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Magnetically Confined Plasma with a Maxwellian Core
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While a magnetically confined plasma cannot have a Maxweillian velocity distribution at each point, it
is shown that a high-P Maxwellian plasma containing no magnetic fields can exist when separated by a
non-Maxwellian boundary layer from the region of no plasma and homogeneous conQning magnetic field.

1. INTRODUCTION

''T is evident that a plasma confined by a static
~ ~ magnetic field cannot be Maxwellian at each point,
since then no currents would Qow. ' Can it be Maxwellian
except for a boundary layer? In this paper we describe
such a solution of the self-consistent plasma equations
without collisions. This paper describes a uniform
Maxwellian plasma with zero internal magnetic field
separated by boundary layers from exterior regions of
asymptotically uniform magnetic field and vanishing
plasma density. The volume of space within which the
distribution is exactly Maxwellian may be as large as
desired.

The distribution we describe is also one which may
be called a truncated Maxwellian distribution: At every
point in phase space, the distribution either has the
Maxwellian value appropriate to the electromagnetic
potentials at that point, or it is zero.

The existence of such a "high-beta" solution of the
self-consistent collisionless plasma equations is of great
interest, especially for researchers in controlled thermo-
nuclear energy. Existing solutions, for example, the
original self-focusing solutions of Bennett, ' or the
Rosenbluth sheath, ' describe the confinement of a non-
Maxwellian plasma, but it has been an open question
whether equilibria of the kind presented here could
exist. 4

2. PLANAR "POSITRONIUM" PLASMA

To begin with a simple problem, consider a plasma
of equally massive particles of opposite electric charge,
the "positronium" plasma. Ke seek equilibria with no
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charge separation (E=O), with parallel magnetic 6eld
lines (8=8,), and with only one-dimensional coordinate
dependence of the field quantities:

B/Bt=B/By =B/BE=0,

8,=B„=O.

The magnetic vector potential A will thus retain only
one component A~=—A. There is to be no plasma at
x —+ + oo and no magnetic field at a —+ —oo, where we
may take A„=O.

Since we seek a stationary solution, the distribution
function f(x,p) for either species of particle can be
expressed as a function of the constants of motion for
individual particles in the self-consistent magnetic field.
Three constants of motion are immediate, following
from the symmetries we have assumed. The particle
energy

H =cr (p —qA)'+ tttscq&

is conserved because BH/Bt=0. The y momentum

is conserved because BH/By=0. (It will be noted that
the treatment is relativistic; y=t 1—It'c s7 & is the
usual relativistic dilation factor. ) The z momentum

p, =yrrte,

is conserved because BH/Bs=0. Consequently,

f(x,p) =f(H,p.,p.)
automatically satisfies the collisionless 8oltzmann
equation. The solution must be self-consistent. This
provides an equation for the vector potential:

B'2/Bx'= —tts g q fsi„dep.

In order to picture the solution for f(H, p„,p,), let
us look at the distribution function in phase space.
Since f is independent of y and s, and p, does not
contribute to the magnetic field, it is sufhcient to look
at the three-dimensional (x,p„p„) subspace (Fig. 1).
The H=const and p„=const surfaces cut out curves
in this space representing particle trajectories in phase
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Py=qA&x) where e(x,p) is unity in the filled and zero in the empty
region. The boundary between the two regions is cut
out on the energy tube in the interior of the plasma by
the plane asymptotically tangent to the energy tube
at a —+ —~. This plane is given by p„=P(H,p.),
where evidently P(H, p,) is the radius of the energy
tube,

P= ftH'/c p' ——m'c'1'*.

Now the integral in (5) can be simplified. Each species

= Py
P

FIG. 1. Trapped and untrapped particles.

space. Equation (4) means that f depends only on the
trajectory, or, in other words, that it is constant along
such a trajectory.

The form (1) for H shows that the surfaces H= const
are represented by tubes of circular cross section about
the central curve,

p„=qA,

,=0,

~ qA

= Py

shown in Fig. 1. We will suppose that A is monotone,
approaches 0 in the interior, and is asymptotically
linear in the remote exterior x —& + oo (uniform external
field). The surfaces p„=const are planes in this space.
Clearly the intersections of the tubes and planes are of
two kinds, closed and open, representing trapped and
untrapped particles.

The distribution function in the region of phase
space occupied by the open trajectories is uniquely
determined if the distribution function x —+ —ac is
given (in our case it is Maxwellian). Each particle
carries with it the density it had in the Maxwellian
region. The closed trajectories can be populated with
particles at will (keeping in mind, of course, that the
density is constant along the same trajectory). In that
way, an infinite number of solutions can be devised.
We will seek a solution where trapped particles are
absent.

The phase space now contains two regions, one

populated with phase points, the other empty. Since
the Maxwellian distribution depends only on H, Eq.
(4) can now be rewritten as

y(x, p) = efo(H),

=. Py

(b)

FIG. 2. x= const section of an energy tube, showing coordinates
8, P. The plane P„=P' is shown dashed. The intersection of this
plane with the circle gives the extremes &0 of the ulled sector,
shown heavy. By repeating this construction for various values of
P, we obtain the filled region shown in (b), separated by a parabola
from the empty region of the (p„p„) plane. /Note added in proof
The parabola should have been drawn through the intersections
of the P& line and the P& circle, as for P&.j



ELLIAN CORE 1613ED PLASMA WITH MAMAGNETI CALLY CONF I NED

contributes to the current density

j(x)=g fo(H)e, (l,x)e(1,x)a'p

"/ +8 f,(B)Pcose

)p& I/p — p E -8 'rm

Here we have introduced cy
'

d c lindrical coordinates, 0
6:on the energy tube relative to the central curve

(See Fig. 2.)
p, =P sin8,

p„—qA = Pcos9—.
(10)

~OIttll401 ~ 1

The extremes &0' of the range of 0 have been deter-
mined by the requirements

~ p, ~
&P,

cosO= —(P—
~qA ~)/P, O&O&+~.

Xp

FIG 3 Con6ned Maxwellian plasma an bo yboundar layer.~ ~

where a is the constant
he P inte ration begins at 0' =0, cos Hag ot tg

out the 0 integration yields
a=+ pp~)t~/m sgnA 2:P&p(P)dP. (15)

j(x)= sgnA
)QAj/2

"fp(H)
dp, 2P'

00

ear the interior regionThus, the vector potential near
obeys

O'A/Bx' aA'= (16)

s ecies contribution to the current.
h

' t gral further for anot ossible to carry t e in e
~ /H) The p integrationinternal distribution ~ «
d f (1) gives a functionhich H is to be substitute rom

0 a k " of ~'reduced distribution'of I' alone which is a ~in o re
in I':

A = (a/12)'(x —xp)'.

not a roach zero asymp-Clearly this solution does no pp
o fjLt—+ —~.' It is possible, however, tototically for x —+ —~. ' ', o

this function to another solution, name y,
x since both A an xx

'
d BA/Bx are continuous around

P7oint k " andering singularityoint xo is a wea w

of the kind typical of nonlinear ifferen ia eq
e are indebted to Grad' for pointing out the

possibility of pasting toget er
manner.

as shown in ig.as
' I" 3 in the region x &xo the

d the lasma Max-eld is strictly zero an e p
fo th lft t th

xo re ion currents to pro uce is se-g
fi uration. In a simi ar mann

4 b o t ted
~ ~

ones shown in ig. can
h boThe particle density for a species in e o

p (P)= dp= fp(H)/~.

(12) combined with (5) now yields

a'A [q[
sgnA

2)tA )/)tA

(P)2P' —
~

— dP (13).
k I'

QA I /2

inte ral on the right side is usually a dificult
f (13) makes it possible toone. How

here it 'oins the interiorinspecect the boundary layer w ere i
or the A —+0.p

When A&(I' the second term un er
e first androot is neg igi el' 'bl in comparison to the firs

lleads to a valid solution of the differentia
bl though not of the boundary conditions"""""'"'"""'"'"b'

l "- -.l--'dPo .
t 6,ld dM ll

It describes a p ane

lane x=0. Th' '
depicted in F)g 4(b).

ces b reverse magne ic
o ly on the cent al p

6 H. Grad (private communicatjon,/ipj(x) —& aAl(x),

X ——
f

dP ( Near a zero xo of A an d clA/Bx, the solution of thisP)
equation has the form
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layer can also be computed.

m(x) = fp(H) ed'p=
+oo — +O~

fp(H)d8 dp, PdP
l qg(/2 —~ — —0

lq~l/2—
fp(H)dp O~pdp= 2

Iq~l/2
f,(p)pcos 'l dP, (18)

where

fp(H)dp, .f.(P)=

At the beginning of the boundary layer (x=xp, A =0),
we find

n(0) = 2~ Pfj (P)dP,

cp(x,H, p, ) = {$H qtti(x) 7'—I'c' p—,'cp} '*,—(21)

instead of (1). The three constants of motion (20),
(2), and (3) again establish the relation between the
phase-space density at a finite x and the density at
x —& —~. The energy tube of Fig. 1 now has a radius
that depends on x as well as on H and p, (like the
surface of a tornado) and its central curve is again
given by (6). Designating this radius by P(x,H,P.),

(19) we find

or just the particle density inside the Maxwellian
plasma. It is easy to see that (Bn/Bx), „is zero but
the second derivative is not.

3. PLANAR HYQROGENIC PLASMA

We now consider the case where both electrons and
one species of heavier ions enter the magnetic field
from the remote interior of the plasma. Due to the
di8erence in Larmor radii and the depths of penetration,
an electrostatic potential p(x) may develop. We take
p(—po)=0. While the conserved momenta are still
given by Eqs. (2) and (3), the one-particle energy is
now

p„=&p(—,H, p,)=&P „, —

where P „can be found from (20):

(22)

which should be compared to (8).
The other surface that cuts out the path in (p„p„,x)

space is still given by conservation of p„and is the
plane p„=const. We make the simplifying assumption
that this plane intersects the energy tube (20) in a
connected curve which is closed for sufficiently large
p„and open for sufficiently small p„(for a fixed energy
tube).

There could now be two limiting paths given by

H = c$(p qA)'+ns'c'7l+—qy(x) (20) ctt P'+ ppp+m'c'5*'+ qQ
=cd „'+p, '+m'c'7'

P P=P +Pq@PP/c+. (2/c)ALP +.P, +,mPc 5k. (23)

The current density now becomes

Q~2

fp(H)e„dg PdP dp. , (24)

~laagg ~ ~ ~ 0 ~0 I ~ ~ It g
n ~~I

~yt ~y~
~ ~ ~ y+

~~

~Q
~0 ~ ~

~ ~ 'I ~
~ e ~ ~' ~ 4 ~

XO

= X

cosOi ——(qA+P „)/P,
cosO'p ——(qA P„)/P. —

(25)

(26)

where we again introduce cylindrical coordinates, and

(b)

II
~y~t' ~ + ap ~ ~~~ ~~~ 8

~yt ay@ ~y~
~~

~0

/0

~ yt ~~. .i ~ ~~" 1 ~ ~ ~

XO
X

The lower limit of the integration in the variable I'
is again determined by setting O~& ——P for qA~&0. Note
that P is a function of p, . With

'vp = (Pp —qA )/'rent = —P cosg/'rÃl, (27)

i=2 2I ql sgnA
P2

fp(H)

the integration over 0 can again be performed and
one obtains

FIG. 4. (a) Plasmoid in a magnetic field;
(b) plasmoid in reversed fields.

XL(1—cos'Op)-* —(1—cos'O~i)'*5dp dp„(28)
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where cosa'&, cos02, and P „are given by (25), (26),
and (23), respectively. The integration over P has to
be carried out by integrating over regions where the
integrand is real.

NONRELATIVISTIC LIMIT

P „is now not a function of p.-, and we can integrate
out for p, in (28). This results in

fp(P'/2m+ P,2/2m+qy)dP,

=f,(P'/2m+qy) = fg(Hg). (30)In the nonrelativistic limit these equations are
somewhat simplified. When y —+ 1, (23) becomes

P „'=P'+2q~.
Equation (28) becomes now with help of (25), (26),

(29) (29), and (30):

sgnA f, (H&)P/m[2qA (P'+2qmp) I q'A' —2q~—)'*dP

Since

—p 2~ q~ sgnA f, (H&)L 21 qA I
(P'+2qmy)' —q'A' —2q~)'dP (31)

one obtains
dH, = (P/m)dP, (32)

O'A/Bx'= —po P 2~q~ sgnA f&(H,)L2)qA ~
(2mH, )& q'A—' 2q~—)'dH,

+po P 2~ q~ sgnA f,(H,)P 2~qA
~

(—2mH, )*' q'A' 2—qmp)'—dH, , (33)

where

n=1/2m(~qA ~/2+q~/ qA ~)2

for q'A'+2q~) 0 (34)
=0 for q'A'+2q~ (0,

=0 for q'A'+ 2q~) 0
= I/2m(( qA (/2+q~/ ( qA (

)' (35)
for q'A'+2q~ (0.

Equation (33) is now the self-consistent equation for
the vector potential, instead of (13).A similar equation
is needed for the scalar potential:

2mH& —2qmg

1 2g
+—P — f,(H,) sin-'

60+- m

O'Q 1 A
I
(2mH )'*—q'A' —2qm4 '

= ——Q 2q/m fg(Hg) sin ' dH~
BX cp+—

qA I
(2mH, ) l q'A' —2q~-

dH, . (36)
2m' 2q~—

Equations (33) and (36) can be integrated numeric-
ally for a given electron and ion distribution functions
to lead to the functions g(x) and A(x), as well as to
the distribution of particle density in the boundary

layer. They are consistent with an asymptotic behavior

A, y-x', x~0+,
similar to that of the positronium plasma.


