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Structure-Independent Electrodynamics in the Electric-Dipole Approximation
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We treat the problem of a nonrelativistic charged particle interacting with its own Geld, by a method
originally devised by Kramers. We show that the ambiguities which arise in Kramers' theory vanish when
one utilizes a canonical scheme which explicitly deals with the constraints (relations among the dynamical
variables) which arise in the course of mass renormalization. To create a consistent canonical theory in the
presence of these constraints, it is convenient to introduce new dynamical variables which no longer satisfy
the canonical commutation rules. We show that, if one accounts for the constraints, several different re-
normalized theories are related to each other by canonical trans'formation, and that each of these theories
may be derived from a given unrenormalized theory by a canonical transformation.

I. INTRODUCTION dependent (unrenormalized) theory is related to the
structure-independent (renormalized) theory through a
canonical transformation, when the constraints are
explicitly incorporated into the structure-dependent
theory. The existence of constraints in the structure-
dependent theory had already been suggested in a
previous paper, from an analysis of solutions in the
problem of a free particle and an oscillator interacting
with a radiation field. '

In our formulation of this problem we have the option
of treating the particle and electromagnetic Geld vari-
ables as classical quantities or as quantum-mechanical
operators. In making the transition from the classical
theory to quantum Inechanics, one simply replaces all
Poisson bracket relations by their appropriate com-
mutator counterparts. Anticommutators do not enter
the theory because we never second quantize the
particle variables.

The constraints that enter our theory have especially
simple properties. In the terminology of Dirac, they
are all second class, i.e., they fail to commute with one
another. ' Faced only with this type of constraint, we
avoid the difhculties introduced by their appearance, by
replacing the canonical commutator (Poisson bracket)
formalism by a scheme formally equivalent to the Dirac
commutator (bracket) formalism. '

Kramers' mass renormalization is based on a specific
decomposition of the electromagnetic vector potential
into an external and a proper Geld. However, by using
a different definition of the external and the proper field,
Steinwedel' has also accomplished mass renormaliza-
tion. The two approaches are actually equivalent, since
we show that the variables of Kramers and Steinwedel
are related by canonical transformation, when we
modify Steinwedel's canonical formalism to take explicit
account of the constraints.
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'N this article we re-examine and reformulate a
& - problem previously treated by Kramers. ' Kramers
considered a nonrelativistic charged particle interacting
with its proper (self) electromagnetic field in addition
to external radiation and potential fields. Kramers
showed that the interaction of the charge with its own
Geld could be incorporated into the theory by a mass
renormalization, if the appropriate choice is made for
the self-6eld. The resulting equations refer only to the
observed mass and charge of the electron (Kramers
calls this the structure-independent aspect of the
theory), and the dynamical equations for the particle
contain interaction terms involving only external fields.

Kramers' final equations are arrived at through use
of the electric dipole approximation, whose key assump-
tion is that all retardation sects are to be ignored in
evaluating the electron's charge distribution. As a result
of this assumption, one neglects the magnetic forces
acting on the particle, as well as particle recoil.

Kramers placed his structure-independent equations
in canonical form, and as a consequence of the mass
renormalization his resulting Hamiltonian could be used
to predict the Lamb shift.

However, his method suffers from an ambiguous
specification of the canonical variables of the Hamil-
tonian theory; for as we show in this paper, a re-
normalized canonical theory contains variables which
are not all independent of one another. The ambiguities
in Kramers' theory arise because he has not formally
incorporated the constraints (the relations among the
canonical variables) into his Hamiltonian formalism.

In our reformulation of Kramers' problem, we show
how the constraints arise from the mass renormaliza-
tion procedure. Indeed, we show that the structure-
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e(Q) = Q(x, t)p(x, t)d'x. (3)

These averages provide a means for evaluating field
quantities at the position of the charge, and they serve
to eliminate from the equations of motion certain
infinite self-forces which cannot be removed by mass
renormalization. In evaluating an integral of the form
(3), we first integrate over the surface of the charge,
then along its radius, and finally we pass to the limit of
a point charge so that the dimensions of the particle will
not appear in our equations. In other words, the charge
density p must be replaced by a delta function, but in
the manner prescribed above.

We now decompose A into two parts,

A=AO+A, ,

where Ao is the divergence-free solution of the equation

v2Ao Zj =j vay/at. — —— —
The letter Z in Eq. (5) signifies the "transverse part of"
the vector which follows.

The solutions for P and Ao are

1 PQ JQ
d Vo, Aoi ——— & d Vq, (6)

4w rpQ 4m J rpQ

and at large distances from the center of the electron

6This section represents a brief summary of the results of
Kramers in reference 1.

IL STRUCTURE INDEPENDENT EQUATIONS
OF MOTIO¹

We consider an electron in an electromagnetic field
which everywhere satisfies the field equations (c= 1):

zA= —j+ vay/at, v A=o, v'y= p. —(1)

A and g are the potentials of the electromagnetic field
vectors E and H,

E=—vy —aA/at,
H= vXA.

In our nonrelativistic approximation it is valid to
assume that the electron is a rigid body of unre-
normalized mass mo and charge e. The charge distribu-
tion of the electron has spherical symmetry and extends
over a small region of space of the dimensions of the
classical-electron radius. The exact size is unimportant
since in all our computations we shall pass to the limit
of the point electron.

The electron equations of motion are

nzoR =e(E)+eRX (H)—VU. (2)

R denotes the position of the electron center and U the
potential energy of the electron in an external, static
field. The p and j of Eq. (1) refer to the charge and
current distribution of our single charge, so that j=pR.

The symbol (Q) is a mean value given by

e2

m, +»m ———
~R" '347r r I

= —e—(A )+«X(VXA,)—VU. (g)

The potential Ai satisfies the equations

clAi= a'Ao/at', v Ai=0. (9)

Solutions for Ai are easily found. i For the purposes of
this paper the precise form of these solutions is not
important. We are only interested in the qualitative
behavior of A, in the electric dipole approximation, i.e.,
when the eGects of retardation may be neglected in the
evaluation of the electron s charge distribution. In this
approximation Ai has finite values at the position of the
charge, and at that point it is a function of the time
alone. There is thus no magnetic force acting on our
charge. If we take this last into account, and introduce
the renormalized mass m,

Eq. (7) becomes

mR = —e—(Ai) —V'U.
dt

(10)

Equations (9) and (11)are the structure independent
equations of Kramers' theory, in the electric dipole
approximation. The only parameters characterizing the
particle in these equations are the charge e and the
observed mass m.

III. STRUCTURE INDEPENDENT HAMILTONIAN
FORMALISM

The electric dipole approximation to Eqs. (1) and (2)
may be derived from the following structure-dependent
Lagrangian:

I.o——-', moV'+e(A) V—U(R)

1 8@+- d'x f (gE)'—(VXA)') — d'x —V A, (12)
2 Bt

7 See reference i.

these become

g(r) e//4x. r', Ao(r) &eV//4rrr', (7)

with V= R, and r' =
~

x—R ~, the distance from the center
of the charge to the point x at which the potentials are
evaluated. In accord with the electric dipole approxima-
tion, we shall assume that ar'/at=0. We make this last
assumption in all the calculations which follow, and in
addition place the charge at the origin of our coordinate
system (r'=r).

It we substitute the potentials for the field quantities
in (2), and make use of the spherical symmetry. ,of our
charge distribution, we have
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where QE= —BA/Bt W. e have not included any terms
in Eq. (12) which would permit the derivation of the
third of Eqs. (1), because in the electric-dipole approxi-
mation this equation is not coupled to our other equa-
tions. The last term in Eq. (12) takes account of the
subsidiary condition V.A=O; cl@/Bt in the integrand
corresponds to a Lagrange multiplier.

If we now drop the last term in Eq. (12), and insert

Eqs. (4), (6), and (10) into the remainder, we obtain the
structure independent Lagrangian

BL d BL

BR d& B(dv/dp)
(18)

ti (dV/dt)

PA, =5L/5 (ciAi/pit).

The Hamiltonian is defined in the usual way,

(19)

(20)

x,=PJt R+Pr dV/dt+ d'x PA, BAi/Bt L. (2—1)

where

L= -'mV' —U(R)+— dsx (Ei2—HP),
2

(13) On evaluating Eqs. (18—20), we find

Pit ——mV+e(Ai), (22)

and

E,—=&E= —(ci/Bt) (Ai —eZR/r),

H, = v'xAt.

(14)

(15)

We now consider the independent variables to be
Ai, BAi/Bt, R, R, and R LR appears through Ei in Eq.
(14)]. If we extend the usual variational principle to
include the dependence of L on R, the variation of L
leads to the following Euler-Lagrange equations:

and

"oL 8 t' "oL

BAi Bt (5 (BA,/rit)

BL d ~Ll d' ci

. I+-
clR Ct ciR) dt' ciRdt

(16)

(17)

'The Ostrogradsky method is discussed in E. T. Whittaker,
Analytical Dynamics (Dover Publications, New York, 1944),
p. 265.

where 5 denotes functional diBerentiation. Equation
(16) corresponds to the first of Eqs. (9), while Eq.
(17) corresponds to Eq. (11).

Note that we did not use any subsidiary conditions in
deriving Eqs. (16) and (17). In Eq. (12), the last term
serves to introduce the longitudinal part of the current
density into the field equation for A. This part of the
current density has now been absorbed by Ap through
its defining equation, (5).

The same Lagrangian (13) will appear again in Sec. V,
when we show that the canonical variables derived
from Eq. (12) (the structure dependent theory) are
connected with those of Eq. (13) (the structure inde-

pendent theory) by a canonical transformation.
The appearance of R in Eq. (13) forces us to use the

method of Ostrogradsky for introducing the Hamil-
tonian formalism. ' In the Ostrogradsky method we
treat R, V, and Ai as independent coordinate variables,
and introduce the momenta canonical to these coordi-
nates, Pit, Pr, and Pg, through the relations

Pr ———e(Z,)= e d'x PA, /r,

PA I K1)

(23)

(24)

where Z1 is a divergenceless Hertz vector satisfying the
relations

PZ, = —Ei, aZ,/at= Ai. (25)

We immediately note that Eqs. (22) and (23) are
independent equations involving only the canonical
variables and not the velocities. Such relations are
called constraints. Constraints arise in any theory where
the Lagrangian depends on second- and higher-order
time derivatives of the coordinate variables. For
example, we see from Eqs. (18—20) that, in going over
to the Hamiltonian formalism, the elimination of R and
BA,/Bt must yield at least one constraint. The existence
of additional constraints will then depend on the
particular functional form for L. In our case L is
structured so that there is one additional constraint, so
that we are left with two independent vector equations
restricting the canonical variables.

We denote the constraints by Ci and C&, where

Ci ——Ptd —mV —e(A,)=0

C, =Pr+e(Z, )=0.

(26)

(27)

An appropriate linear combination of these constraints
must be added to the Hamiltonia, n (21) to insure that
Hamilton s equation are identical with the Euler-
Lagrange equations. The correct Hamiltonian is

K= -', mV'+ U+eV. Ai

+- d'x (Eis+Hts)+C, V+C, dV/ct, (28)
2

or alternatively,

1
K= (Pit' —e'(A, )')+ U

2m

1 e+- d'x (Ei'+Hp) ——C& (Ai)+C, dV/ct (29). .
2 m
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We see from Eqs. (28) and (29) that the Hamiltonian
depends only on the canonical variables and is inde-
pendent of accelerations, when the constraints are
satisfied.

If the canonical theory is to be consistent, the
constraints must continue to vanish in the course of
time. That they are indeed constants of the motion is
readily checked, since they have vanishing commutators
with the Hamiltonian,

linear combinations of constraints to each dynamical
variable. ' "

Let A be a dynamical variable and 6'~ the
commutator

O'" = LC',Cs (33)

G~kg —1 @king
—1

l y

and the new variables 2*,
(34)

If the constraints are all second class, then the inverse
6;I, ' exists,

LCi,ae)= PCs,K)=0. (30) A*=A+Gis '$C', A)Cs,

In calculating commutators such as those in (30), we
assume that the particle variables satisfy the standard-
commutation relations. We also require that the
divergence-free field variables Ai and P~„satisfy the
commutation relations for transverse fields,

1 j.
$Ai(x, t),P~, (x',t))=i 5(x—x') ——VV' —. (31)

4n. /x —x'f

all commute with the constraints,

LA*,C') =0. (36)

If we now replace all our canonical variables by their
starred counterparts, our constraints become first class.
These modified variables satisfy the same equations of
motion as our original variables, and they equal these
original variables when the constraints are satisfied.

In our theory the modified variables are

On the other hand, the commutator R*=R—(1/rwp) Cs, P@*=Pig,' (37)

[Cl C2)= 'tmp (32) Y*=V+ (1/rip) Ci, Pr*=Pr —(re/mp) Cs, (38)

does not vanish, and so our C's are, in Dirac's termi-
nology, second-class constraints. A first-class constraint
is one whose commutator with all other constraints
vanishes.

The appearance of constraints in a classical theory
means that the possible dynamical motions are confined
to a hypersurface in the full phase space. The dimensions
of this hypersurface are determined by the number of
constraints. If the constraints are second class, then
motions may be generated off the hypersurface simply
by permitting one of the constraints to act as the
generator of a canonical transformation. A similar
problem arises in the quantum theory, where the
constraints restrict the dimensions of the Hilbert space
of state vectors. If the constraints are second class, a
unitary transformation generated by one of the con-
straints will introduce into the Hilbert space state
vectors that are not permitted in the theory. If we wish
to insure that the dynamical motions in both classical
and quantum mechanics are restricted to their respec-
tive hypersurfaces in phase space and in Hilbert space,
then it is necessary that all constraints be made first
class.

Dirac' was the first to find a solution to this problem
by requiring that all commutator relations appearing in
the theory be replaced by new relations called Dirac
commutators. These new commutators have the desired
property that all dynamical variables automatically
commute with the second class constraints.

In the presence of only second class constraints the
same result can be achieved by adding appropriate

Ai' ——A, —g (x,t)—Cs,
mp

Pg,
' ——Pg, ——

i b(x)+—VV—
i

Ci,
m & 4~ ri

(39)

with the dyadic g (x,t) = (es/4~)Z3/r, where 3 is the
unit dyadic. The dots in Zqs. (39) imply contraction of
the preceding dyadic with the vector which follows.

The equal-time commutators between the starred
variables are

$R*,Ai*)= —(s/me) g, I Are, Pv*)= (im/mp) A,

LA,e(x, t),P~,e(x', t))=s( b(x—x') ——V'V'

4s
i
x—x'[)

(40)
ie f 1 1)+—g(x) ~

S(x')+—V'V'—
~,

mp & 4~ r')'

and all remaining commutators vanish. From (40), we
see that the modified variables are not canonical,
although our original set was. The requirement that the
dynamical motion be confined to the constraint hyper-

' P. G. Bergmann and I. Goldberg, Phys. Rev. 98, 531 (1955).' P. G. Bergmann and A. Komar, Phys. Rev. Letters, 4, 432
(&960).

ei ( 1 1) bm
LV*,P„*)=—

~ S(x)+—VV-
~, (V',P *)= s-

tsp k 4ir r4 5$p
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surface will in general destroy the canonical character
of our phase-space variables. In performing calculations
on the constraint hypersurface the modified com-
mutators (40) must be used, and all specific reference to
the constraints is thereby eliminated from the theory.

One notes that the modified commutators, (40),
reintroduce into the theory the unrenorrnalized mass mp.

However, the dynamical equations involve only the
renormalized mass.

IV. KRAMERS' CANONICAL SCHEME

In terms of the original unstarred variables, the
Hamiltonian theory of the preceding section is invariant
under canonical transformations. In the course of such
a transformation the constraints will also be trans-
formed, so that appropriate combinations of constraints
must be added to the new Hamiltonian to insure that
the new equations of motion are equivalent to the old.

In this section we shall carry out a canonical trans-
formation which leads from our canonical variables
of Sec. III to another set originally introduced by
Kramers. ' In this way we justify the consistency of
Kramers' canonical scheme, for Kramers in his analysis
did not deal explicitly with the problem of constraints.
Since Kramers' canonical variables are important for
other considerations, it is of some value to carry out the
transformation in detail.

Let the canonical pairs in Sec. II be denoted by q; and

p;, and consider the transformation

(q', P') ~ (Q',v'),

where i=1, 2, 3. As the generating function for the
transformation we choose

1
G(p', Q')=-Q P.—(Q.—(Q)) P.

m

+Qi Q2 — d'*Q3 P~, (41)

The new Lagrangian is

M = —Q, q,y ; 'H—d—G(p, ,Q~)/dk,

which reduces to

1
M = — (P' —e'(Ai)') —U(R) —R P2'

+— d'x (EP—HP). (48)
2

If one uses Eq. (48), the relation R=m —'(d/dt)
X (P—e(Ai)) must be inserted into Ei and one need not
then use the Ostrogradsky method to identify canonical
variables. The Hamiltonian is

X= (P' —e'(Ai)')+N(R)+ — d'x (E '+H ')
2' 2

1
+C,x V+ C2x dP—/dt. .(49)

fop

K K ~ ~m (5o)

The modified variables in the Dirac formalism are

R*=R—(1/mp) Cgx,

P+ —P+C Ec

Ai*——Ai —(1/mo)g CF,

ye* pic =Cia—0; =(51)

"(P PP j (52)

(53)

The equal-time commutators between the modified
variables are:

fR+q +]=0

As expected, Eq. (49) differs from Eq. (29) only in the
constraint terms.

One easily verifies that the constraints Cix and CP
are second class. In fact, we have

On solving the transformation equations

q; = BG/Bp—,, y;= BG/BQ, , —
we 6nd

Qi ——R,

Q2 ——Pii, yi ———R—(e/m) (Zi);

Qs=Ai, v~, = —~i+(e'/m)&(x)(Zi).

The new constraint equations are

CF= ye=0
C2x——mo(yi+R) —e(Z2) =0

where
1

(Z2) =— d'x Zyg, /r,
4x

and the superscript E refers to Kramers.

(42)

(43)

(44)

(45)

(46)

(47)

LR*,A,*j=—(t/m, )g, LP*,q *j=i,
1 f 1

(Ai*,y~,*j=i 8(x—x') ——V'V'~

4m &ix-x'i j

(54)

All the other equal-time commutators between modified-
canonical variables which do not appear in Eqs. (54) are
zero.

There are some distinct advantages in using Kramers'
canonical variables in place of those we introduced in
Sec. II. Since he has managed to transform one of the
constraints into a dynamical variable, he has fewer
equations to deal with. In addition, his variables lend
themselves most naturally to the usual perturbation
theory expansions in powers of e.

However, Kramers' original derivation of Eq. (48) is
somewhat ambiguous in the identification of canonical
variables and constraints. Kramers starts with the
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In Eq. (SS), M= M(R,V, dV/«, A1, BA1/Bt), so that the
Ostrogradsky method is called for. The canonical pairs
one then obtains from Eq. (55) are

R, yg' ——0;

V, yv' ———mR —e(Z1);

(56)

(57)

A1, yg, '= —E1—e5(x)R. (58)

The constraints are

structure-dependent Lagrangian (12), and forms

M=&p —(d/«)(R P).
He assumes that Lp is a function only of R, R, A, and
(BA1/Bt) and in addition makes use of the relation
P =mpV+e(A). But it is not at all clear that there is a
canonical transformation in going from I.p to M with
Kramers' identi6cation of independent variables. In
the absence of such a demonstration, the role of the
relation P=mV+e(A1) is uncertain.

Furthermore, instead of Eq. (48), Kramers could have
used the relation P=mV+e(A1) to write the alter-
native Lagrangian,

M= ——,'mV' —u(R) —eV (A1)—R (mdV//dt+ed(A1)//«)

1
+— d'x [E1P—H1P]. (55)

2

All the other equal-time commutators between modified-
canonical variables vanish.

We see that the ambiguities in Kramers' original
theory disappear when one takes explicit account of the
presence of constraints.

R, Pa ——mpV+e(A);

V, Pv' ——0;

A, P~ BA/Bt. ——

(68)

(69)

(70)

V. CANONICAL EQUIVALENCE OF STRUCTURE-
DEPENDENT AND STRUCTURE-INDEPENDENT

HAMILTONIAN THEORIES

The equivalence, via canonical transformations, of
various structure-independent Hamiltonian schemes
has been exhibited in earlier sections in this paper.

We should now like to show that all of these structure-
independent theories may be generated by canonical
transformations from the structure-dependent theory.
In order to find these transformations, we must 6rst
generalize the original structure-dependent Hamiltonian
theory to include the velocity V and its conjugate
momentum Pv as canonical variables.

We formally apply the Ostrogradsky procedure to
the Lagrangian (12), noting of course that I p does not
depend on dV/«. We find the following canonical pairs

where

C1'x ——yg' ——0,

Cp'x=mpR+yv' —e(Zp') =0,

1 pAq
(Zp') =— d'x g

4m. r

C1'——P~ —mpV —e(A) =0,

Cp' ——Pv' ——0.

The Hamiltonian is

The constraints are

(60) (71)

(72)

The Hamiltonian is

ae=-', mV'+u(R)+eV (A1)
ge=-'mpV'+U(R)+- d'x [Pg'+( X )']

2

1
+— dPx [E1P+81P]+C1' V+ Cp' &V/«, (62) or alternatively

2
1

and the equal-time commutator between the con- ~= (P—q(A))'+ U(R)
straints is 25$p

+C1' V+Cp' dV/«, (73)

[R8 fg] 0 [R*,V*]=p/m„

] 2 — zmp

Thus the modified variables are

R"=R—(1/mp) Cp', ya'* ——y~' —C1' ——0;
V*=V+ (1/m, )C,'x,

Al A1 (1/mp)A ' Cl, pA = 'fA

The modified commutators are

(63) 1
dPx [P,P+(V &&A)P]yC pP dV/«. (74)

2

(75)2p =—Zmp.

(66)
A generating function for a canonical transformation

from the structure-independent variables of Sec. III to
the present structure-dependent variables is

The equal-time commutator between the constraints is
64

(65)

[R*,A1*]= —(i/mp) g, [V*,yv'*] = i,
(67)

1 ( 1
[A,*,q„"]=1a(x—x')—V'V']

47r & /x —x'[

G(p', Q~)= —Pa Q1—Pv Qp

e
d'x Pg, Q, (x)——g—. (76)

4x r
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One easily determines the transformation equations constraints) Steinwedel frame may be written

Q, =R,

Qo=V,

Pi=Pa',

P,=Pr' ——Pr+e(Zi)=0;
(77) G(p, ,Q,) = —Pg Qi —Pr' Lm-lQ, —(e/mo)(Qo)g

(78)

Q, =A=A, +A„P,=P.=P., (79)
+m-Q, Q,— d'xPg

A generating function for a canonical transformation
from the present structure-dependent variables to
Kramers' structure-independent variables is

LQo(x)+m l(e/4m)ZQo/r). (86)

The transformation equations are

G(p;,Q;) = —P~ Qi —Pv''(Qo —e(Qo))/m+Qi Q2 Qi ——R, yg= Pg —m~Qp=0; (87)

t'Qo —e(Qo))— d*P. Q,(.)+ Z~
~

. (80)
i Qo=Ai', gAy' PA- (89)

Qo
——P' =Pg/ml, y~ ———mlR —(e/m&) (Zi); (88)

Qi ——R,

Qo=P,

yz=P —Qo=0;

yp = —R—(e/m) (Zi);

The transformation equations are Equations (88—89) above are equivalent to Steinwedel's
Eqs. (16).Equations (87) are obtained in addition to the

(81) others because of the constraints. The constraints in the
Steinwedel frame are

Q, =Ai ——A—Ap, y~, ———Ei+ (e'/m) 8 (x) (Zi). (83)

VI. ALTERNATIVE DEFINITIONS OF EXTERNAL
AND PROPER FIELDS

The decomposition of the vector potential A into an
external and a proper field is unique only with respect
to the structure-independent equations of motion for the
particle. That is to say, it is the external field Ai as
defined by Kramers which enters the equations of
motion. However, the above-mentioned decomposition
is not unique with respect to the canonical formalism we
have presented. One can base canonical schemes on
decompositions of A other than Kramers', as long as one
imposes the requirement that such decompositions lead
to the same structure-independent particle equations of
motion. For example, van Kampen" and Steinwedel'
have used decompositions of A which are different from
Kramers, ' and which satisfy the above criterion. How-
ever, neither van Kampen nor Steinwedel have taken
the constraints into account.

As an illustration of an alternative decomposition, we
will complete Steinwedel's canonical transformation for
a free particle by extending his formalism to account for
the constraints. For a free particle, the Steinwedel
external field Ai' is defined by

A,'= A—Ap',

where
Ap' ——(e/47rm) ZP/r (85)

The relationship between Ai and Ai' is determined from
Ai+Ao=Ai'+Ap'. The generating function of a canoni-
cal transformation from the structure-dependent ca-
nonical frame of Sec. V to the extended (to include

"N. G. van Kam en, Kgl. Danske Videnskab Selskab, Mat. -fys.
Medd. 26, No. 15 1951).

Ci'= ye=0,
Cps ——yp +mlR+ (e/m~)(Zi)=0,

(9o)

(91)

1S 2S —~m'

The Hamiltonian is

(92)

g2

x=-', P"+ (A,')'+— d'x
t yg, '+(V)&Ai')'j

2mp
+Cie V+Cos dP'/dt. (93)

VII. CONCLUSION

In this paper we have developed a general Hamil-
tonian theory in electrodynamics for a set of struc-
ture-independent equations originally introduced by
Kramers. The problem still remains of discussing the
present formalism in relation to solutions which arise
when one specifies the potential function U(R). The
latter problem has been partially discussed in a previous
publication by one of the authors. ' It will be more fully
discussed in a future publication. In addition, the theory
must be extended to the relativistic domain, and we
must examine the implications of the present work for a
fully quantized field theory.
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where the superscript 5 refers to Steinwedel.
The equal-time commutator between the constraints
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