this coupling as arising from the fact that both nuclear
dipoles align themselves in the field of the F electron.
The second-order character of this eff'ect is evident
and is reflected in the formal calculation of the coupling
constant B.

III. CALCULATION OF THE ELECTRON NUCLEAR
DOUBLE RESONANCE SPECTRUM (OF A

PAIR OF EQUIVALENT NUCLEI)

In this section we shall approximately diagonalize
the operator indication in Eq. (12). In view of the
remarks made at the end of the preceding section, we
shall concern ourselves primarily with the terms in
the first set of curly braces and the term immediately
following these. The remaining terms in Eq. (12) have
zero expectation in the representation to be used. We
shall consider the contribution of v3 Re(b iFi) to
second order in a perturbation expansion. The terms
in the second set of curly braces will be neglected.

In order to justify the procedure outlined above, we
shall consider the range of values for the parameters in

"See the observation made following Eq. (6),

v3 Re(b iFi)= sbo sin(20 )(I++I ). (22)

This operator couples states of equal P and differing in
3I& by ~1. In second-order perturbation theory, these
contribute corrections to the energy of order ,',bo'/A—

"This point is discussed in Sec. II of the preceding paper.' In deriving this pesult we use as the zero-order Hamiltonian
H~(p) =~A@F,.

Eq. (12). For this purpose we shall use the approxima-
tion

b~,~=Do "'(o a, tin, p)bo, a= («/5)'I"m"'( —f)~,0)bo.~ (20)

This relation is an immediate consequence of Eq. (3),
and the fact that, for m/0, b,, either vanishes (for
symmetry reasons) or is very small. "The experimental
data indicate that in the first two shells (bp/a) =O(1/10)
while in the farther shells, for some lattices (bp/a)
=O(1). Furthermore (@PivHp/a) = is O(1/10—1/100)
for the first two shells and O(1) for the farther shells.
Consequently, the ranges of the parameters in Eq. (12)
are quite different for the first two shells from those in
the farther shells. Table I summarizes the available
experimental information.

In the representation defined by Eq. (5), and to be
denoted henceforth by (MM'&), the expectation of
(H+WA/2) is easily calculated to be

&(A M +8(2I(I+1) (M'+M") j—+CM '
Hap[(M'+M") —

so I (I+1)]
+I'BPI(I+1) MM'j(b—M,si i+4,M+i)})'p (21)

where P= &1 depending on whether the spin function
is even or odd under permutation of sites 0. and n'. Of
the operators which contribute to the above expectation
value, only the last one, i.e.,

w28(ii, .I i,.+I i,.Ii,.)

has off-diagonal terms, namely those coupling states
having the same values of Mp and P. There are several
pairs of such states. According to Table I, A is suK-
ciently larger than 8, C, and Qp for us to treat these
pairs of states as nearly degenerate. It is a simple
matter to diagonalize the several 2)&2 submatrices
and calculate the correspondingly corrected set of
nuclear spin functions. These functions are eigen-
functions of the operators F, and parity, they are not
eigenfunctions of F'.

The next term in Eq. (12) is
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TABLE II. The approximate eigenstates and eigenvalues of H

States' b
Values of'

M~ I' F Energies~

1 (—2
—2+)

2. (-2-4+)
3 (t+~') 'L(-2 2+)+~(-k-k+)3
4 (t+~') 'L~(—l k+)—(—k —0+)3
5 (1+~')-'L(--: —:+)+~(--.'—.'+)j
6 (1+~')-iL~(--: —:+)-(—'. —'.+)j
7 (&+~') 'L~(l —k+)—(k 4+)j
8. (1+n') &L(

', ,'-+—)—+n(-',—',+)j
9 (-:!+)

&& (—l —
2
—)

i2. (——', —,
' —)

~3 (& —v') 'L( —
2 r' —)+v(—r'k —)j

&4 (1+~') 'b(-5 $-)- (-k 2-)j
t5 4—

k —)
&6 (k2 —)

—3
—2
—1
—1

0
0
1

1
2

3
—2

0
0
1
2

+ 3
+ 3
+ 13
+ 13
+ 13
+ 1, 3
+ 13
+ 13
+ 3
+ 3

2

2

0, 2

0, 2

2

2

3A —38+9C+2Qp+3D
2A —88+4C +2D
A —68+ C—Qp+ D +e

A —68+ C—Qp+ D —e
—78 +n
—78

—A —68+ C—Qp —D —e
—A —68+ C—Qp —D +c
—2A —88+4C —2D
—3A —38+9C+2Q p

—3D
2A —28+4C +2D

A —58+ C +D
—38 +g
—38

—A —58+ C —D
—2A —28+4C —2D

a Here we use the observation (MM'+) = (2) &((I~Mf ~)(Irx~M'I a~) ~ I IrrM'q, a) (Ior~MI ~~)) and consider in particular nuclei with spin I =3/2.
The parameters n, P, and y are calculated by solving 2nd order secular equations, they are:

a = (go+B—e) /2 (6)&B, P = (2go+4B —g) /3B, y = (2go —f) /3B,
where

0 = P(go+B)2+24B21&, g = P(2go+4B)2+9B2j&, f = t 4go +9B2)&.

Note that n, P, and y vanish when B vanishes; and when go vanishes,

a = —(2/3)&, P = —1/3 v = —1.
These are the appropriate values for a representation in which F is diagonal: (3), (5), and (8) correspond to F =1; (4), (6), and (7) to F =3; (13) correspond
to F =0; (14) to F =2.' When two values are indicated for F, the corresponding function is a linear combination of the two functions for which those are the eigenvalues of F.

d The parameters e, y, and P are defined in footnote b.

It is simple to show that the actual corrections are

&D~Mp —,', (bo'/A~) sin'(—2—8 ) (&2M~). (23)

This correction is in some instances well within the
experimental resolution. All other terms in Eq. (12) are
negligible.

The "ENDOR" spectrum represents magnetic dipole
transitions subject to the constraint (selection rule)
6',=0. Magnetic dipole transitions are most con-
veniently specified in a representation with sharp
angular momentum operators J and J,. In the present
case the appropriate operators are F and F. defined
above. In applying the selection rules AF = &1, 0 and
63f~=~1, we shall have to take account of the fact
that our representation does include states which are
not sharp in I', and hence, we shall have a slightly
increased number of transitions due to the mixture of
states belonging to different eigenvalues of F. We shall
ignore the fact that the operator defined in Eq. (22)
mixes, in second order, states of different M~ since the
additional (weakly) allowed transitions introduced by
this eGect correspond to much lower frequencies than
the rest of the spectrum. 2' In Table II we list for a
nucleus of spin I=3/2, the states of H and their
energies, within the abovementioned approximation. "

'P See footnote c of Table III.
"Our conclusions are insensitive to the actual value of I, but

I=g is the simplest nontrivial case.

In Table III we list the corresponding calculated
"ENDOR" frequencies.

It is easily verified that the transitions within the
manifold of states associated with H+, i.e., with
M, =1/2 lead to a spectrum which can be. obtained
from the one for H by replacing A by A+ and Qo

by -Qo
Now A —A+ ——2g&P&IIO, i.e., replacing A by A+

leads to a shift in the mean frequency of the spectrum
without affecting the distribution of the lines about
this mean frequency. The spectrum listed in Table III
is manifestly sensitive to a reversal in the sign of Qo.
Hence, the two subspectra associated with a given
pair of equivalent nuclei differ in the distribution of
the individual frequencies about their mean frequency.
Thus a definite assignment of a subspectrum to one of
the two operators H~, permits the determination of
Qo. Such an assignment is possible on the basis of the
mean frequency A~+D~ i.e., the subspectrum with

higher mean frequency is associated with H if g»0
and with H~ if g~(0. Thus, we conclude that the
calculated spectrum for a given pair of equivalent
nuclei is sensitive to the relative sign of g~ and Qo.
However, the sign of g~ is known from independent
experiments. Hence, the present theory permits the
determination of the sign of Qo from the experimental
"ENDOR" data. This is in contrast with the theory
which neglects the terms proportional to 8, C, and
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D~. For, in this approximation, the individual sub-
spectra are insensitive to the sign of Qp, and differ
only in their mean frequency.

From Eq. (3) it follows that

0.= Z D..& l(. 0.,0)Q..., (24) l0.825 l0.750 l0825 l0.500 l0.575 I0.250
fn=—2

hence, if the sign and magnitude of Qp are known as a
function of the polar angles (0,p ), one can completely
determine the electric quadrupole coupling tensor 0
in the local coordinate system of the nth nucleus.

IV. COMPARISON OF THE THEORY WITH
EXPERIMENTAL DATA

In order to check the theory developed in the
preceding sections, the two distributions of frequencies,
corresponding to the two choices of sign for Qp, were
calculated for a subspectrum associated with two K39

nuclei in KC1. The uniform magnetic field, Hp, was
oriented in the t 110j direction. The subspectrum
chosen was that associated with I for a pair of nuclei
in the first shell, with their (local) s axis normal to Hp.
This subspectrum is reproduced in Fig. 1. The parame-
ters a, bp, and ~Qp~ as well as the orientation of the
nuclei with respect to the external magnetic field were
determined in the usual way, with the help of Feher's

FIG. 1. Observed "ENDOR" subspectrum associated with two
K" nuclei in the Grst shell of KC1 with their (local) s axis oriented
to the external Geld Hp. The Geld Hp is along the L110] direction.
The lines indicated by a short vertical dash are associated with
8 and were used in Table IV. The frequency is indicated in
kMc/sec.

spin Hamiltonian. " The two calculated spectra are
compared in Table IV with the observed one. It is
evident that for Qp(0, the agreement is well within
the experimental error. For Qp)0, the agreement is
very poor.

It is remarkable that except for a pair of lines
separated by a frequency interval smaller than the
experimental resolution, all calculated lines could be
identified in the observed spectrum. This is all the
more remarkable for the two weakly allowed transi-
tions" leading to the extreme frequencies (A &0.359)
Mc/sec, which in fact overlap adjacent subspectra. '4

The negative sign of Qp implies that Qp, iip is positive.
In the preceding paper this result was interpreted in
terms of the displacement of the ions around the Ii
center into the vacancy. "

TABLE III. The (approximate) calculated "ENDOR" spectrum.
TAm, z IV. Comparison of the calculated with

an observed "ENDOR" spectrum.

Transition' b

2 —+1
2. 3~2*
3. 4 —+2
4. 5~3
5. 6 3*
6. 5 —+ 4*
7. 6~4
8. 7~5*
9. 8 —&5

10. 7~6
11. 8 —& 6*
12. 9 —+ 7
13. 9 -+ 8*
14. 10~ 9
15. 12-+ 11
16. 13 12*
17. 14-+ 12
18. 15 -+ 13*
19. 15-+ 14
20. 16~ 15

Frequency'

A +58+5C+2Qp+D
A —28+3C+ Qp+D —e

A —28+3C+ Qp+D +e
A + 8+ C—Qp+D +~—g
A + 8+ C—Qp+D-+~+a
A + 8+ C—Q()+D —~—g
A + 8+ C—Qp+D —e+g
A —8—C+ Qp+D +~+g
A —8—C+ Qp+D —e+g
A —8—C+ Qp+D +~—g
A —8—C+ Qp+D. —~—g
A +28—3C—Qp+D —e

A +28—3C—Qp+D +~
A +58—5C—2Qp+D-
A +38+3C +D
A —28+ C +D —g
A —28+ C +D +g
A +28—C +D +f
A +28—C +D —g
A —38—3C +D

a Corresponding to dMs = —1, the set corresponding to b,My =1 leads'to the same set of frequencies.
b The starred transitions are only "weakly" allowed. They are strictly

"forbidden" in the two limiting cases when B or Qo vanish.
o Here we did not include the transitions allowed by the mixture of

states of different Mp resulting from the second-order corrections due to
the off-diagonal terms of the operator indicated in Eq. (22). These transi-
tions lead to frequencies which are lower than those listed by A +D .

d Recall that magnetic dipole transitions conserve parity.

Observed lines' "
f 10530.5 k—c/sec

13.5—30.5—58.5—124.5—139.5—158.5—175.5
—216.5
—358.5

13.5
35.5
58.5

127.5
140.5
159.5
175.5

210.5
344.5

Calculated spectrum" '
(f A /h) kc/se—c

Qp(0 Qp&0

17.5 3
36 10
62 36

132 132
143 171
154 206
171 219
219 236
222.5 243
359 452

a The calculated spectra are manifestly symmetric about their mean
frequency, hence only upper half is listed. The observed spectrum is not
quite symmetric and hence the two corresponding frequencies are listed
side by side.

b The observed lines were read to the closest kc/sec, and because of the
choice of mean frequency, they are listed to the closest 0.5 kc/sec. The
experimental resolution was, however, only about &5 kc/sec. The calcu-
lated frequencies were rounded off to the closest 0,5 kc/sec.

& 6 =9250 Mc/sec, a =20.66 Mc/sec, bo =0.91 Mc/sec, j Qot =0.096
Mc/sec.

"This Hamiltonian lead to a spectrum. '

hf = ~g~Pr;H p+ is[a+bp(3 cos'e —1)]+p'Qp(3 coast —1)(Mr ——,')
and permits rough determination of the parameters associated
with a particular pair of nuclei from the angular dependence of hf.
This determination can be improved with the present theory.
Thus, we obtained for —,'Qp, 0,096 Mc/sec rather than the previously
quoted value of 0.1 Mc//sec."See footnote b, Table III.

'4 See Fig. 1.
"See Sec. IV of the preceding paper.
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V. CONCLUSIONS

Using a generalized perturbation scheme, an effective
nuclear spin Hamiltonian was derived. This Hamilton-
ian explicitly accounts for the symmetry properties of
an Ii center in lattices with the structure of NaCl. It
gives a detailed description of the "ENDOR" spectrum
associated with a given pair of equivalent nuclei,
which agrees very well with the observed spectra. The
theory was shown to permit an unambiguous deter-
mination of the sign of the electric quadrupole coupling
constant in the hyper6ne interaction between the Ii

electron and nuclei of the lattice.
The theory permits a much closer determination of

the quadrupole coupling tensor from the "ENDOR"
data than Feher's Hamiltonian did. Consequently this
theory enables us to extract from the data more detailed
information on the field gradient in the neighborhood
of F centers than was previously possible. As was
pointed out in the preceding paper, this information
could in turn be used in determining the displacement
of the ions around an F center.
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APPENDIX A Ay"2jQp j"28 Ap+2tQ J+28

It is worth noting that the sensitivity of the
"ENDOR" spectrum to the sign of the product of the
nuclear g factor and the electric quadrupole coupling
constant does not depend on the fact that in each shell
the nuclei occur in physically equivalent pairs. The
effect occurs already when one considers the spectrum
associated with the interaction of the Ii electron and
a single nucleus, provided one considers second-order
terms in the electron spin operator. Thus, consider
Feher's simplified spin Hamiltonian~

H(S, I )=2PHpS +a S'I+bp, (3S I —S I )
+ sQo,.(3I...'—I ')—Pier, .HoI, ,

= 2PHpS, + (a +2bp, .)I„S,
—Pzzgiv. HoI„.+-', Qp,.(3I,.'—I.')

+(a—bo)(S+iI—i, +S iI+i ). (A1)

In a representation in which S', S., I ', I, ' are all
diagonal, the last term couples the pairs of states
~S, M, —1, I,Mr) and

~
S,M„I, Mz —1). It is a simple

matter to calculate the eigenvalues of H(S, I ) to second
order in S and first order in I

~+(Mz) = ~ (PH p+ Lka+ bo~PNgzzHo]Mz

&QoLM o——',I(I+1)]+L (a—bo)'/SPH o]
X$I(I+1) Mz(Mr~1)]), (A2)—

where the upper and lower signs refer, respectively, to
the levels associated with 3II,=&-,'. We may rewrite

(b)

FIG. 2. (a) Schematic representation of the energy levels
defined by Eq. (A3). Solid lines, Qp)0; dashed lines, Qp(0.
(b) Schematic representation of the ENDOR lines (nz)II, =O,
HAMI =1)predicted by Eq. (A3). The extreme lines associated
with Qo greater than or less than zero denoted, respectively, by
solid and dashed lines. If g~ greater than or less than zero, then
A is, respectively, greater than or less than A+.

6=2PHp,

A~ ———',a+bo&PivgivHp&B,

B= (a—bp)'/4A.

(A4)

The levels defined by Eq. (A3) are depicted schematic-
ally in Fig. 2, for the case where g»0, I=-,'.

The effect of the second-order term BLI(I+1) Mzs]—
can be visualized as a "repulsion" between the pairs of
coupled levels. The effect on the "ENDOR" spectrum
is depicted in Fig. 2(b): the separation between the
three lines, associated with that value of M, that leads
to a lower mean frequency, is smaller or larger than
the separation between the lines of the other set,
depending on whether gzz, „Qp,, is greater than or less
than zero.

Eq. (A2) to bring it into a form closer to that used in
the text, LEq. (21)],

Eg(Mz) = &{-',6+AgMr&Qo/Mz' —-',I(I+1)]
+B[I(I+1) Mr' ]), (A3)—

where
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APPENDIX B

List of intermediate steps omitted from Sec. II.
The operators H„&'& introduced in Eq. (9) are listed

below

Hp"'S, = [(o+2bo)F,—V3(b&F &+&& &F+&)jS„
—H~& &'& Spy = —[(a—bo) F~&+~3bggF.

—(-,') 'b+~Fp&)S~&,
(81)

2(4mi-**
H2"'= P~g—NF.+ I

—-~ p (—1)"g3tsj =-2

X['.l= ' (I.)gg „(I..)].
In applying Eq. (10) to obtain the eGective nuclear
spin Hamiltonian, we have to take the expectation of
the operator

=P (—H, &»S„+H,& &S,—H, &»S,+a,«&)

XP.(—H, &'& S~&+Ho "&S.
—H~&&'&S &+H2&'&)P„, (82)

in one of the two states of

Eg Z» = &—2PHO. (86)

To obtain Eqs. (12)—(18) we have only to substitute
Eqs. (81) into Eq. (87)

Hp, (I,I )=wpHp+-, 'Ho&»+Hp&»

a-,'(2PHO)-'Hp& &'&Hg& "&. (87)

In this calculation it should be remembered that

X~, (82) reduces to

P„(H &&»S+&+H+&&'&S &)

XP„(H g
' S+g+H+g«'S &.)P~

=~a„(H, S+,+H+, 'S,)P ~'. (84)

The expectation of (84) in the state &&& is evidently

) (x&,)H, ' S~ +H+ "S ~&&g) )'=-', Hp "'H~ "', (8~)

where the upper and lower signs apply, respectively,
to the case where X~——~M, )=+-', . Here we used the
fact that (X~,X») form a complete set in the space of
electron spin functions, and that H~& "& do not operate
on these functions.

To obtain Eq. (11), we only ha, ve to divide (85) by
the single energy denominator

H&'& = 2pHOS, . (83)
and that

5„=(5 .)*
Here P is the operator projecting out the chosen
state, say Xz and P is the operator projecting out the
remaining state X». Since Ho "&S,+H~&» is diagonal in

(89)


