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Connection between Gauge Invariance and Mass
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The limit, as the bare mass vanishes, of a theory of a massive neutral vector meson interacting with
charged fields is investigated. A redefinition of the charged-field operators is exhibited so that the original
theory, involving a positive definite metric, goes over smoothly to a radiation gauge theory. The spectral
forms for the boson two-point function are exhibited to show that the limit to a gauge-invariant theory does
not restrict the interacting mass of the vector particle. A soluble example is given in which these limits can
be studied in detail and in which the gauge-invariant limit describes a massive vector particle.

I. INTRODUCTION

UR purpose is to explore the connection between
a theory of a massive neutral vector meson and
electrodynamics; between mass and gauge invariance.
We shall investigate the limit, as the bare mass vanishes,
of a vector particle to show that the physical implica-
tions of the theory go over smoothly to those of radia-
tion gauge electrodynamics. Our original quantization
of the vector field has three degrees of freedom, a posi-
tive definite metric, and manifest Lorentz covariance.
In order to exhibit a smooth limit in which the longi-
tudinal modes of the vector field decouple completely,
we find it necessary to redefine the charged field opera-
tors and to give up manifest covariance.

We shall then explore the structure of the two-point
functions to show that the existence of this smooth
limit for the operator structure of the theory does not
restrict the mass of the vector particle described by the
theory. We find no connection between the gauge-
invariant structure of the limit theory and the mass
spectrum. Johnson! has recently argued that the mass
of a vector meson is always lowered by its interactions.
We shall show that the assumptions that he made were
too severe. Schwinger? has also made this observation
and has inferred that there is no necessary connection
between gauge invariance and the existence of a massless
particle.

To illustrate these considerations we exhibit a soluble
theory in which we can explicitly follow the operator
structure as the bare mass vanishes. In this model the
gauge-invariant limit describes a massive particle. We
can then construct a class of interacting theories which
may be viewed alternatively as describing either a
gauge-invariant or a massive vector field; the charged
fields involved have, respectively, either radiation
gauge or Lorentz covariant transformation properties.

The vanishing mass limit of the vector meson has
been considered previously by Coester,® who has argued
that the limit of an indefinite metric theory of the vector
meson is a Lorentz gauge quantization of electro-
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dynamics. Glauber? has shown in a similar context,
using a theory due to Stueckelberg® involving five de-
grees of freedom and supplementary conditions, that a
gauge-invariant theory of a massive, neutral vector
meson can be developed.

II. LIMIT AS THE BARE MASS VANISHES

Let us consider a spin-one meson coupled to other
fields. The Lagrangian density® may be written

= —3[F®(3,4,—0,4,)—3F¥F ,,+m@A*4,]
+]”A n+£part~

We do not need to specify the Lagrangian density for
the other fields, but we may think of it in the form

£part=_%xa“(l/i)aﬂx_%xMx_gc; (1)

and then we would take j*=3eX@#gX. We shall not
assume in general that d,7#=0. The equations of mo-
tion for the vector meson are

Frr=9rA4 v_aVAu, avo_}_mO?Au:]'u,

and the nonvanishing commutation relations for the
independent degrees of freedom are

8(a0— 2" [FO*(x),A (') ]=16%16 (x—a"). (2)

A% is a dependent variable; we assume that j° and A*
commute at equal times, and thus

30 —a)[A° (), A% (&) = —i(0%/mo)d (x—2). (3)

A° commutes with F% but fails to commute with the x
fields, having commutation relations determined by
those of 7°.

In order to exhibit the limit of the theory as the bare
mass 7, goes to zero, we pick a specific frame and divide
the field into three-dimensionally transverse and longi-
tudinal parts. We separate out a term that becomes, in
the limit, the Coulomb interaction. Thus we use as

¢ R. J. Glauber, Progr. Theoret. Phys. (Kyoto) 9, 295 (1953).
See also H. Umezawa, Progr. Theoret. Phys. (Kyoto) 7, 551
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are Hermitian and the charge matrix ¢ is Hermitian and antisym-
metric. For further explanation, see J. Schwinger, Phys. Rev.
115, 721 (1959).
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variables
Ak=T Ak 3%/ mq,
Pk = EEHOF[ {1/ (V2—mo®) } °— (mo/ VL],

A'=11/mo— {1/ (V*—md’) } °,
H* =1 (3,7 A p— T A}).

4)

The field ¢ carries the degree of freedom associated
with the longitudinal part of A*. II carries the conju-
gate degree associated with the longitudinal part of
Fo or, equivalently by the equation of constraint, with
A°. The commutation relations are now

B (a9 /) E*(x) PAM (') ]= (0% (w—a))T

=i[6“6(x——x’)—6’“a’lw] (5)

4r|r—r'|
and
S(a'—a") [ (x),0(+) J= i (x—2). (6)

The other equal-time commutators of these meson fields
with each other vanish. ¢ commutes with the X fields;
IT does not, but has commutators related to those of j°
[0, x J={V*/ (V*—m) } [, X ]. (M
The equations of motion for these variables are
P TQk=FF
: ®)
dEr=— (V2—mg) TAF—TjF,
and
= (1—m02/v2)ny
, )
Aug* ™o

Qoll= = Vet ——t—

o
or

Equations (5) and (8) for the transverse degrees are
clearly well behaved in the limit as m, vanishes. Equa-
tions (6) and (9) are well behaved in the limit provided
that d,7*/m¢ remains bounded. The current must be
divergenceless in the limit. If, further, 9,j*/mo and
modos° vanish, the longitudinal modes become un-
coupled in the limit. However, if these modes are to
have no effects in the limit, they must commute with
the other degrees of freedom. The commutator of II
with the X fields becomes singular in the limit, requiring
that we redefine the fields. Before we do this, let us
examine the energy-momentum tensor and the La-
grangian density. The relevant part of the energy-
momentum tensor is the total energy of the system.

Po= /dr{%(l’?-l—l]“’)—i—%m& TAZ TAZ._Tjk TAk+Tpart00

1 1 Ik
— 40 j0+_[n2_|_ (6k§0)2—mo2ﬂ-n:|—jk—l,
V2—mg? 2 V2 Mo

AND W. GILBERT

in terms of the independent variables of the meson field.

We assume that the structure of T'p., has the form
IXQ*(1/3)aix+T™,

where T% does not contain any explicit derivatives. The
Lagrangian density, in the independent variables of
the meson field, is

L= __.Ek(')o TAk_%(E2+H2)_%m02 TAR TAk+Tjk TAk

+£part+%jﬂ ]O—Ilaﬁﬁo_%n2_%(ak‘p)2
V2-m02
1 1 O
+3mPTT—TII 1m0 5° doptjt—,
A V2~m02 ()

where £t 15 given by Eq. (1). The term that becomes
the Coulomb energy in the limit appears explicitly in
these expressions. We observe that the longitudinal
mode decouples with the exception of the terms 743 4p/m0
and j#d,¢/m, respectively. The same result holds for
the generator of Lorentz transformations.

In order to obtain a limit in which the fields decouple
smoothly we assume that the current can be constructed
using the gauge transformation properties of the X
fields. Then if we define new field variables

eq V2
A=—
mo V2— WL()2

X=¢X/, ) (10)

(¢ and x commute at equal times), the effect of this
redefinition is to render II and x’ independent; their
commutator now vanishes. This follows from Egs. (6)
and (7) and the fact that 7° is the generator of gauge
transformations

(2 — ") [X (%), 5° (") J= eogX (x)8 (x— ).

This redefinition removes from the Lagrangian and
energy the terms that become singular in the limit. In
the Lagrangian density the interaction terms involving
¢ become

—mojk 6k<p~.’}(3(e“x’).
Vz—‘M()2

The structure of the Hamiltonian makes it clear that
we cannot simply drop the term j#9,¢/mo in the La-
grangian by virtue of current conservation. Dropping
such a term involves an implicit redefinition of the
fields which we have exhibited. If the current is con-
served, JC is gauge invariant and hence does not become
a function of ¢. If the current is not conserved, before
the limit is taken, the dependence of 3C on ¢ is just
that needed to produce the interaction terms in the
equation of motion for II, Eq. (9), since

(1/mo){V*/ (V*—m¢) } 87" =083C/d . (11)

Equation (11) follows because we have constructed the
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current using the action principle applied to variations
of the operators X of the form §X=1eodA(x)X(x). The
condition that 9,j*/mo vanish, so that ¢ and II de-
couple in the limit, is equivalent to the condition that
JC become independent of .

We have now explicitly exhibited a set of fields 7A,
E, ¢, II, and X’ which behave smoothly in the limit as
the bare mass vanishes. If 9,7#/mqo and medos° vanish
in this limit, ¢ and II become free fields. The new
“charged” field variables x’ are no longer manifestly
covariant but depend on the specific Lorentz frame in
which the original reduction was made. The generator
of Lorentz transformations is well behaved in the limit
and will transform TA and X’ into the radiation-gauge
fields in a new frame. The operator gauge transforma-
tion that accompanies an infinitesimal Lorentz trans-
formation can be easily derived by comparing the
zero-mass limits in two different Lorentz frames and
using the manifest covariance of the X field to find the
relation between the X’ fields.

III. SPECTRAL FORMS AND PHYSICAL MASSES

Does this transition to the radiation gauge, when the
bare mass vanishes, constrain in any way the mass
spectrum associated with the vector field? We shall
examine the spectral forms of the two-point functions
for the field to answer this question. We have in general

(A44()4°(0))= / wdxﬁ[(gw—a#ay)ow)

KZ

0#9”

p<«2>]A<+><s,x2>,

— 0498 (1) —

K2

@2 O)= [ a2 6,
where '

dk
AD (g %)= (——~—0(k°)5(k2—l—t<‘“’)eik5.
J (2x)?

The weight functions are all positive functions of ..
a(k®)>0, ¢>0, p(?)>0.
We have explicitly isolated, in the constant ¢, any §-

function singularity at ¥2=0 in o/«* or p/«% The canoni-
cal commutation relations [Eq. (2)] require

/ At o(k?)=1
0

and the commutator of 4° and 4%, Eq. (3) implies that

1 0 dKZ
—=c+ f —Lo(@)+p()].

MQZ

(12)
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We have already seen that the physical modes, as we
proceed to the limit, are 74 and ¢. The spectral forms
for these modes are

akal 00
(r4kE) TAl<o>>=[a“——] / 02 o (A (£)
V2 0
and

(e(£)e(0))

® [v(x2)+p(xz) o (k)
=MQ2 f dKZ

s
k2 V2

Fem?A) (£,0).

The mass spectrum associated with the transverse
modes is determined by o. Equation (12), however,
can always be satisfied by choices of p(¥*) and ¢ and does
not restrict the interacting mass. If 9,7*/mo and medos°
vanish, we have

1im0(¢(5)¢(0)>= A®(£0) (13)

since ¢ becomes a noninteracting field. The integral
of ¢ is bounded, hence

lim m?e=0.
my—0

Then Eq. (13) becomes

lm = Lo (&) +p()]= (1-NB(),  (14)

where .
A= lim m’.

mo—0

Equation (12) is the integral of Eq. (14).
If p is nonvanishing, ¢ is constrained only if

My®
lim —2p(1<2) # (1—=N)é(x?).
K

mo—0

This clearly does not permit any general statement,
even though p must satisfy limu,-ome®p=0 as a conse-
quence of

dug*
lim { — ¢>=0.
moe—0 Mo

If we assume 9,j#=0 and thus p=0; we could observe
the following types of behavior, among others;

Case (1). If A=1 there is no restriction on ¢ in the
limit. This corresponds physically to the existence of a
zero-mass particle in the ¢ spectrum,
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Case (2). If A=0, we must have

2

Mo
lim —oa (k%) =208(x2).
mo—0 K2

If o (k) =D (mo)d (k*— D (mo)m*)+0o’, where

m02
lim —o¢'=0,
mo—0 K?

then the limit condition, Eq. (14), is satisfied for any
D(my), including one that vanishes in the limit. This
corresponds to the existence of a particle in the TA
spectrum with mass lower than the bare mass of the
vector meson. In the limit this particle disappears (has
vanishing normalization). We can only demonstrate
the existence of a zero-mass particle if we beg the
question.

IV. AN EXAMPLE

We shall now exhibit a soluble-field theory in which
we can carry out the limit as the bare mass vanishes
but in which the vector particle remains massive.
Consider the Lagrangian density

L=—3F"(0,4,—0,4,)F+1F*F . —3mPA*4,
+gABy— B*\\B+3B B,
describing the interaction between a vector field A*
and a massless scalar field B. gB* plays the role of the
current 7. Our field equations are
(?)‘B"——— O,
B*=*B—gA?,

Frr=gudr—g7As,
WA= —m24 ”—l—gB”.

The canonical commutation relations for the scalar
field are

8(x'—a")[B(2),B(2) J=id(x—a),

with spectral forms

9k9”
AH(EA(0))={ o — A , 2+ 2
oL O)=(gr— )6 mite)
g2a“av
_—A(+)(E2a0):
mo? (mo*+¢*)

(B(&)B(0))= (1+g/me*)AD (£,0).

In order to make the zero-mass limit well behaved we
introduce the fields 74 and ¢ of Eq. (4) and perform
the gauge transformation analogous to Eq. (10),

p=p-t "
my VZ—moz |
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Then the two-point functions for the new fields are

(FA*(§) TAK0))= (6" —0"9"/ VAW (&, mo+g’),
2 m 2

0
——>A<+)(£, mo+g%)
mi+gt  V?

<¢<z>so(o>>=(

+

AD(£,0),
m02+g2

& m?
)( )A(J"’ (£,0)
V2—m/ \mig*+g?

V2 1 1
##(m) g
Vi—me) Lme+g V2

XA® (&, mi+-g*).

Now in the limit, the transverse modes have the mass g
and the original longitudinal modes become a free field
of zero mass. The transformed scalar boson has a mass
g and a noncovariant vacuum expectation value

(1=g"/V)A® (£,¢7).

If the scalar particle is given a mass uq, the limit is only
well behaved if the bare masses of the scalar and vector
particle vanish together. The conditions that the fields
decouple require that

(B'(©)B'(0))= (1—

. ko
lim —=0,
mo—0 Mo

Let us solve this theory for m¢=0 in the radiation
gauge from the start. The Lagrangian has the gauge
invariance

AN — AM-0M,
B— B+gA,
B*— B\

(15)

The equations of motion for the independent degrecs
of freedom are
8 TAk=—g TBb=g2 Tk
and
9*B=g*B.

Using the constraints

Brb=9*B—g TA¥,

A== (g/ VB,
we thus find immediately

(TA*(E) TAH0))= (8¥—0%0"/ V)AD (&,¢°),
(B()B(0))=(1—g/V)AD (£,8).
Let us consider the implications of this model for a

fully interacting theory : a massless vector meson inter-
acting linearly with a scalar meson and also with a

divergenceless current arising from charged fields. The
Lagrangian will be gauge invariant under the trans-
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formation (15) if the charged fields undergo the appro-
priate gauge transformation. In the radiation gauge
quantization of this theory there are two degrees of
freedom in the vector field and one in the scalar field.
The charged fields are not manifestly covariant. If we
write the Lagrangian in terms of the independent de-
grees of freedom for the vector field and introduce new
operators, F'**) A* whose transverse parts are the corre-
sponding operators for the vector field and whose
longitudinal parts are defined in terms of the scalar
field:

Lfob= (1/ V)9 [gB+4"],

o I
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and

A= _Bo/g)
and if the charged field variables are redefined
X = ¢i®0BloX = exp[ —ieoq(1/ V2 AF]X,

then the interaction of the new variables F'#*, A, and
X are those described by a Lorentz-invariant Lagrangian
for a vector particle of mass g.

Note added in proof. We would like to thank Professor
B. Zumino for drawing our attention to a treatment by
Steuckelberg [Helv. Phys. Acta 30, 209 (1957)] of the
uncoupling of the longitudinal modes of a vector meson.
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The matrix element for u capture (u~+p — n+») including not only the effects of vector, axial-vector,
weak-magnetism, and induced-pseudoscalar couplings but also two “second-class” couplings has a small
dependency on these hitherto undetected couplings. Capture in u-mesonic hydrogen from the S states with
both =1 and F=0 is computed, and angular distributions of recoil neutrons and capture rates are given
as functions of the six coupling constants. It is found that the second-class terms may contribute fully as
much as weak-magnetism and induced-pseudoscalar terms.

INTRODUCTION

TUDY of p-meson capture in hydrogen (u=+p—
n~+v) might allow detection of some as yet un-
observed terms in the interaction Hamiltonian. The
capture rates and angular distributions of recoil neu-
trons are affected not only by known vector and axial-
vector couplings, but also by the presumed induced-
pseudoscalar! and weak-magnetism? couplings and two
hypothesized ‘“‘second-class” couplings.? The weak-mag-
netism and induced-pseudoscalar effects are predicted
by definite theories. The second-class interactions are
allowed by the invariance principles known to govern
the weak interactions. They would be expected if one
accepts the principle of the renormalizibility of first-
order weak interactions. On the other hand, complete
absence of second-class interactions would indicate a
relationship between the weak interactions and isotopic
spin such as the conserved vector current theory, which
predicts that the vector interactions are all first class.
A simple theory that has vector=axial-vector coupling
and no others has the peculiar feature that no capture

* Portions of this work were done under the auspices of the
U. S. Atomic Energy Commission.
1 National Science Foundation Predoctoral Fellow.
(1;%1). L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354
2R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
3S. Weinberg, Phys. Rev. 112, 1375 (1958).

takes place in a u-mesonic atom in the hyperfine triplet
state.* For this reason, the F=1 capture rate is a good
measure of the deviation from this simple theory due to
inequality of vector and axial-vector coupling constants
and (or) the presence of any other couplings. Capture
by individual protons provides a clearer test of the
theory than capture by more complex nuclei, since in
analysis of capture on the complex nuclei one is beset
by uncertainties in computing the y-meson wave func-
tion and nuclear wave function for the initial state and
the nuclear wave function for the final state. Moreover,
if one employs a nuclear model with a core of nucleons
of zero total angular momentum with one proton in
orbit around it, the spin of the core protons is correlated
neither to the spin of the nucleus nor to the spin of the
meson. This means that, although the probability of
capture by the one outermost proton may be highly
sensitive to the hyperfine configuration of the meson,
the probability of capture by any of the many core
protons is completely insensitive to the hyperfine con-
figuration, and captures by the core largely obscure the
hyperfine effect.® On the other hand, for hydrogen there
is no uncertainty of nuclear structure. Muon wave func-

4 7. Bernstein, T. D. Lee, C. N. Yang, and H. Primakoff, Phys.
Rev. 111, 313 (1958).

5 The Pauli exclusion of neutrons tends to inhibit core capture,

however; see the calculation of H. Uberall, Phys. Rev. 121, 1219
(1961).



