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Singularities in Partial-Wave Amplitudes for Two Ingoing
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The singularities which appear in the energy plane of a partial-wave amplitude are investigated for the
general process with two ingoing and two outgoing particles. These lie either on the real axis or on curves
symmetrical about the real axis. The equations of these curves and the conditions under which they occur
are obtained; also the ranges in the energy spectra of the crossed channels to which they correspond. These
general results are applied to the particular cases of pion-nucleon scattering and pion photoproduction from
nucleons.

1. INTRODUCTION
' 'T is frequently of interest when studying an inter-
' - action process involving two ingoing and two out-
going particles to isolate that part of the interaction
which takes place in a particular state of orbital angular
momentum. This is represented by a partial wave
amplitude. It is possible to derive approximate relations
between these partial-wave amplitudes and amplitudes
for processes occurring with fixed momentum transfer;
through these the dispersion relations for amplitudes at
fixed momentum transfer may be used to give informa-
tion about partial-wave amplitudes. ' In many cases,
however, the physical content of the situation may be
seen more clearly b'y considering the analyticity prop-
erties of the partial wave amplitudes directly and
writing dispersion relations for these amplitudes ex-
plicitly. Particular cases have been treated by several
authors. ' MacDowell has discussed E-E scattering,
~-x —+ E-E has been analyzed by Frazer and Fulco.
x-S scattering has been treated by Frazer and Fulco;
Hamilton and Spearman; Frautschi, and Walecka;
Bowcock, Cottingham, and I uric. The photoproduction
of strange particles has been looked at by Fayyazuddin.
Amati, Leader, and Vitale have examined nucleon-
nucleon scattering.

A process with two ingoing and two outgoing particles
may be considered in terms of three channels, corre-
sponding to the possible combinations of pairs of ingoing
and outgoing particles. Following the hypothesis of
Mandelstam, ' we suppose that the complete amplitude
for scattering in one of these channels may be continued
as an analytic function in the complex energy plane with
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the exception of certain regions of singularities deter-
mined by the energy spectra in all three channels. The
singularities arising from the energy spectra in the
three channels correspond in each case to a range on the
positive real axis of the appropriate energy variable.
Consequently, the distribution of these singularities in
the energy plane for channel 3 is determined by the
relationships between the energy variables for the three
channels.

In the case of pion-nucleon scattering4 these rela-
tionships are given by

»= I (M'+q')'+ (1 '+q')'7,
ss= —2q'-(1 —cos8),

st ——2M'+ 2p'+2q'(1 —cos8) —L (M'+ q') '+ (mrs+ q') ij',

where s1, s2, s3 are the squares of the total energies in
channels 1, 2, 3 respectively; q and 0 are the magnitude
of the pion momentum and the scattering angle, re-
spectively, in the center-of-mass (c.m. ) system for
channel 3; and M and p are the nucleon and pion
masses. It is easy to see that for any real scattering
angle 0, the parts of the s3, s2, si real axes defined, re-
spectively, by ss——M', ss&~ (M+p)'; ss&~4p, ', st ——M',
st&&(M+1r)' all correspond to rea/ values of q'. Thus
the singularities in the pion-nucleon scattering ampli-
tude arising from channels 1, 2, 3 for any real scattering
angle all lie on the real real axis in the q' plane. This
maps on to the real axis in the s~ plane together with the
circle

I
ss

I

=M' —p'.
However, in the case of pion photoproduction from

nucleons' the relationships between the energy variables
are given by

s —L($2+Ms)1+/$2 —
I

(q2+M2)i'+ (qs+ps)1

ss ——p' —2 (q'+ p,') lk+2qk cos8,

st=M' —2(q'+Ms)lk —2qk cos8,

where sl, s&, s3, q, 8, M, and p are defined as for pion-
nucleon scattering and k is the magnitude of the photon's
momentum in the center-of-momentum system. Here
the singular points on the positive sl and s2 real axes

4 See Appendix I.' See Appendix II.
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do not map on to the real axis in the q' or k' plane, and
for diferent values of 8 these map on to diferent curves
in the s3 plane. Thus, due to the range of physical
angles, 0 ~&8~& vr, these points from the s~ and s2 real axis
map into an area in the s3 plane formed by the aggregate
of curves, each of which is associated with an individual
value of 8.'

The purpose of the present paper is to examine the
location of the singularities arising from the energy
spectra in the three channels in the s3 plane of the partial
wave amplitudes for the general mass case. In Sec. 2 we
describe the kinematics of the general mass process with
two ingoing and two outgoing particles. In Sec. 3 we
examine the form of the partial wave amplitudes and
6nd that these have branch point singularities at the
points in the s3 plane corresponding to the angles 8=0,
8=m but that the areas of singularities arising from the
range of intermediate angles do not appear. In Sec. 4 we
find the location of these branch points in the s3 plane
and describe the cuts made necessary by these partial
wave amplitudes. These are summarized in Sec. 5.
Finally, in Appendices I and II we apply these general
results obtained in Sec. 4 to the particular cases of
pion-nucleon scattering and pion photoproduction from
nucleons.

2. KINEMATICS OF THE GENERAL MASS CASE

»= (qi+q2)'= —(qi+q4)', —
$9= —(qi+qa)'= —(q2+q4)',

si =—(q2+ qa)'= —(qi+q4)',

where q; denote the 4-momenta of the particles, all
considered as ingoing. (See Fig. 1.)

We shall look at the process occurring in channel 3
(1+2~3+4). In the c.m. system for channel 3 we

may write

qi= (ldi~q)~

q2= ((op, —q),

q, = (—id3, q'),

q4 ——(—co4, —q'),

where

(Oi, g (mi, 2 +q ) 003, 4 —(m3, 4'+q")

cv;, m; being the energies and masses, respectively, of the
four particles, g and q' the ingoing and outgoing
momenta, and q=

~ q~, q'=
~

q'~.
Then if 8 is the channel-3 scattering angle, '

sg= (~i+~2) = (~3+(04) &

s2= (coi—(a3) —
q

—
q

—2qq cos8,

s, = (~0,—ld4)' —q' —q"+2qq' cos8.

See A. Minguzzi, Nuovo cimento 20, 599 (1961).
'We dehne p q=p q —poqo.

FIG. 1. General four-
particle process.

From Eq. (2) we find

Ls3 (ml+m2) ][s3—(ml m2) ]/4s3,
q"= [s3—(m3+m4)'7[s3 —(m3 —m4)']/4s3.

Further

~1 (ml +q )' (s8+ml m2 )/(4s3)

(o3 ——(mP+q")'*= (si+ma' —m4')/(4s3)',

ce4
——(m4'+q")&= (s&+m4' —m32)/(4s3)'*,

(3)

(4)

3. SINGULARITIES INTRODUCED BY THE ENERGY
SPECTRA IN THE THREE CHANNELS

We denote by o-&, o-&, o3 the squares of the lowest
masses of strongly interacting intermediate states in
channels 1,2, 3, respectively. In some cases o &,

o.2, o 3 may
denote discrete terms corresponding to single-particle
intermediate states and the continuous spectra will

begin at p~, p2, p3 corresponding to two-particle inter-
mediate states. Where there is no discrete term o,=p;.

The spectrum of intermediate states in channel 3
introduces, in the s3 plane, a possible pole at o-3 and a
cut from p3 to ~ along the real axis.

I et us now investigate the singularities in the s3 plane
introduced in the partial wave amplitudes for channel-3
processes by the spectrum of intermediate states in

The signs of co~, ~2, ~3, co4 have been chosen so that
when s3 takes physical values for channel 3, co&, co2, ~3, or4

are to be positive.
This gives in terms of s3 and cos8,

s2 ——mi'+ma' —[s3+mP —m2'][sa+m3' —m4']/(2s3)
—{[sa—(mi+m~)'][sa —(mi —m2)']

X [sa—(m&+m4)'7[s& —(m3 —m4)']}' cos8/(2sa), '
(3)

si mi'+m4' —[s3+mi —m2'7[si+m4' —m3 ]/(2s3)
+{[si—(mi+m~)'7[s3 —(mi —mi)'7

X [sa—(m3+m4)'7[sa —(m3 —m4)']}& costt/(2$3).

We observe the crossing relation, that s~+-+ s~ when we
interchange m3 and m4 and replace cos8 by —cos8. For
s2 and s~ to be de6ned as single-valued functions of s3 it
is necessary to introduce cuts in the s3 plane at the
branch points (mi+m2)', (m3&m4)'. It is normally
convenient to take these cuts along the real axis from
min{(mi+mi)', (m3+m4)'} to ~ and from —~ to
max{ (mi —m2)', (mi —m4)'}.
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channel 2. These singularities appear in the 1th partial The integral (10) can be written in this case as
wave amplitude in the form'.

1

Ai(ss) = d (cos8)8 i (cos8)
r(s, 'ss)dss', (6)

I
$2 $2

P, (x)dx,
n(ss ~ss)

which gives no singularities.
where E&(x) is the /th Legendre polynomial and F(ss', ss)
depends only on s3 and the parameter s2'.

From Eq. (5) we see that the denominator ss' —ss
be written as

c. P(ss) 40, n(ss', ss) AO.

n(ss &S )4+P( S)sCOS8~

may As P(ss)WO we can write P&(x) as a polynomial in

[n (s&',ss)+P (ss)x7. Then the integral (9) may be

(7) written as

where

n (ss', ss) =ss' —mt' —ms'+ (ss+ ma' —ms')

&& (s,+m, '—m ')/(2s, ),
P (ss) = j[Ss—(mt+ms) j[ss (ml ms) j

&& [s,—(m, +m4)'$[s, —(m, —m4)']}i/(2$, ).

Assuming suitable convergence of the integral in Eq. (6)
we may interchange the order of integration and obtain

F (ss )ss)x)dx+
C(ss )ss)dx

yc $2~$3 $3 s
(12)

where F(ss', ss,x) and C(ss', ss) are nonsingular functions
of ss. The first integral in (12) gives no singularities;
performing the second integral we obtain

[C(»)/P (»)3(»[n(»', »)+&(»)3
—ln[n(ss $3) P (ss)]}. (13)

Ai(ss) = dss' P(ss', ss)

1 r, (x)
dx . (9)

n (ss', ss) +P (ss) x
This function has branch point singularities at points

s3 such that
n(ss', ss) = WP(ss) (14)

We must discuss the three cases:

a. P(ss) =0, n(ss', ss) =0.

P (ss) =0 implies that ss has one of the values (mr+ms)',
(ms+m4)'. We may write n(ss', ss) as

n(s&', ss) = (ss—yr) (ss—y,)/(2$4),

where yt and ys are functions of ss'. Since P(ss)=0,
n(s&', ss) can only vanish when pr or ps takes one of the
values (minim&)', (ms+m4)'; say yt. Then for the
appropriate values of s2' and s3 we may write

P(ss) =P(ss)(ss —yr):,
n (ss', ss) = n(ss', ss) (ss—yr),

for any s&' lying between 0-2 and ~. The problem of
locating the remaining singularities of the partial wave
amplitudes in the s3 plane reduces to the mathematical
one of determining the solutions of Eq. (14).

4. LOCATION OF SINGULARITIES IN THE s3 PLANE

From Eq. (8) we see that ss ——0 satisfies the equation,

n(»', ») =+0(»),
for all values of s2'. Thus for all values of s2' we must
introduce a cut extending from the origin to infinity.
It is convenient to take this along the negative real
axis. To find the other roots we can replace Eq. (14) by

where n(ss', ss), P(ss) are both nonvanishing and finite.
The integral then becomes

I8=$2

asss+2bss+c= 0, (15)

P((x)Cx

(s,—y,)i, n(s, ')s,) (ss—yt)l+P(ss)x
(10)

4 A singularity of the form 1/(ss' —ss)(sz' —sr) can be reduced
to partial fractions and gives a term as above together with one
containing 1/(si' —si).

Since n(ss', ss) (ss —yr) ' =0 and P (ss) 40 it follows that
the only singularity introduced by this term comes from
the term (ss—yr) '*. This gives a branch point singularity
at yt. yr can have any of the four values (mt&ms)',
(ms+m4)' but we have already introduced cuts at these
points to de6ne s~ and s2 so no new singularities are
introduced by this case.

b. P (ss) =0, n(ss', ss) WO.

4

2b = Ss"—P m,'S,'+ ( mr m, ') (m—,'—m4'),
i=1

c= (mr ms') (m4 m4 )$2

+ (mt m4 —ms ms )(mr mt ms +m4 ).

(16)

To find the roots of asss+2bss+c=0, denote the real
and imaginary parts of ss by x and y. Equation (15)
then gives

a(x' y')+2bx+c= 0, —

axy+by=0.

(17)

(18)

The singularities in the partial wave amplitudes are
given by the points of intersection of the curves given by
Eq. (17) and (18). Equation (18) represents the pair
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of straight lines y=O, x= b/—a. The hyperbola repre-
sented by Eq. (1'/) only intersects the line y =0 if bz ~& ac
and only intersects the line x= b/—a if b2&~ ac. The
former case gives rise to singularities lying on the real
axis; the latter to singularities off the real axis. This is
shown in Fig. 2. The discriminant b' —ac may be written
in the form

OJO

i L
-m &' '

', {N, |n,)
{m& ~ gq) I

Sa

S2 —1Ãl SZg $2 —Pal —S$3

&& Lsz (mz+m4)2)[s2' —(m2 —m4)'). (19)

This is represented graphically in Fig. 3.
It is clear that no channel-2 intermediate state (under

strong interactions) can be of mass less than
~
mz —mz~

or
~
m2 —m4~ for if this were so, the heavier of mz, mz or

m~, m4 would be unstable under strong interactions.
So pz&~0.2&~ max{ (m, —mz)', (m2 —m4)'}. If all four parti-
cles are strongly interacting oz~&p2~&min{(mz+mz)2,
(m 2+m4)'} and so a2 and p2 must lie as shown in Fig. 3.
In the event of some of the particles not being strongly
interacting p2 or a.z may be greater than mz+mz or
m2+m4. An example of this is seen in the case of pion-
photoproduction (cf. Appendix II). Here the channel-2

process is y+zr~N+N and so m~ ——0, mz=zz. The
matrix element for yx scattering is of the second order
in the em coupling constant e: if we consider only first-
order processes in e the spectrum of intermediate states
consists of one pion, two pion and higher mass states.
Thus o.2=@' corresponding to the one-pion pole, and

pz ——4Z4'. So in this case oz ——(mz+mz)'&pz. As will be
seen later this means that the singularities off the real
axis lie on a curve which is open at the right-hand side.

From Fig. 3 we see that singularities lying off the real
axis can arise only from values of s2' lying between the
values (mz+mz)' and (m2+m4)'. The singularities on
the real axis can come from

sz' & min{ (mz+mz)', (m 2+m4)'}

FIG. 3. b' —ac in the general mass case.

4

Z=P m, 2,

X= (mzz —m22) (m22 —m4'),

K = (m '—m ') (m '—m ')

v = (mP m42 m22mzz) —(mz2 m22 m—22+m—42)

(21)

In this notation Eq. (16) become

IC=S2
q

2b = sz'2 —Zsz'+X,

C=KS2 +V.

From Eq. (16') it follows that as s2' ranges from pz to
40 so b/a ranges fro—m —co to 1., where

with the lines x= b/a—: this is obtained by eliminating
the parameter s2'. The locus may be written in the form

(x zg)~L(x zg)2 $)$}$~2+y2 K)= v (20)
for XWO

or
—2(x——'2Z)(x2+y2 —K) = v, for X=O,

where

and also from

s2'&~ max{ (mz+mz)2, (m2+m4)'}.

L=Z/2 —)I,b for ) &p2',
=2/2 —

2 (p2+X/p2) for X &p22. (21)

When there is a pole term s~' ——02 in the case ofWe shaH now investigate the location of these
singularities. max{ (mz+mz)', (m2+m4)'} &&02

&~ min{ (m, +mz)', (m2+m4)'}

—1
(0 22 O2Z+X);— .

20'2

(a) Singularities Lying Off the Real Axis
the branch arising from this pole will lie on the line

The positions of these singularities are defined by the
locus of intersection of the hyperbolas given by Eq. (17)

FIG. 2. Representa-
tion of the equations:
cz(x' y)'+2bx+c—=0,
cry+by =0.

otherwise the branch points will lie on the real axis. To
take account of this term it is sufficient to introduce a
cut joining the two branch points.

So we see that apart from the pole term contribution
the singularities due to the channel-2 energy spectrum
which lie off the real axis are defined by that part of the
curve given by Eq. (20) which lies to the left of the
line @=L.
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42x2+2bx+ c =0,

which gives the values of x

42x = b&—(b'+ ac) '*,

(22)

(23)

where a, b, c are given as functions of s2' by Eq. (16).
As we have seen the values of s2' that may contribute
are a possible pole term s2' ——0-2 provided that

o, & min((mi+m2)', (m, +m4)'};

values of s2' (if any) such that

p2~ ~2 w~min((mi+m2)', (m2+m4) }
and values

s2'~& max{ (mi+m2)', (m2+m4)', p2}.

A similar analysis in which m& and m4 are everywhere
interchanged gives the singularities arising from the
channel-1 energy spectrum. We see that either crossed
channel will lead to singularities lying off the real axis
if the thresholds for ingoing and outgoing states in that
channel are unequal and provided that the threshold
for strongly interacting intermediate states is less than
the greater of these.

Corresponding to the continuum part of the energy
spectrum in one of the crossed channels there will be a
continuum of pairs of branch points. To allow the
partial wave amplitude to be defined in the s3 plane it is
necessary to introduce cuts which prevent any one of
these branch points being encircled without its partner
also being encircled. This is achieved by a continuous
cut, on which all these pairs of branch points lie, given
by the part of the curve defined by the Eq. (20) lying
to the left of the line x=L; the real axis from the origin
to —~ and the part of the real axis which is determined
by Eq. (23). A discrete term in the energy spectrum
will give rise normally to two branch points which may
not overlap with the region containing singular points
due to the continuum part: in this case a cut, joining
these two branch points together with a cut from the
origin to —oo (cf. Appendix I) are sufficient.

5. SUMMARY

So finally we may summarize the cuts and poles which
are necessary to define a partial wave amplitude in the
s3 plane. These are:

(b) Singularities Lying On the Real Axis

The positions of these singularities are defined by the
locus of intersection of the hyperbolas given by Eq. (17)
with the line y=0. On eliminating the parameter s2 we
get the equation

(iii) A cut on the real axis from the origin to —~
corresponding to the branch point s&=0 for any value
of s&' in the channel-2 energy spectrum and a cut on the
real axis defined by Eq. (23) for s2' lying in the ranges
p2 to min((mi+m2)', (m2+m4)'} and max((mi+m3)',
(m2+m4)2} to oo. A similar cut for the continuum part
of the channel-1 energy spectrum.

(iv) A cut, on the real axis if o2&min{(mi+m2)',
(m, +m4)'} (possibly detached from any of the above
cuts) due to a possible discrete term in the channel-2
energy spectrum, whose end points are determined by
Eq. (23) and a similar cut due to a discrete term in the
channel-1 energy spectrum.

(v) A curve lying oB and symmetrical about the
real axis, determined by Eq. (20), which is closed at its
left-hand end but may be open at the right-hand end
if some of the particles are not strongly interacting. This
arises from values of s2' lying in the range min( (mi+m2)',
(m2+m4)'} to max{ (mi+m2)', (m2+m4)'} and only
occurs if mi+m2/m2+m4. A similar curve may also
arise from the channel-1 energy spectrum.
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APPENDIX I

Pion-Nucleon Scattering

In the particular case of pion-nucleon scattering
ml~= p, m~ ——M, m~ ——p, m4 ——M, where p, and 3f are the
pion and nucleon masses, respectively. For the channel-2
process m7r —+ EX, 0-2 ——p~

——4p,'. For the channel-1
prOCeSS m E—+ 2', o i ——. M', pi ——(M+12)2.

Then the singularities of the partial wave amplitudes
in the s2 plane, as given by Sec. (5), are:

(i) Cuts from —oo to (M—p)' and (M+p)' to
to define s~ and s2 in the s3 plane.

(ii) A pole at M' and a cut from (M+@)2 to oo. The
physical region for channel 3.

(iii) A cut on the real axis from the origin to —oo.

(i) Cuts from max((mi —m2)', (m2 —m4)'} to —ao,

and from min( (mi+m2)', (m2+m4)'} to ao, are required
to define s~ and s2 in the s3 plane.

(ii) Apossiblepole ato2and acutfrom p2to ao on the
real axis, arising from the channel-3 energy spectrum„ I'IG, 4, b' —gq for chanel 2 of 7t--g scattering,

S, .



SI Nt" ULARI TIES I N PARTIAL —NAVE AMPLITUDES

FzG. 5. b' —ac for
channel 1 of 7f- —S
scattering.

1[

b-oc;
magnetic coupling constant. For a similar reason we
take pg= p2= (M+@)2.

Following Sec. 5 we find as singularities in the
s3 plane:

(i) Cuts from —~ to (M—p)2 and (M+p)2 to
to de6ne s~ and s2 in the s3 plane.

(ii) A pole at M2 and a cut from (M+p)2 to ~. The
physical region for channel 3.

(iii) A cut on the real axis from the origin to —m on
account of the branch point at s3=0.

FIG. 6. Singularities in the partial-wave
amplitudes for m. —E scattering.

From Fig. 4, we see that b' —ac~&0 for 4M'»&s2'(~
giving a cut on the real axis. This extends from —~
to 0. From Fig. 5, we see that b2 ac~&0 for —(Mjp, )2

&»s~'( ~. This gives a cut on the real axis, from —~
to (M p)'. —

(iv) There is no discrete term in channel 2.
The discrete term at M2 in channel 1 gives a cut on

the real axis from (M—p'/M)2 to M2+2p2
(v) From Fig. 4 we see that channel 2 gives rise to a

cut oft the real axis for 4p,'»&s2'»& 4M'. For channel 2

2=2(M2+p, 2) X=O, «= (M' —p2)2 v=0

From Fig. 7 we see that for 4M2(&s2'( ~ we have a
cut on the real axis. This runs from —~ to 0.

From Fig. 8 we see that for (M+p)2~(sq'( ~ we
have a cut on the real axis. This is from — to
[M/(M+ p) g (M' Mp, p—2). —

(iv) The discrete term in channel 2 at s2' ——02——p2

gives a pole at s3=M'. b2 —ac is zero at this value of
s2' (Fig. 7).

The discrete term in channel 1 at s~'=0.~ ——M' also
gives a pole at s3=M2. Again b2 —ac is zero at this value
s~' (Fig. 8).

(v) From Fig. 7 we see that channel 2 gives rise to
singularities off the axis for p2=4p'~& s2'»&4M'. The cut
off the axis is given by Eq. (18). In channel 2,

Z=2M2+p2 X=O, «=M'(M' —p') v=p'+M'

L
b- ag.

By Eq. (16) this gives

g2+ y2 (M2 p2) 2

a circle of radius (M' —p2).
As seen in Fig. 5, b' —ac is nowhere negative and thus

we conclude that channel 1 does not give rise to cuts
off the real axis.

The cuts for m-X scattering are shown in Fig. 6.

0 H

Fxo. 7. b' —ac for channel 2 of yÃ —+ m S.

I
S»

APPENDIX II

Photoproduction of Pions or Nucleons

In the case of photoproduction we have more asym-
metry in the masses involved and the situation is more
complex. We take m~=0, m2=M, nz3=p, m4=M. For
the channel-1 process yN ~ ~X, 0~=M' and
pq ——(M+@)2. For the channel-2 process y2r —+ ÃX,
0 2 p2 and p2 4@2

In channel 2 we take as the beginning of the con-
tinuous spectrum of intermediate states, p2= 4@2 because
the y~ intermediate state in ym —& ym —+ EE leads to
a matrix element which is of second order in the electro-
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FiG. 8. b' —ac for channel 1 of yg —+ ~g.
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(8+p)

much less than M'(M' —
p, '). Thus the curve off the axis

deviates very little from a circle of radius M(M' p'—)".
This curve lies between two circles one of radius 45.2 p,

'
and the other of radius 44.6 p,'.

The curve off the real axis is not closed on the right-
hand side as x is limited by Eq. (20). Here

As can be seen from Fig. 7 the fact that the curve is
open on the right-hand side comes about because there
is no contribution from values of s2' such that
p,'(s2'&4p' due to the neglect of the yx intermediate

FIG. 9. Singularities in the partial-v ave
amplitudes for photoproduction. state.

For channel 1 we see from Fig. 8 that the neglect of

We can write the curve as the y.V intermediate state means that there is no con-
tribution to the singularities from values of s~ which

x' ~'=M'&M' —'& —4M'& &2x—2M' —2p' .
make b' ac nega—tive. Thus channel 1 does not give rise

Since x(M', p'M'/(2x —2M' —p')(M'p, ', which is to singularities off the real axis. (See Fig. 9).


