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Resonance-Interference Method for Determining X&N Parity
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A method is given for determining the orbital parity of the 71-+Z state of the 1520-Mev, strangeness

(—1), resonance by measuring angular distributions and hyperon polarizations resulting from the process
E +p —+ x+2. The method depends on the observation of interference between the resonance state and
at least one other state, and on the assumption that the relative phase of the resonant and nonresonant
state increases with energy. The validity of this assumption is discussed. Since the orbital parity of the
E +p state may be determined by continuing the measurements from the resonance energy down to the
E +p threshold energy, this method may yield the intrinsic EKE parity. The various ambiguities in the
determination of partial wave amplitudes from experimental data are discussed. It is shown that the many-
channel unitarity condition may be useful in resolving some of the ambiguities.

I. METHOD E +p —&z-+Z reactions, and in E +p elastic scat-
tering, suggest that the resonance is of angular mo-
rnentum as. The resonance in z+Z Production may be
associated with any one of the four possible j=—,

'
amplitudes, i.e., the amplitudes f*„i,i and f;,s, s (if 6'= 1),
or f;,s, i and f; i s (if (P = —1).If the resonance amplitude
interferes with some other partial-wave amplitude, one
can determine the relative parities of the two ampli-

tudes, but the over-all fourfold ambiguity remains. This
ambiguity is a generalization of the ambiguity pointed
out by Minami in pion-nucleon scattering4 and may be
stated concisely in the following way. For any set of
partial-wave amplitudes, there are three other sets that
lead to the same angular distribution and hyperon-
polarization, if the nucleon is unpolarized. The trans-
formations between these equivalent sets of amplitudes
are'

K consider the elementary particle interactions,

(1a)E +P —& z'+Ra,

E +p —&sr +2+, (1b)

and make the customary assumptions concerning the
spins and isotopic spins of the particles. Time-reversal
and space-reQection invariance are assumed. The asym-
metry in the Z+~sr'+p or Z' —+A' —&sr +p decay
may be used to determine the sign and magnitude of the
Z polarization. ' In this paper we present a method for
determining the relative intrinsic parity 5' of the XE
and mZ pairs by means of angular distribution and
polarization measurements involving a resonance. The
method is applied to the 1520-Mev, strangeness (—1),
isotopic spin 0 resonance discovered by Ferro-Luzzi,
Tripp, and Watson. ' An advantage of the method is that
no "special" measurements are required; even if (P were
known, it would be useful to measure the 2 polarization
and angular distribution in order to investigate the
resonance.

We denote the partial wave amplitudes for either
process (la) or (1b) by the symbol f;, «z&, «&, where j is
the total angular momentum, and l (E) and l (sr) are the
values of the orbital angular momentum in the E+X
and sr+2 states. The amplitudes are normalized in
terms of the corresponding elements of the unitary S
matrix by the relation f =S /(2i).

It is well known that the assumptions of angular
momentum and parity conservation, together with Z
polarization and angular distribution measurements, are
rot sufhcient to determine 6'; some other dynamical as-
sumption is necessary. We illustrate this ambiguity by
con i rin h 20-

f ~+~~f *~~f
(2)

f ~f s~f ~f
where the transformation between any two columns is
to be applied simultaneously to all amplitudes. The
symbols + and —denote j+z and j——,'. The first two

of these sets are possible if (P=1, and the last two are
possible if (P= —]..

We propose to resolve this ambiguity by using two
dynamical principles. The first principle concerns energy
dependence near E+E threshold, and enables one to
determine the E+X orbital angular momentum of any
amplitude. The second principle concerns the inter-
ference between resonating and nonresonating ampli-
tudes and may be used to determine sr+2 orbital
angular momentum. Simultaneous application of both
principles enables one to determine the initial and final

s de g t e 15 Mev resonance. The angular dis
~ ~ ~ Science, U.S.S.R., 1960) and University of California Radiation

tributionss ' in the various z+Z charge states of the Laboratory Report QCRL9354 1960 (unpubhshed)
4 S. Minami, Progr. Theoret. Phys. (Kyoto) 11, 213 (1954); S.

i The signs and approximate magnitudes of the Z+ and Ae decay Hayakawa, , M. Kawaguchi, and S. Minami, iNd. , ll, 332 (1954).
asymmetry parameters are given by E. F. Beall, B. Cork, D. These equations may be derived from the equations given by
Keefe, P. G. Murphy, and W. A. Wenzel, Phys. Rev. Letters 7, 285 Richard H. Capps, Phys. Rev. 115, 736 (1959), PEqs. (7) and
(1961). p. 739j.The amplitudes 7 defined on page 739 of this reference are

M. Ferro-I uzzi, R. D. Tripp, and M. B. Watson, Phys. Rev. equal to twice the corresponding amplitudes f of the present work. ,
Letters 8, 28 (1962). except that T&+&, &= —2f;, +, . This change of sign is arbitrary, and

L. W. Alvarez, Proceedings of the Birth Arfnla/ International may be made by changing the sign of all K+Zf states in which
Conference on High Energy Physi-cs, Kiev, 1959 (Academy of l(K)=j+ ', , if 6'= —1. —
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orbital angular momentum of the 1520-Mev resonance,
and hence the intrinsic EZS parity as well.

A. Energy-Dependence Principle

The possibility of reducing the ambiguity by making
use of the energy dependence of the amplitudes is well
known and is included here for the sake of completeness.
The crucial fact is that at energies close to the E+E
threshold, the partial wave amplitude f;, t&rrl, t& l is pro-
portional to the t(E)+—,

' power of the center-of-mass
system X momentum, provided that there are no
freakish singularities present, such as a pole in the
amplitude exactly at the threshold energy. Because of
this principle, it is known that the large cross section for
rr+Z production at low E momentum results from
interactions in the S state of the E+X system. If one
measures the Z polarization and angular distribution
throughout the energy region between g+1V threshold
and the resonance, one can determine the X+X orbital
angular momentum of all important amplitudes by
means of their interference with the 5 state and with
each other. The application of this principle to the
1520-Mev resonance has been discussed previously by
the author. '

B. The Resonance-Interference Principle

It is seen from Eq. (2) that the correspondence be-
tween two equivalent sets of amplitudes involves com-
plex conjugation if and only if the two amplitudes differ
in the orbital angular momentum of the z.+Z state.
(This special property of the rr+Z state results from the
fact that the equivalence refers to hyperon-polarization
measurements, with the nucleon unpolarized. ) Hence it
may be possible to determine z.+Z orbital parity by
making use of the fact that the analytic properties of
reaction amplitudes are not invariant to complex conju-
gation. This principle is crucial in the cusp method of
measuring parities. ' We will make use of a different form
of the principle, namely that the energy derivative of
the phase of an amplitude passing through a narrow
resonance must be positive. ' This principle results from
the causality assumption and was proved by Wigner. '
If only elastic processes are possible, the Wigner theo-
rem is expressed in terms of the magnitude of the center-
of-mass system momentum hk and the "range" a of the
interaction; if ku))1, the theorem is simply, d5/dk) —a.

R. H. Capps, Phys. Rev. Letters 6, 375 (1961}.
~ A thorough discussion of the cusp method as applied to as-

sociated production, with particular reference to the Minami
ambiguity, is given by M. Nauenberg and A. Pais, Phys. Rev. 123,
1058 (1961).Dr. Nauenberg has pointed out to the author that
for elastic processes, the Minami transformation should be written
in the form f;,+, + &~ —f;, , *, in order to be consistent with
unitarity.' The phase of an inelastic amplitude is fixed within an additive
factor of x by the requirement that the S matrix be symmetric.

' Eugene P. Wigner, Phys. Rev. 98, 145 (1955).In this reference
Wigner proves the theorem under the assumption that only one
channel is open, but points out that the theorem may be extended
to the many-channel case.

If one assumes that the 1520-Mev resonance exists in
some linear combination of the z.+Z and %+X states,
and that the resonance width is 20 Mev, "application of
the Wigner criterion implies that the interaction range
would have to be & 14 f in order for the phase to be de-
creasing with energy at the resonance peak. Such a large
range is unreasonable, so the phase must be increasing.

The Wigner theorem may be stated in modern dis-

persion language in the following way. The partial wave
amplitudes for the process E+E~ z.+Z contain
"right-hand" branch cuts starting at the energies where
the X+X, v+2, and other channels become open. The
amplitudes also contain poles and "left-hand cuts"
which represent the effective forces on the system; we
call these the "force singularities. " The force singu-
larities are not necessarily all on the real axis. Suppose
that a resonance "bump" is observed experimentally,
centering at the energy Eo on the right-hand cut. If this
bump is very narrow compared to the distance from the
nearest force singularity, some other singularity, closer
than the force singularities, is implied. Because of the
causality principle, this singularity cannot lie in the
upper half-plane, so it must be reached by continuing
down through the right-hand cut (and must be on an
unphysical sheet). If this singularity is a pole, or can be
represented by several poles, the fact that it lies below
the point Eo implies that it leads to a positive energy-
derivative of the phase of the amplitude at real energies
near Eo.

In order to apply this principle to the process (1a) or
(1b), one must observe the interference between the
resonant amplitude and some other partial-wave ampli-
tude at two different energies in the resonance region.
One then assumes not only that the resonant phase is
increasing with energy but that the relative phase of the
resonant and nonresonant amplitudes is increasing.
(This additional assumption is certainly reasonable, and
is discussed more fully in Sec. IV.) This condition
permits the determination of the 7r+Z orbital angular
momentum of the resonance. A specific application is
given in the next section.

II. APPLICATION TO THE 1520 MEV RESONANCE

We consider either process (1a) or (1b) and assume
that the 1520-Mev resonance occurs in a state of j=&.

We adopt a notation that allows us to write one set of
angular distribution and polarization equations, valid
for all four possibilities related by the generalized
Minami transformation, Eq. (2). The resonant ampli-
tude is denoted by f;,, where a represents both the
(unknown) E+lV and z.+Z orbital angular mornenta.
Frequently the comma will be omitted and the angular
momentum subscripts —,', 2, and —,

' will be abbreviated to

' The value of the width is given by R. D. Tripp, M. Ferro-
I uzzi, and M. B. Watson, Bull. Arn. Phys. Soc. 7, 49 (1962).The
author wishes to thank Dr. Tripp for sending this information
prior to publication. More complete measurements have led to a
width of 16 Mev t,'see reference 2).



1576 RI CHARD H. CAP Ps

1, 3, and 5, i.e., f*, ,,= fl, . The other j= ~3 amplitude that
is allowed by parity conservation is denoted by f». The
amplitudes for any angular momentum j are denoted by
f, , and f;, b, the correspondence being such that the
difference in E+1V (or lr+Z) orbital angular momenta
between any two amplitudes with identical second
subscripts is equal to the corresponding difference be-
tween the total angular momenta. (That is, if 6'= —1

and the resonance occurs in a Pa state of the lr+Z
system, then f;,=f;,+, for any j;f, , b=f;, ,+for any j.)
The absolute magnitude of the amplitude f; is denoted
by f,, and it;, , represents the phase of f, minus the phase
of f, . If all amplitudes of j)~3 are equal to zero, the
general expressions for the angular distribution and
hyperon polarization are'

8o
kyar' —= fl.'+fig+ (f&a'+ f&b2) (3 cos'8+1)

dQ

+ (fi.fib «»ala, »+2fbafla COSgba, la

+2fbb fib cosltab lb)2 cos0

+ (fba fib COsitba, lb+ fbb fl, COSit3 b, la)(6 COS'8—2)

+fbaf» COSY/b 3b(a18 COS 8—10 COS0)i (3)
Go

krr'P =[%fl,f—lb sinrtl, lb
dQ

W fbafla Sinrtba, ia&fabfib Slnltbb lb

~(fbaflb Sinlt3a, ,b
—f,bfia Sinlt, b, la)3 COS8

W f3 f» sinlt3, , 3b(9 cos'8 —1))2 sin8. (4)

The angle 0 is defined by cos0=krr k /(krak ), where
Akrc and bk denote the momenta of the E and lr

particles in the center-of-mass system. The quantity P
is the fractional Z polarization, measured in the direc-
tion of kz Xk . The upper signs apply if the lr+Z orbital
angular momentum of the resonance state is 1, and the
lower signs apply if a lr+Z D state is involved. The goal
of the resonance-interference method is to determine
which set of signs is correct.

It is well known that if all partial waves corresponding
to angular momenta greater than some fixed angular
momentum may be neglected, the number of terms in
the cos8 expansions of do/dQ and (Pdo/dQ)/sin8 is equal
to the number of unknown amplitude magnitudes and
relative phases. Unfortunately, the equations are not
linear, so that there are often multiple solutions, in
which case ambiguities other than the generalized
Minami ambiguity are present. A detailed discussion of
these extra ambiguities is given in Sec. III. At present
we ignore the extra ambiguities and present a simple
illustration to show how the method might work.

Preliminary evidence concerning the process E +p +-
lro+Z' indicates that the number of lr"s produced in the

angular region cos0&0 is approximately equal to the
number produced in the region cos0(0 at all E lab-
system momenta in the range 300 Mev/c —500 Mev/c,
(corresponding to the center-of-mass system energy W
in the range 1485—1560 Mev). ' However, the polar-
equatorial ratio R~,= (p —e)/(p+e), (where p indicates
the number of pro's produced in the region

~
cos8~ )0.5,

and e the number in the region ~cos0~ &0.5) varies
in this energy range. A simple interpretation of these
data is that the only two important amplitudes are
the resonant amplitude f3, and the j=—,

' amplitude of
the same parity, f». This interpretation can be tested by
the polarization measurements, for it predicts that the
cos8 sin8 term of Pda/dQ is appreciable at some energy
in the resonance region, and that the sine term of
Pdo/dQ is .small. ' The polarization measurements have
not yet been completed, so this interpretation, as well as
the remarks about preliminary data made below, is
presented here only to illustrate the application of the
resonance-interference method.

The peak of the resonance occurs near 400-Mev/c E
momentum, (W =1520 Mev) as observed from measure-
ments of the total I=O hyperon-production cross sec-
tion. ' The polar-equatorial ratio R~, need not peak at
the same energy though, since this ratio is very sensitive
to the interference term involving fbaf» cosrtb, lb of
Eq. (3). Preliminary data concerning the process
E +P —+ lrb+Z' seem to indicate that R„,is increasing
at 400 Mev/c, implying that cosrt&, lb is increasing at
this energy. ' If we assume, from the causality principle
of Sec. I(B), that ltb lb is increasing in the reso-
nance region, then this angle must lie in the range
—lr &lt3, , lb &0 at 400 Mev/c. If this is so, it is seen from
Eq. (4) that a definite sign is predicted for the cos8 sin0
term in Pdo/dQ at 400 Mev/c, and this sign is opposite
for the two assumptions concerning the lr+Z orbital
parity of f3 . Hence, a measurement of this polarization
correlation may determine the m+2 orbital parity of the
resonance.

It should be pointed out that one cannot assume be-
fore measurements are made that the amplitudes fb, and
f» are approximately out of phase at the resonance
peak, since there is no reliable way to predict the phase
of f» at present. It may be that f&, and f» are nearly in

phase at 400 Mev/c, in which case the ratio R„,should

peak sharply as a function of energy and the cos8 sin8
term in Pdo/dQ should change sign near the resonance
peak. The direction of this sign change would then indi-
cate the lr+Z orbital parity of the resonance.

If the lack of interference between states of opposite
parity actually occurs in the E +p ~ m'+Z' process,
and persists at all energies between the resonance and
the E +p threshold, then the application of the energy-
dependence principle of Sec. I(A) is simple and leads to
the conclusion that the resonance results from a E +p
D wave. 6
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III. AMBIGUITIES OTHER THAN
MINAMI AMBIGUITIES

A. Generalized Yang Ambiguities

Ambiguities other than the generalized Minami ambi-
guity may exist because of the nonlinearity of the
relations for the amplitudes, Eqs. (3) and (4). &or ex-
ample, if (V=1, so that the production amplitude may
be written in the form T=A+iBrr klan Xk, the differ-
ential cross section and hyperon polarization are in-
variant to the simultaneous substitutions A ~ A* and
B—+ —B*. This is a generalization of the ambiguity
pointed out by Yang in connection with pion-nucleon
scattering. " If the above transformation is combined
with the Minami transformation of Eq. (2), two gener-
alized Yang ambiguities result. These are given below,
in the notation of Sec. II.'

First generalized Yang ambiguity

fJ..~ (2j) 'Lf,.*+(2j—1)f -t.s*j, (»1j)
f; t, &~~(2j) 'L(2j+1)f;,,*—f; i, &*j, (all j)s).

The second generalized Yang ambiguity is obtained
by reversing the labels a and b in Eqs. (5).

These ambiguities are particularly troublesome in the
present context because they involve complex conjuga-
tion, and hence complicate the use of the increasing-
phase criterion to resolve the generalized Minami
ambiguity. Fortunately, however, the generalized Yang
transformations (unlike the Minami transformations)
split a pure partial-wave amplitude into a linear combi-
nation of amplitudes, so that these transformations
often lead to an implausible set of amplitudes.

B. Ambiguities Involving Only j=-,
and j= —,

' Amplitudes

We now assume that only j= 2 and j=
~ amplitudes

are present and further assume that the cos'8 term in the
angular distribution and the sin8 coss8 term in I'da/dQ
are both small, so that only one j= ~3 amplitude is ap-
preciable. Hence, only the three amplitudes fs„ f», and
fi, need be considered. The determination of the three
amplitude magnitudes and two relative phases is then
formally equivalent to the problem considered by
Crawford ef al." in connection with IC+Aproduction, .

and leads in general to four solutions. Thus there is a
new fourfold ambiguity in addition to the generalized
Minami ambiguity.

"See H. Bethe and F. de Hoffmann, Mesons and Fields (Row,
Peterson and Company, Evanston, Illinois, 1955), Vol. 2, pp. 72-
75. The transformation between the Fermi and Yang amplitudes is
A ~A, B~ —e'&B. The transformation A —+A*, B~ —B* of
the present work usually would violate unitarity if only one
channel were open. On the other hand, the phase factor @in the
Fermi-Yang transformation may be selected so that unitarity (for
S and P waves) is preserved. However, because of this phase
factor, the polarizations predicted by Fermi and Yang phase
shifts are not simply related, in general."F.S. Crawford, Jr., et al. , Proceedings of the 195h' Annual
Internati onal Conference on High-Energy Physi cs at CEARLY
(CERN, Scientific Information Service, Geneva, 1958), p. 323.

It is expected that the criterion that only one ampli-
tude varies rapidly near the resonance peak will be
sufficient to resolve this new ambiguity, but the details
of the resolution will depend on the observed behaviour
of the amplitudes. We again illustrate with the ideal
case in which the correct solution involves only the
resonant amplitude fs, and the slowly varying amplitude
fts. The cos8 term in do/dQ and the sin8 term in I'do/dQ
then vanish. Two of the four solutions imply finite
values for all three amplitudes fs„ fis, and fi„so aligned
so that no interference between states of opposite parity
is apparent. This requires a double accident at all
energies; namely, if the phase of fi, is chosen to be zero,
then Refrs ———2 Refs, and Imfis ——Imfs, . Of course the
alternate assumption that the complex amplitude fi, is
nearly zero may also be considered a double accident at
all energies, but it is a much more plausible one.

The other two of the four solutions involve only the
amplitudes fs, and f» and are related by the first
generalized Yang transformation, Eq. (5). In the in-
correct solution, both amplitudes vary rapidly in the
resonance region. If fs, refers to the E+Ã Df state,
and the measurements are continued down to the re-
gion of low E+Ã momentum, the incorrect solution
produced by the 6rst Yang transformation will imply
that fs, ———2fts krc& in the low-momentum region, in
violation of the behavior expected for D waves. We
conclude that the new fourfold ambiguity can be re-
solved, so that the methods of Sec. I can be used to
resolve the remaining (generalized Minami) ambiguity.

C. Ambiguity Involving j=-', Amplitude

One cannot argue convincingly that 1520 Mev is such
a low energy that no j=2 amplitude should be im-
portant. (This is especially true if fp=1, so that a
D~ ~ D, amplitude is possible. ) In this section we relax
our assumption concerning high angular-momentum
states to the extent of allowing j=-,' amplitudes to be
present. The multiplicity of possible its to the data is
then doubled, because of the second generalized Yang
ambiguity. Suppose that there actually are no j=~
amplitudes present, and that the resonant amplitude is
fs, . The second Yang transformation implies that the
data may equally well be fit by assuming that the reso-
nance involves both fs, and fss in the definite proportion
fs, ———4tfs&. Of course, such a proportionality relation
between complex amplitudes is not likely to be satisfied
throughout the resonance region. However, it is clear
from these considerations that a pure j=

~ resonance
(with no j=s amplitudes present) may be hard to dis-
tinguish experimentally from a j= 2 resonance. The
interference terms between fss and fts depend on 8 in the
same way as those between fs, and fts. The angular
distribution for pure j=—,'scattering is of the form
(15/4) cos48—

s coss8+4s; if interference terms are Present
one can use angular distribution measurements to dis-
tinguish between a j=~ and a j=~ resonance only by



RI CHAR 0 H. CAP PS

determining the coefFicient of the cos40 term, which re-
quires accurate measurements. Furthermore, if one
assumes that the angular momentum of the resonance
is —,

' when it is actually ~, or vice versa, and applies the
resonance-interference method of Sec. I(B), he will ob-
tain the wrong answer concerning the or+2 orbital
parity of the resonance. This can be seen from the fact
that the confusion between j=

~ and j=—,
' amplitudes is

related to a generalized Yang transformation, which
involves complex conjugation. Therefore, it is important
to try to distinguish between a j= 2 and a j=—,'reso-
nance not only by the angular distribution, but by the
unitarity principle. This is done in Sec. V. First, though,
we shall discuss the unitarity principle for many-channel
reactions.

IV. MANY-CHANNEL UNITARY CONDITIONS

We consider that part of the unitary S matrix re-
ferring to a particular angular momentum and parity,
and suppose that the number of open channels is e.
Time-reversal invariance is assumed, so that we may
choose the S matrix to be symmetric. "If channels con-
sisting of more than two particles are open, the number
of S-matrix channels is actually infinite, since some con-
tinuous variable (such as the energy of the di-pion in
the 2~+A channel) must be used to parameterize the
channels. We restrict ourselves to a finite number of
channels for.simplicity, although the formalism of this
section is easily generalized to include continuous chan-
nel variables. The applications of the formalism in Sec.V
would not be changed in an essential manner if an
infinite number of (2s.+h.) channels were included.

The symmetric unitary matrix S may be written in
terms of a real symmetric matrix Q by the formula
S= (1+iQ)/(1 iQ) '4—The n. umber of independent real
parameters necessary to characterize S at a particular
energy is the number necessary to characterize Q,
—',ri(rs+1). A convenient choice of these parameters may
be obtained in the following way. One may diagonalize
the real Hermitian matrix Q with a real unitary
(orthogonal) transformation. Such a transformation
matrix may be thought of as a rotation in a real e-di-
mensional space. We choose as parameters the —,'ri(n —1)
independent coefFicients of the transformation matrix
and the e phase shifts characterizing the diagonalized S
or f matrix. These parameters will be continuous func-
tions of energy. Since there are —,'is(ri+ 1) different elastic
and inelastic processes possible, all of the elements of
the S matrix could be determined experimentally if all
the relevant cross sections could be measured.

The elements of the f matrix between the physical
states a and P may be written in terms of the trans-
formation coefficients and eigenphase shifts 5; in the
following way:

f.p ——P; x.;xp,e""sin5;, (6)
'4 F. Coester, Phys. Rev. 89, 619 (1953).
'4 See R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing

Company, Inc., Reading, Massachusetts, 1953), page 296.

where the transformation coeKcient x„; may be re-
garded as the cosine of the angle between the n axis and
the i axis in the e-dimensional real space. Angular mo-
mentum and parity subscripts are suppressed. Certain
sums of the squares of f p satisfy very simple conditions,
1.e.)

and
Imf..=pp~ f.p('=g; x.,s sin'8;,

P p~f, p~'=P;sin'5, .

The theorem of Wigner discussed in Sec. I(B) implies
that if the phase of one of the K+lV~ s+Z partial
wave amplitudes is changing rapidly, it must be in-
creasing. The question arises as to whether or not we are
justified in assuming that this phase changes rapidly at
all, however. The situation is quite different from the
case in which only one channel is open. In the one-
channel case, the partial-wave cross section is pro-
portional to sin'5, so that a narrow bump in the energy
dependence of the cross section requires a large

~

do/dE
~
.

On the other hand, the cross section for an inelastic
process does not depend on the phase of the amplitude,
since the phase and magnitude are independent. The
assumption of a rapidly changing phase in the energy
region of a bump in an inelastic cross section may be
justified in two different ways. First, we may use the
dispersion-theory argument of Sec. I(B) that a narrow
bump implies the existence of a pole or poles close to the
real axis on an unphysical sheet. In the second argu-
ment, we note from Eq. (8) that a rapid change in
energy of the quantity P„p

~

f p ~

' implies a rapid change
in one or more of the 5's. The quantity P p ~

f p ~

' in the
partial-wave state corresponding to the bump in the
7r+Z production cross section cannot be measured com-
pletely, but it almost certainly does contain a bump at
an energy near j.520 Mev. If this bump is narrow enough
and rapidly decreasing phases of the various amplitudes
are to be avoided, then one or more of the eigen-
phase shifts must increase through 90' in the neighbor-
hood of 1520 Mev. It may be seen from Eq. (6) that a
rapidly increasing (resonant) eigenphase can lead to a
nearly constant or decreasing phase in a particular
amplitude f p, but only if the nonresonant contribution
to f p is as large or larger than the resonant contribution,
and the two contributions interfere destructively. In
such a case no peak would be observed in the particular
process cr ~P in the resonance region, so that such an
anomalous behavior can be ruled out for the E +p~—
m. +Z process near the 1520-Mev resonance. Hence, the
phase of the resonant amplitude must increase rapidly.

Since 1520 Mev is not close to the threshold of any
strongly coupled two-body channel, a rapid change in
the phase of an amplitude is likely only if the amplitude
resonates (i.e., one of the eigenphases increases through
90'). We conclude that if only one partia, l wave is
resonant near 1520 Mev in the E +p ~ s+Z process,
the relative phase of the resonant and any nonresonant
amplitude must increase rapidly in the resonance region.
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V. RESTRICTIONS IMPOSED BY UNITARITY
ON SPIN OF RESONANCE

If only one channel were open the angular momentum
of the resonance could be obtained easily by comparing
the peak of the partial wave cross section with the
maximum allowed by unitarity. If several channels are
open this procedure may be generalized by using the
formalism of Sec. IV. In this section we discuss the
application of the unitarity principle to the I-spin zero,
1520-Mev resonance.

In one simple model, often applied to a narrow reso-
nance involving more than one channel, it is assumed
that the amplitudes referring to the partial-wave state
of the resonance may be represented by simple Breit-
Wigner formulas, i.e., f p

——~~1' &I'p~/L(Eo —E)—i-,'I'j.
The constant F is the partial width of channel o., and
the total width I' is equal to I'=Q I' . This model,
corresponds to the assumptions that all the eigenphase
shifts 8; of Eq. (6) are zero except for one resonating
phase shift 8~. The partial widths are given in terms of
the transformation coeKcients by the relations x &'

=I' /I'. One can show that in this simple model, the
sizes of the resonance peaks in K+N elastic scattering,
and in hyperon production' are consistent with the
assignment j=-,' for the resonance, but inconsistent
with the assignment j)-,'. We will attempt to dis-
tinguish the possibilities j=—, and j= ~ using a slightly
different model, described below.

We assume that the (2~+3) channels may be neg-
lected, so that only the K+N and m+2 channels are
open in the resonance state. In this two-channel case
Eqs. (6) and (7) may be written in the form

Ifx I'=~ sin'(2g) sin'(8~ —62), (9)

If«I'+ If& I'=sin'P sin'B~+cos'P sin'82, (10)

where the subscripts K and m refer to the physical K+N
and m+5 channels, and 8~ and 82 are the eigenphase
shifts. The diagonalizing matrix is equivalent to a rota-
tion in a plane; we have chosen P to be the angle be-
tween the m-+Z axis and the B~ axis. The resonance is
assumed to result from a rapid increase of b~ through 90'.

We denote the sum of the K +p~K +p and
K +p —+ K'+m cross sections in the partial wave of the
resonance by O.z, and the corresponding K +p ~~+X
cross section by 0 . It is seen from Eq. (9) that even if
the nonresonant phase shift 8~ is finite, the peak value of
Ifz I' is given by I

fz„I'~„&=4 sin'(2P). The effect of
the finite 82 is to shift the peaks of 0-~ and 0. in opposite
directions. If we assume a j= ~ resonance, and assume
that the peak value of 0- is in the range 6-18 mb
= (0 3—0 9) (~/kx2), then 0 2 &4

I
fx~ I

'„«q &0 6. (We use
the formula o =(2j+1)(n/kx)Ifx I', which applies
for a pure I=O state, since the K +p system has a
probability —, of being in an I=O state. ) The inequality
4

I
fx I'„,q(0.6 implies either that

I 2P I
(50' or

Im
—2&I &50'. These conditions imply that the reso-

nance is much more strongly coupled to one channel

than to the other. The possibility Im
—2@I &50', to-

gether with Eq. (10), implies that o.x should have a peak
of &80 mb. The possibility I2&I (50' implies that the
difference between O.x at 400 Mev/c and at energies just
outside the resonance should be less than 4 mb. Both
alternatives contradict the data. '

On the other hand, if the resonance spin is —,', then
0.3(4

I
fx

I
'„.& &0.9. The possibility 4

I
fx I'...z 0.9

implies that the two channels are coupled with ap-
proximately equal strength, and leads to the possibility
that O.x (peak) is about 10 mb or somewhat larger, in
agreement with the data. We conclude that the cross-
section measurements are strong evidence against the
hypothesis of a j=—', resonance.

It is interesting to note that if only one channel is
open, the alternate sets of amplitudes obtained by ap-
plying the generalized Yang transformations to the
correct set generally violate the unitarity principle.
Simi1ar1y, if only two channels are open, the alternate
solutions obtainable by applying the Yang transforma-
tions simultaneously in two channels generally violate
unitarity. For example, consider the condition f&,
= —~fqq, I discussed in Sec. III(C)j, which leads to the
same experimental effects as a pure j=—,

' amplitude. In
the one-channel case, in which the phase and magnitude
of an amplitude are functions of only one parameter,
such a condition can be satis6ed only if both amplitudes
vanish. Similarly, the simultaneous equalities f3,= —4fq t,

for two diferent processes requires four real relations
between the amplitudes; such relations can be satisfied
only for particular values of the amplitudes if only two
channels are open, since the amplitudes in any partial
wave state are functions of only three real parameters in
the two-channel case. Because of experimental limita-
tions, this last consideration is not expected to be as
useful in eliminating the possibility of a j= ~ resonance
as the considerations based on the sizes of the peaks in
the various cross sections.

VI. CONCLUDING REMARKS

Our principle conclusion is that the n+Z orbital
angular momentum of the 1520-Mev resonance can be
determined by the resonance-interference method of
Secs. I and II, provided that suKciently accurate angu-
1ar distribution and polarization measurements can be
obtained. If the K+N orbital angular momentum of the
resonance is determined also by continuing the measure-
ments to the region of low E momentum, the intrinsic
EZX parity can be determined.

The resonance-interference method may a1so be ap-
plied to other resonances, such as any resonances at
higher energy that may be discovered in the K+N-+
m+ V processes. Of course such higher resonances would
not be as favorable as the 1520-Mev resonance for de-
termination of the EZX intrinsic parity. However, the
resonance-interference method provides a useful test for
any tentative assignment concerning the amplitude re-
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sponsible for a higher-energy resonance in the strange-
ness (—1) states. The method may also be applied to the
process m+X-+ K+A in the region of center-of-mass
system energy around 1730 Mev, since a Z+h reso-
nance may exist in this energy region. "Since the E+h'
state is of greater rest mass than the z.+X state, the
energy-dependence and resonance-interference methods
measure the same quantity, the K+A orbital angular
momentum of the "resonance, " so that these methods
cannot be combined to determine the relative intrinsic
parities of the particles from associated-production data.
However, the resonance-interference method may be

"A resonance model of the A+X production data is given by A.
Kanazawa, Phys. Rev. 123, 997 (1961).References to the experi-
mental work are given.

useful in this case also as a test of any speciGc resonance
model.

Pote added in proof. Since this paper was written
Tripp, %atson, and Ferro-Luzzi have obtained the
result of odd KEN parity by using this method (Phys.
Rev. Letters 8, 175 (1962)]. The best polarization
measurements are obtained for the 1++or events, and
the situation is similar to that described near the end
of Sec. 2, i.e., the amplitudes fs, and frs are nearly in
phase at 400 Mev/c and the change of sign of the
polarization determines the parity.
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Lee and Yang suggested that, associated with heavy-particle conservation, there may exist an analog
of the electromagnetic field, a field for which nucleons and antinucleons would serve as positive and negative
"charges. " It is shown that the null result from a recent repetition of the Eotvos experiment implies that,
if it exists, the Lee-Yang interaction is at most only 10 of the gravitational interaction. This great weakness
does not imply that the field does not exist. However, with the assumption of the isotropy of the average
matter distribution of the universe, the Lee-Yang antisymmetric field tensor vanishes when averaged over
sufficiently large volumes. This implies that, if the Lee-Yang field exists, nucleons and antinucleons are
present in equal numbers in the universe, presumably gathered in matter and antimatter galaxies. However,
it is found that the fact that a copious stream of p rays is not present in the cosmic rays can be used to
exclude such numbers of antimatter galaxies. It is concluded that the Lee-Yang field probably does not
exist.

I~ONNECTED with baryon conservation, Lee and~ Yang' have suggested that there may exist a
neutral, massless, gauge-invariant vector field analogous
to the electromagnetic Geld. Nucleons and antinucleons
would serve as positive and negative "charges, " the
sources of this field, and in motion constitute "cur-
rents. "The tremendous circulating nucleon currents in
the galaxy could result in the generation of the Lee-
Yang analog of the magnetic Geld. The Lee-Yang
analog of the electric field would lead to a repulsion
between matter, tending to reduce the gravitational
acceleration. It is evident that if it exists, the Lee-Yang
interaction is weak, or matter would fall up, not down.

As shown by Lee and Yang, the null result of the
Eotvos experiment' imposes a severe restriction upon
the strength of the Lee-Yang Geld. The Kotvos experi-
ment demonstrated with an accuracy of about 5 parts

~ This work was supported in part by research contracts with
the Office of Naval Research and the U. S. Atomic Energy
Commission.' T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).

2R. v. Eotvos, D. Pekar, and E. Fekete, Ann. phys. 68, 11
(1922).

in 10' that gravitational accelerations are independent
of the atomic weight of the falling body. More recently'
it has been shown that the accelerations toward the sun
of copper and lead are equal to an accuracy of one part
in 1010.

Consider the force exerted on an atom by the sun
through the Lee-Yang analog of an electric field. This
force is proportional to A, the nucleon number of the
atom, and is independent of the motions of the nucleons
inside the nucleus. Hence, the Lee-Yang force is
independent of the binding energy of the nucleus, but
this implies that the resulting acceleration of the atom
depends upon the mass (and binding energy).

It is easily shown that the fractional difference in
acceleration, toward the sun, of two different substances
of diferent atomic weight is

7 )

'R. H. Dicke, P. Roll, D. Currott, and R. Krotkov (to be
published).


