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Magnetically Confined Plasma with a Maxwellian Core
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While a magnetically confined plasma cannot have a Maxweillian velocity distribution at each point, it
is shown that a high-3 Maxwellian plasma containing no magnetic fields can exist when separated by a
non-Maxwellian boundary layer from the region of no plasma and hemogeneous confining magnetic field.

1. INTRODUCTION

T is evident that a plasma confined by a static
magnetic field cannot be Maxwellian at each point,
since then no currents would flow.! Can it be Maxwellian
except for a boundary layer? In this paper we describe
such a solution of the self-consistent plasma equations
without collisions. This paper describes a uniform
Maxwellian plasma with zero internal magnetic field
separated by boundary layers from exterior regions of
asymptotically uniform magnetic field and vanishing
plasma density. The volume of space within which the
distribution is exactly Maxwellian may be as large as
desired.

The distribution we describe is also one which may
be called a truncated Maxwellian distribution: At every
point in phase space, the distribution either has the
Maxwellian value appropriate to the electromagnetic
potentials at that point, or it is zero.

The existence of such a ‘“high-beta’ solution of the
self-consistent collisionless plasma equations is of great
interest, especially for researchers in controlled thermo-
nuclear energy. Existing solutions, for example, the
original self-focusing solutions of Bennett? or the
Rosenbluth sheath,? describe the confinement of a non-
Mazxwellian plasma, but it has been an open question
whether equilibria of the kind presented here could
exist.*

2. PLANAR “POSITRONIUM” PLASMA

To begin with a simple problem, consider a plasma
of equally massive particles of opposite electric charge,
the “positronium” plasma. We seek equilibria with no
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charge separation (E=0), with parallel magnetic field
lines (B=B,), and with only one-dimensional coordinate
dependence of the field quantities:

d/0t=9/3y=0/92=0,
B,=B,=0.

The magnetic vector potential A will thus retain only
one component A,=A. There is to be no plasma at
#— + and no magnetic field at x — — o, where we
may take 4,=0.

Since we seek a stationary solution, the distribution
function f(x,p) for either species of particle can be
expressed as a function of the constants of motion for
individual particles in the self-consistent magnetic field.
Three constants of motion are immediate, following
from the symmetries we have assumed. The particle
energy

H=c[ (p—qAy+m*c] ¢Y)
is conserved because dH/9t=0. The y momentum
py=rmv,+qA (2)

is conserved because dH/9y=0. (It will be noted that
the treatment is relativistic; y=[1—2%2T% is the
usual relativistic dilation factor.) The z momentum

D=vmuv, (3)
is conserved because dH/dz=0. Consequently,
F&xp)=f(H,py,p) (4)

automatically satisfies the collisionless Boltzmann
equation. The solution must be self-consistent. This
provides an equation for the vector potential :

84 /0=~ T / foudp. )
+—

In order to picture the solution for f(H,p,p.), let
us look at the distribution function in phase space.
Since f is independent of y and 2, and p, does not
contribute to the magnetic field, it is sufficient to look
at the three-dimensional (x,p.,p,) subspace (Fig. 1).
The H=const and p,=const surfaces cut out curves
in this space representing particle trajectories in phase
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F16. 1. Trapped and untrapped particles.

space. Equation (4) means that f depends only on the
trajectory, or, in other words, that it is constant along
such a trajectory.

The form (1) for H shows that the surfaces H=const
are represented by tubes of circular cross section about
the central curve,

=94,
o ©)

shown in Fig. 1. We will suppose that 4 is monotone,
approaches 0 in the interior, and is asymptotically
linear in the remote exterior x — -+ o« (uniform external
field). The surfaces p,=const are planes in this space.
Clearly the intersections of the tubes and planes are of
two kinds, closed and open, representing trapped and
untrapped particles.

The distribution function in the region of phase
space occupied by the open trajectories is uniquely
determined if the distribution function x— —oo is
given (in our case it is Maxwellian). Each particle
carries with it the density it had in the Maxwellian
region. The closed trajectories can be populated with
particles at will (keeping in mind, of course, that the
density is constant along the same trajectory). In that
way, an infinite number of solutions can be devised.
We will seek a solution where trapped particles are
absent.

The phase space now contains two regions, one
populated with phase points, the other empty. Since
the Maxwellian distribution depends only on H, Eg.
(4) can now be rewritten as

f(X,p)=€f0(H), (7)
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where e(x,p) is unity in the filled and zero in the empty
region. The boundary between the two regions is cut
out on the energy tube in the interior of the plasma by
the plane asymptotically tangent to the energy tube
at ¥ — —oo. This plane is given by p,=P(H,p,),
where evidently P(H,p,) is the radius of the energy
tube,

P=[H?/2—pr—mc* ]t (8)

Now the integral in (5) can be simplified. Each species
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F16. 2. x=const section of an energy tube, showing coordinates
6, P. The plane p,=P is shown dashed. The intersection of this
plane with the circle gives the extremes =0 of the filled sector,
shown heavy. By repeating this construction for various values of
P, we obtain the filled region shown in (b), separated by a parabola
from the empty region of the (ps,p,) plane. [Note added in proof.
The parabola should have been drawn through the intersections
of the Py line and the P, circle, as for P,.]
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contributes to the current density

)= / Ao ), (00 e(p)

® © +0 fo(H)P cosf
= ———df )dp. |PdP. (9
of Ll (L 5o por o

Here we have introduced cylindrical coordinates P, 8
on the energy tube relative to the central curve (6):
(See Fig. 2.)

p2=P sing,

' (10)
py—qA=—P cosh.
The extremes 40 of the range of 6 have been deter-
mined by the requirements |p,| <P,

cos®@=—(P—|qd]|)/P, 0<O<+m. (11)
The range of the P integration begins at ®=0, cos@=1,
for g4>0; at @=m, cos®=—1, for g4 <0. Carrying
out the 6 integration yields

](x)_____I_Q_} sg'nA/Jo ‘fw fO(H)sz}2P2
m ledl/2 WJ—w Y
2q4  fqAN\*?
(%) Jor @

for each species contribution to the current.

It is not possible to carry the integral further for a
general internal distribution fo(H). The p, integration,
in which H is to be substituted from (1) gives a function
of P alone which is a kind of “reduced distribution”
in P:

o(P)= [ dp. fo(H)/v.

—

(12) combined with (5) now yields

%4

X /1 :Am qo(P)ZP{%— (%)po. (13)

The integral on the right side is usually a difficult
one. However, the form of (13) makes it possible to
inspect the boundary layer where it joins the interior
of the plasma, for the 4 — 0.

When AP,y the second term under the square
root is negligible in comparison to the first and

poj (%) — @A (), (14)
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F16. 3. Confined Maxwellian plasma and boundary layer.

where @ is the constant

0

a=3 wo|ql/m sgnA/ 28Pip(P)dP. (15)

0

Thus, the vector potential near the interior region
obeys

PA/Ix2=aAl. (16)
Near a zero xp of A and 9dA4/9x, the solution of this
equation has the form

A= (a/12)*(x—xo)% 17

Clearly this solution does not approach zero asymp-
totically for x — — .% It is possible, however, to fit
this function to another solution, namely, 4=0 for
x <%, since both 4 and 94/dx are continuous around
x=wo. The point x, is a weak ‘“‘wandering singularity”
of the kind typical of nonlinear differential equations.
We are indebted to Grad® for pointing out the
possibility of pasting together the two solutions in this
manner.

Hence, as shown in Fig. 3, in the region x<xo the
magnetic field is strictly zero and the plasma Max-
wellian. Particles reaching x=x, from the left enter the
magnetic field and, after reaching a turning point, re-
turn on a symmetrical path into the plasma, generating
in the x> %, region currents to produce this self-consist-
ent field configuration. In a similar manner, other config-
urations like the ones shown in Fig. 4 can be constructed.

The particle density for a species in the boundary

5 Nevertheless, it leads to a valid solution of the differential
equations of the problem, though not of the boundary conditions
we have imposed. It describes a plane symmetric “plasmoid”
confined on two faces by reversed magnetic fields, and Maxwellian
only on the central plane x=0. This is depicted in Fig 4(b).

6 H. Grad (private communication, 1961).
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layer can also be computed.

0 —+o0 +0
(x)= / (H)ed*p= / fo(H)do |dp. PP
e fo P /I-qAIIZ —0 [ ¢] :l
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0

- e lgd|—P
_2 / [ / fo(H)dpz]®PdP=2 / fl(P)Pcos*’(———];——)dP, (18)
lgAl/2 —o0 lgA]/2

where
o0

LP)y= |  fo(H)dp..

—0

At the beginning of the boundary layer (x=xo, 4 =0),
we find

n(0)=2m f Pf.(P)dP, (19)

or just the particle density inside the Maxwellian
plasma. It is easy to see that (97/8x),—z, is zero but
the second derivative is not.

3. PLANAR HYDROGENIC PLASMA

We now consider the case where both electrons and
one species of heavier ions enter the magnetic field
from the remote interior of the plasma. Due to the
difference in Larmor radii and the depths of penetration,
an electrostatic potential ¢(x) may develop. We take
¢(—©)=0. While the conserved momenta are still
given by Egs. (2) and (3), the one-particle energy is
now

H=c[(p—qA)+mc* J+g¢ () (20)

(a)

(b)

F16. 4. (a) Plasmoid in a magnetic field;
(b) plasmoid in reversed fields.

instead of (1). The three constants of motion (20),
(2), and (3) again establish the relation between the
phase-space density at a finite # and the density at
x— — . The energy tube of Fig. 1 now has a radius
that depends on x as well as on H and p, (like the
surface of a tornado) and its central curve is again
given by (6). Designating this radius by P(x,H,p.),
we find

CP(x’H’p") = {[H"Q‘f’(x)y_m%‘i_ﬁz%z}%,

which should be compared to (8).

The other surface that cuts out the path in (pz,py,%)
space is still given by conservation of p, and is the
plane p,=const. We make the simplifying assumption
that this plane intersects the energy tube (20) in a
connected curve which is closed for sufficiently large
Py and open for sufficiently small p, (for a fixed energy
tube).

There could now be two limiting paths given by

21

Pyzip(‘w;H;?Z)EiP—oo; (22)
where P_, can be found from (20):
P pitmic Tt gp =P+ pi+mel,
P_ 2= P+g¢*/ A+ (2/c) g Pr+p 24mPc2 ] (23)

The current density now becomes

=2 /_ :w { f :_Pm[ 22 fO(H)vyde:lPdPldpz, (24)

where we again introduce cylindrical coordinates, and
cos®= (¢gA+P_,)/ P, (25)
cos®,= (¢4 —P_,)/P. (26)

The lower limit of the integration in the variable P
is again determined by setting ®,=,° for g420. Note
that P is a function of p.. With

v,= (py,—qA)/ym=—P cosb/vym, (27)

the integration over 6 can again be performed and
one obtains

oo P2
7=2 2|q SgnA/ { —fo(H)
+— —w ym

XL[(1—cos’@z)}— (1— cosz®1)%]dP‘ldpz, (28)
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where cos®;, cos®;, and P_,, are given by (25), (26),
and (23), respectively. The integration over P has to
be carried out by integrating over regions where the
integrand is real.

NONRELATIVISTIC LIMIT

In the nonrelativistic limit these equations are
somewhat simplified. When vy — 1, (23) becomes

P_ 2= P4 2qmé. (29)
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P_,, is now not a function of $,, and we can integrate
out for p, in (28). This results in

0

Fo(PY 2m+ p 2/ 2m+4)dp.
- = 1(P/2m+g9) = [u(H.).

Equation (28) becomes now with help of (25), (26),
(29), and (30):

(30)

J=22|q| sgn4 f fi(H)P/m[29A (P*+2gme)i— ¢ A*— 2qme *d P
+— a

B
—¥ 2|q| sgnd / Fu(BIL—2]gA| (P*+2gme)i— ¢ A*—2gma dP. (31)
+= 0

Since

dH,= (P/m)dP,

one obtains

(32)

8%4/9x%=—po 3_ 2|q| sgnd / Fu(H)[2| g4 | (2mH ) —g*A2—2qm¢ J'dH,
+-= a

B
“+uo 2 2|q| sgnd f fu(H)[—2|qA | (2mH,)}—g*A*~2qme J'dH,, (33)
+= 0

where

a=1/2m(|qA|/2+qme/|qA|)?

B=0 for ¢24%*4-2gmep>0
=1/2m(|qA|/2+qme/|qA|)?

for ¢?A%*+2gme <O0.

Equation (33) is now the self-consistent equation for

the vector potential, instead of (13). A similar equation
is needed for the scalar potential:

(35)

for @A*+2gmep>0 (34)
=0 for ¢24242gme <0,
and
o 1 = 2|gA | (2mH,) — g2A2—2gme}
Y ym j S sin—l[ : ! ]dm
dx? € +— a 2mH ,— 2gmde

1 2 %
+_' Z - fj_ (HJ_) sin™!

€@+—m Jy

Equations (33) and (36) can be integrated numeric-
ally for a given electron and ion distribution functions
to lead to the functions ¢(x) and 4 (x), as well as to
the distribution of particle density in the boundary

—2|gA | (2mH )} —2A42—2 3
[ |gA| (2mH,)t—q qm] 36

dH,.

layer. They are consistent with an asymptotic behavior
A4, p~at, x— 0+,

similar to that of the positronium plasma.



