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The spherical-harmonics decomposition of the wave equation for scattering of a plane wave by a potential
of arbitrary space dependence is derived from the Green's function formulation. An approximation is then
introduced which reduces the scattering problem to the solution of a set of coupled linear equations for the
partial-wave amplitudes. The numerical coefficients in these equations involve Clebsch-Gordan coeAicients
and integrals over all space of a product of a spherical-harmonic component of the potential with a pair of
Bessel functions. For central potentials (U), the equations decouple, and the phase shifts reduce to

—kjo" rsdr jP(kr)U(r)
tanb~=

1—kJe" r'dr jt(kr)y&(kr)U(r)'

While the manipulations involved resemble those in the Born approximation (the numerator above is the
Born S&), the concept of the new approximation is quite different and the results can be very dissimilar.
Exact and approximate phase shifts are exhibited for various spherical wells and barriers. For repulsive
potentials, the approximation works well for short to moderate ranges (ha&2) regardless of barrier height.
For attractive potentials, comparable results are obtained for the "potential scattering, "but the resonances
are ignored.

I. EXACT FORMULATION

'HE wave equation,

V%+ [O' U(r, 8—A) j+=0, (1)

for the scattering of a plane wave exp(iks) by a potential
U (in appropriate units) has the formal solution in
terms of a Green's function, '
4'(r, 8Ap) = exp(ikr cos8)

—(4m)
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The hrst term on the right leads to the Born approxi-
mation (after the replacement of the Green's function
by its asymptotic value for large r).

The wave function and the potential are next
expanded in spherical harmonics,

0( 8A)=(4 )'Z. (2i+1) ii.()I'.(8A),

U( 8A) = (4 )' 2-(2p+1)'U-( )I'-(8A) (6)

For the plane wave, there is the Rayleigh expansion,

X U(r', 8'A')4(r', O'A')dr'. (2) exp(ikr cos8) = (4sr)' p t i'(2&+1) ~ jt (kr) I'ts(8A), (7)
Since the cross section depends on the scattered part of
the wave function, it is best to split off the plane wave
from the start:

%(r,8,$)= exp(ikr cos8)+f(r, 8,$),

and deal with the equation

f(r,8As) = —(4tr) '
~

r—r'i —'

Xexp(ik
~

r—r'~ ) U(r', 8',@') exp(ikr' cos8')dr'

fr —r'f 'exp(ik/r —r'f)
=ik P„(2n+1)P„(cosO)j„(kr&)k„t"(kr&), (g)

where r( and r) are the smaller and larger, respectively,
of r and r', and O~ is the relative angle between the
vectors r and r' (i.e., coso~=r r'/rr') In tur.n, the
addition theorem for spherical harmonics is

P„(cos0)= 47r (2rt+1)—' Q I" (8A )I'„*(8'A'). (9)—(4sr) '
~

r —r'
~

' exp(ik
~

r —r'
~ )U(r', O'Ar')

XP(r',8',g')dr'. (4) The angular part of the integration yields'

tie' I'. *(8',p') I't, (8',Q') I'„,(8',Q') = [(2p+1)(2l+1)/4(2rrt+1) j**C (ptn; m ss)C (p—trt; 00)8, , „(10)
where the C's are Clebsch-Gordan coefficients. Thus

(4sr) i P„(2rt+1)'|P„(r)Ir„(8$)= —ik(4sr) '* g„ t„(2l+1)(2P+1)(2n+1) *'C(Plrt; 00)I'„(8$)

i'C(ptrt; m0) r"dr' j (kr )k ('l(kr )j (kr')U„(r')

+p, C(ptrt; m ss) r"—dr' j„(kr&)k t'l(kr&)pt, (r') U„,(r') . (11)
0

*This work was supported in part by the National Science Foundation.
~ N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Oxford University Press, New Yoric, 1950), 2nd ed.
s M. E. Rose, Elementary Theory of Angular 3Eomentum (John Wiley tiz Sons, Inc. , New York, 1957).

i589



HE+ RRY BRYS

es to anl ti nforthonics an d thoft esp herjcal harpsing the o " g
dial variables o" y

I)

equation
'

n involving the ra sa v

zz —m r r j„h &'&(kr )j (kr')U„ri zz; —m r"dr' j„(kr& ) ' ' U „ri'C(Pzzl; m —m) r r j.—)"Pi„(2p+1)C(p . i zz; —m r r y„&P„„(r)= —ik —" zzl, 00

'U „,r' . (12))h &'&(kr))&Pi, (r')U, „,r'—7n r"dr' j„(kr&

nge of Integra

/z ' I ' I I)kr') j (kr') U„(r

papproximation

i„i'(2p+1) C(przl; r«z —zrz~(r) = —ik( —)

+p, (—)'C(pzzl, zrz s,

re is required. No special care is req
'it a '= '

rder to an
volume ~n egl.d,d f'...,h. ..tion o r Pi

een s un
The ra

concerni
the Born

"r „'' 'U r'), (13)'h "'(k ')j, (k ')U„„+j (kr) r"dr „'' ' U r
r

nl oo)4'. (r)-4-'(r) = zrz —s, —z&z)C(p. —)'(2p+1)C(pzzl; zrz —s, ——'k( —)"2 "(—'

, r')+j (kr) r"dr' h„o r i, ' r' '
(kr')Pi, (r')U, „,r' j„"drh„X h. i'&(kr)

0

n ement leads toA slight rearrangem

pnl; zrz —z&z)C (pzz,

r ' ' —'
(kr)h„o& (kr')j,r ' ' ' r')t h&' (&rk) j„(kr')—g„rr"dr' ji(kr')U„m r

/' '
(k ')ji(kr')U, „rl 00) h &'&(kr) r"dr g

r'„„~(r)= —z= —k(—)"2, "(2p+1 C

zrz —s, —z&z)C(przl; 00)r = —' —" i„, —)'(2p+1)C(pnl;zrz —s, —z&z; 04-(r) —4- (r) = ik( —)"gi»

I" ' -(kr')A. (r')U. =. rX nh o&(kr) r"dr' j„r i, ', r

r „' r' —'„kr)h„&'& (kr') j . (16)r )Lh o&(kr)j„(kr)-j„kr „.16r'U„, rr dr &pi,

s vanishesin
'

s. (15) and (16) vanis esinte ral in Eqs. vanis esg s.
mes a cons

' '"(kr) whose asymp o i)in thelimitof larger, so t a

"+'(kr) ' exp(zkr),h &' (&rk)-( i" r—— (17)

hould be. Asymptotica ycall then,erical wave as it shoul e.an outgoing sphenca

i' 2p+1)C(pzzl; z&z —r&z) C(pnl; 00)—' " —)"+'r 'exp(zkr) Pi„~- ()-(-')" —"—
«'), (18)' '

(kr') ji(kr') U„r',r"dr g„

, r' . (19)r'~dr' j„r(kr')A. (r') U. =.(r' .

zl —s, —«&z)C(przl; 00), —)'(2P+1)C(P«zl; zl —s, —«&z; 0
' " —) "r ' e p('k ) 2 "(—'s. ()-o..()-~ r -(—i)"(— r

0



NEW SCATTERING APPROXI MATION i59i

If the potential has no azimuthal dependence, neither will the wave function by symmetry. The indices m and s
will then be restricted to the value zero. The spherical harmonics break down to Legendre polynomials, so that

in view of

lP(r, 8) =gg(2l+1)&P((r)Pg(cos8),

U(r, 8) =p„(2p+1)U (r)P„(cos8),

Y~o (8,&)=L (2l+ 1)/4~]~P& (cos8).

(20)

(21)

(22)

Equations (15), (16), (18), and (19) become

(r) = ik P—» i&(2P+1)C'(Pnl; 00) h„o&(kr) r"dr' j„(kr')j&(kr') U„(r')
a 0

r"dr' j&(kr') U„(r')Lh~&'& (kr) j„(kr')—j„(kr)h„&'&(kr') j, (23)

&P„s(r) —(—i)"r ' exp(ikr) P»i'(2P+1)C'(Pal; 00) r"dr' j„(kr')j&(kr')U„(r'),
0

(24)

&P (r) &P ~(r) = —i k P»(2P—+1)C'(Pr&l; 00) h„o& (kr) r"dr' j„(kr')&P&(r') U„(r')
0

r"dr'P&(r')U, (r'))h ' (kr) j„(kr')—j„(kr)h "(kr')j, (25)
r

&P (r) &P (r) ——( i)"r '—exp(ikr) P»(2P+1)C'(Pnl; 00) r"dr' j„(kr')&P&(r')U~(r').
0

(26)

For a central potential (spherically symmetric), there is only a p=0 term (i.e., U= Uo). The Clebsch-Gordan
coefficient then reduces to 6~„, so that the Legendre coefficients of the wave function are decoupled:

(r) = i"+'k h~&'&—(kr) r"dr' j„'(kr') U(r') r"dr' j„(kr—')U(r')Lh„o&(kr) j„(kr')—g„(kr)h„o&(kr')), (27)
0 r

&P„~(r) —r ' exp(ikr) r"dr' j„'(kr') U(r'), (28)

tP„(r) tP„~(r)= ——ik h„&'& (kr) r"dr' j„(kr')&P„(r')U(r')

r"dr'&P (r')U(r')Lh &'&(kr)j (kr') —j (kr)h o&(kr')j, (29)

P„(r)—&P ~(r) —(—i) "r ' exp(ikr) r"dr' j„(kr')&P (r') U(r'). (30)

II. APPROXIMATION

A. Statement

To within the Born approximation, the asymptotic
values clearly suKce. In the non-Born part of &p„(r),
however, &P~, (r') in the integrand runs through all values
of r' down to zero; hence it differs signi6cantly from its
asymptotic value over part of the range of integration.
This difhculty arises even for the second Born approxi-
mation, i.e., if an iterative solution is attempted by
using &P&P(r') for &P&, (r') in the integrand, this properly
requires the knowledge of &P&P(r') for all r', not just
its asymptotic value. Since the second integral in

Eqs. (15) and (16) for their special cases (23), (25),
(27), and (29)j has r as a lower limit, there results a
complicated r dependence of the wave function, even
in the Born approximation. This in turn means that
the integrands in Eq. (16) are unwieldy already in
the second Born approximation, and a complete formal
solution of the integral equation is well-nigh hopeless.
Furthermore, iteration converges satisfactorily only if
the first-order expression is a fairly good approximation.

The approximation proposed in this paper is the
neglect of the troublesome second integral in Eqs. (15)
and (16). The effect of this approximation is a vast
simplification, permitting a direct evaluation of the
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asymptotic value of &P„(r) with little more effort than
is required for the Born approximation coeKcients.
Since only the infinite integrals are retained, the
right-hand side of Eqs. (15) and (16) takes the form of
a constant times k„"&(kr). Hence, &P„(r) itself is of the

form
(r) =i"+'(—)"A k "&(kr), (31)

where A is a numerical constant independent of r.
Substituting Eq. (31) into the simplified Eqs. (15) and
(16) Dncluding the integrand of (16)j,

A „=—k p&„ i' "(2p+1)C(pnt; m rn—)C(pnl; 00) r"dr' j (kr')j &(kr') U~ (r')

ik P—t„, i' "(2P+1)C(Pnl; m —s, rn)C—(Pnl; 00)A&, r"dr'j „(kr')h&&'&(kr')U„, (r'), (32)
0

a set of equations relating the numerical coeKcients A„ from which they can be individually evaluated. The
asymptotic wave function is then

&p(r, 6,$) (4~)~(kr) ' exp(ikr) p„„(2n+1)'*(—)"A„V„„(8,p). (33)

If there is azimuthal symmetry, &P„(r) in Eqs. (23) and (25) becomes

&P (r) =i"+'A„k„o&(kr),
and Eq. (32) reduces to

(34)

A„=—k Qt„p "(2p+1)C (pnl 00) r"dr' j„(kr') j&(kr')U„(r')

leading to the asymptotic wave function

ik P&„i™—(2P+1)C'(Pnl& 00)A& r"dr' j„(kr')h&o&(kr') U„(r'), (35)
0

&P(r,o) (kr) ' exp(ikr) P„(2n+1)A „P„(cos8). (36)

For a spherically symmetric potential,

from which

A &= —k r"dr' j P(kr') U(r') ikA& r"dr' —j&(kr')k~o&(kr') U(r'),
0 0

(37)

—k r"dr' j&2(kr') U(r')
0

1+ik r"dr' j&(kr')k&&'& (kr') U(r')

When there is azimuthal symmetry, the coefFicients
A ~ can be written in terms of the phase shifts t comparing
Eq. (36) with the usual phase-shift expression):

For a spherically symmetric potential, Eq. (38) leads
directly to an equation for tan6z, namely,

Ag ——(2i) 't exp(2i5&) —17. (39)
—k r"dr' j P(kr') U(r')

0

Since in practice it is usually tanbz that is computed, a
more convenient form of the relation is obtained by a
bit of manipulation:

tanBz ——

1—k r"dr' j&(kr')y&(kr') U(r')
0

(42)

A (——tanB(/(1 —i tan8(),

which can be inverted to read

(40) where, in order to write the equation in terms of real
quantities, the Hankel function has been split into a
Bessel function and a Neumann function:

tan8, =A (/(1+iA &). k&&'& (kr') = j&(kr')+iyp(kr'). (43)
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If the potential is sufficiently weak, the denominator
in Eq. (42) reduces to unity and the numerator is small.
Since the phase shift is then small:

BP= —k r"dr' jP(kr') U(r'),

which is the Born-approximation result. While the
weak-potential limit is the same in this procedure as
in the usual derivation of the Born approximation, the
way it is approached is not the same. The Born approxi-
mation is extended to moderately stronger potentials
(up to 5P=n./2) by using Eq. (44) via Eq. (39) to
obtain the asymptotic wave function LEq. (36)).' This
can give an answer markedly different from Eq. (38).

It is important to note that the two integrals in
Eq. (42) need not be of the same order of magnitude;
this depends on the shape of the potential. The Neumang
function weights small values of r' more heavily than
the Bessel function, large values of r' less heavily. For
a strong potential, it is the 1 in Eq. (42) that is negli-
gible. Even though the integrals be large (and the Born
approximation pha, se shift accordingly large), their ratio
will be small for a short-range potential and hence the
phase shift will be small too.

B. Justification

To justify the use of the approximation, it is necessary
to trace through just where it comes in. This involves
maintaining a clear distinction between the asymptotic
value of the wave function (which alone is required for
the cross section) and the wave function itself (which
concerns us insofar as it appears as a factor in the
integrand for the non-Born part of the asymptotic
value). The Eqs. (18) and (19) used for the asymptotic
value are exact. The Born approximation part of the
asymptotic value LEq. (18)) is computed exactly. The
approximation enters in the evaluation of the integral
in Eq. (19)—in using the approximate value LEq. (31))
for fi, (r') in the integrand. In a sense, then, the solution
used is the asymptotic value of the wave function
obtained by iteration on a trial function given by Eq.
(31). To obtain the wave function itself by iteration,
Eq. (31) would have to be substituted into Eq. (16) and
the integrals in Eqs. (15) and (16) computed for
arbitrary r—a far more onerous procedure. If this were

done, the next iteration would be completed by inserting
this wave function into Eq. (19).

The accuracy of the trial function LEq. (31)) can
be gauged from an examination of Eqs. (15) and (16).
The discarded integral looks like a truncated version of
the retained one (in fact, half of it is precisely that), and
can thus be expected to be smaller (except possibly for
very small r). The argument is reinforced by the fact
that the integrand is zero at r'=r, so that the integral
does not start to build up till a value of r' well above r.
A detailed analysis of the integrals requires speci6-

cation of the potential, but some further comments are
possible if the potential is not strongly oscillatory. It
appears that the integrand of the discarded integral
is more oscillatory than the integrand of the retained
integral, so that the relative magnitude of the discarded
integral is further reduced.

The oscillatory behavior is most evident for a central
potential. In the discarded integral, the Bessel functions
can be replaced by their asymptotic values:

j„(kr) (kr) ' sin(kr —17r/2),

h~"'(kr) ~ (—i)"+'(kr) ' exp(ikr).

With a bit of trigonometric manipulation,

(45)

(17)

g„~(r) (2i/k'r) cos(kr —mn/2) dr' U(r'). (48)
r

This expression is 6nally used in the integrand of Eq.
(30), where it is multiplied. by j„(kr) ~ sin(kr —m/2),
leading again to an integral attenuated by oscillation
as against the retained term. A parallel chain of reason-
ing leads to similar conclusions for the non-Born terms.

C. Assessment

The way the approximation is introduced does not
lend itself to an u priori quantitative analysis of limits
of validity and probable error. A couple of general
remarks are nonetheless possible:

(1) The effect of the approximation is to distort the
scattered wave function in the innermost region of the
potential. The importance of this distortion grows in
importance with the range of the potential, as the
cumulative phase error builds up. Thus the approxi-
mation can be expected to work well with short- to
moderate-range potentials (for which the phase shifts
are not too large) and to break down for longer ranges,
pretty much independently of the strength of the
potential. (In contrast, the Born approximation gives
erroneously large phase shifts for strong short-range
potentials. )

(2) As the strength of the potential is increased (for
fixed range), the scattering coefficients become non-
linear in the amplitude of the potential and ultimately

h.&»(kr)j.(kr ) —j.(kr)h. o'(kr )
(i/k'rr') sink (r' —r), (46)

and the integrand for the Born term contains j„(kr')
times this, or

sink (r' —r) sin(kr' —nor/2)

=2 cos(2kr' kr —mx/—2) —2 cos(kr —m/2). (47)

The first term is oscillatory in the variable r', with
mean value zero, as against j„'(kr') ~ sin'(kr' —m/2)
appearing in the retained infinite integral —so its
contribution is attenuated. The second term contributes
to P„~(r) the quantity
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reach an asymptotic value independent of it. The
approximation should be able to cope with strong
potentials as well as weak. The exception to this is that,
for attractive potentials, it will not reproduce the
details of resonance behavior where the latter occurs;
in that case, reasonable values for the "potential
scattering" can be expected, but not the abrupt changes
of phase shift (and cross section) at the individual
resonances.

An incidental advantage of the present formulation
is that it provides a more natural way of treating a
continuously varying potential than the usual pro-
cedure of truncating the potential and then matching
wave functions at the 6ctitious boundary.

III. SPHERICAL WELLS AND BARRIERS

To provide something of a calibration of the approxi-
mation, a detailed comparison of exact and approximate
phase shifts has been carried out for a variety of
spherical wells and barriers, i.e., spherically symmetric
potentials of the form

U= Uo, r(a,
U=O, r)a,

where Uo can be a negative or positive constant. By
varying Uo and a, it is possible to map out the depend-
ence of the accuracy of the approximation upon the
strength and range of the potential; the conclusions thus
arrived at should be applicable to any reasonable
potential that falls off rapidly enough for large r (of
course, just as in the Born approximation, the potential
must fall off faster than 1/r for the integrals to
converge).

To illustrate the results and sort out their pattern,
some values of the 1=0 phase shift are shown in Figs.
1—4. The display selected is to plot 80 versus Uo/k'
(the ratio of the potential energy inside to the kinetic
energy outside) for a fixed range, repeating for diferent
ranges. Using absolute values, the results for attractive
and repulsive potentials are superposed to save space.
The values of

~
Uo~/k' run in each case from 1 to 100.

The values of ku (the range in units of the reduced wave-
length) used in the 6gures are 0.1, 0.5, 1.0, and 2.0,
respectively. While the corresponding curves in Figs.
1—4 are qualitatively similar, the choice of values is
such as to emphasize a different (partially overlapping)
region of the curves in each figure.

Figure 1 depicts the state of affairs for small ka and
correspondingly small phase shifts. For the stronger
potentials shown, the Born approximation is appreci-
ably in error, though not overwhelmingly. The present
approximation does considerably better.

Figure 2, for ha=0. 5, brings us into a region where
the phase shift is no longer small. The Born approxi-
mation breaks down completely, and over much of this
region it is doubtful that a second-order Born calcu-
lation would do any good. The present approximation
gradually increases in error but remains in reasonable
agreement with the exact values; a second-order
calculation would undoubtedly come extremely close.

In discussing the effect of further increasing ka, it
becomes necessary to distinguish between attractive and
repulsive potentials. For the latter, the exact and
approximate curves are similar, but the spread between
them grows with ka. It is clear that as ka is increased
this spread will reach an inadmissibly large value (for
fixed Uo). To gauge where this occurs, the exact and
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FIG. 1.Phase shift 80 for a spherical well or barrier of range ka =0.1. I' IG. 2. Phase shift bo for a spherical well or barrier of range ka =0.5.
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FIG. 3. Phase shift 50 for a spherical well or barrier of range
ku= 1.0. Arrows indicate displacement by nm of plateau after nth
resonance.

approximate values of sinbo must be compared, inasmuch
as the magnitude of the partial wave amplitude is
proportional to sinbo. For the kg's illustrated, the values
of sinbo agree better than the values of bo,' in fact, for
ha=2. 0 and strong potentials the agreement in sinbo is
excellent through the happenstance that the exact and
approximate values of ho straddle —n)2. For larger ka
values this relationship quickly reverses, until for
ka=z a factor-of-two error in bo leads to total dis-
agreement (in the hard-sphere limit for ka =n. , the exact
ho is —r, the approximate —n./2). For ku of the order
of m or larger, the present approximation breaks down
before the Born approximation does.

For attractive potentials, the exact and approximate
curves part company when the exact curve begins the
terrace pattern (a sequence of sharp rises in the magni-
tude of ho followed by a plateau) characteristic of
resonance behavior. The net effect after a resonance has
been passed is an increase in

~
ho~ by ~. Since ho enters

in the partial wave amplitude only in the function
exp(i2ho), a shift in ho by m is not observable. In Figs. 3
and 4, the arrows indicate where the plateau following
the nth resonance would fall if

~
ho~ were reduced by em.

If the arrow tips are connected, a smooth Oat curve
results which resembles the one for repulsive potentials,
and which yields the partial-wave amplitude correctly

I
.9
.8-~7—
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3 + X 6 8 /0 ZO 30 +08060 80/M
IU. t/~'

FIG. 4. Phase shift bo for a spherical well or barrier of range
ku=2. 0. Arrows indicate displacement by nx of plateau after
nth resonance.

except near the resonances. This is the "potential
scattering, " which is subtracted off in an analysis of
resonances. It is evident that the approximate curve for
attractive potentials follows the "potential scattering"
curve, overshooting it by about the same amount as the
approximate curve for repulsive potentials undershoots
its exact counterpart (In both cases, a spurious positive
phase shift is introduced, making the potential appear
more repulsive than it actually is). On the other hand,
it ignores the resonances altogether; the latter have to
be found and treated in some other way.

Going back to Eq. (42), the spread between the exact
and approximate curves (for repulsive potentials and
for the "potential scattering" contribution for attractive
potentials) can be ascribed to the integral in the
denominator being too large. In fact, the exact and
approximate curves can be made to coincide by scaling
down the value of this integral (at least through ka= 1),
the scaling factor required decreasing as ka increases.
The interpretation of this observation is that the
approximation overestimates the effect of the scattering
on the wave function in the innermost region of the
potential, the more so the longer the range of the
potential.


