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In a paper by Bates and Dalgarno the BK (Brinkman-Kramers) cross sections together with the ground-
state cross section of Jackson and SchiG were used to estimate the Born cross sections for capture into excited
states of the hydrogen atom. In the present paper the Born cross sections are calculated numerically for
capture into seven different final states. These results show that the estimates of Bates and Dalgarno are
very good. In addition, the Born and BK cross sections for capture from He(1s') are compared with the
corresponding quantities for capture from atomic hydrogen. The similarity of certain cross-section ratios
for these two atoms suggests the possible use of these ratios to estimate the Born capture cross sections for
other atoms from the BK cross sections for the corresponding atoms.

HE cross sections for the following processes have
been calculated in the BK approximation by

Bates and Dalgarno. '

H++H (is) —+ H (rtl) +H+,
m=1 4, l=o .m —j

With these results and the Born cross section for cap-
ture into the 1s state, they calculated the approximate
Born cross sections for capture into excited states with
the aid of one assumption; viz. , they assumed the fol-
lowing equality of the cross-section ratios.

Qn (rtl)/Qn (1s)=Qnx(rtl)/Qnz(1s).

(The subscripts B and BK denote the Born and Brink-
man-Kramers cross sections, respectively. ) This as-
sumption is supported by the calculations of Jackson
and Schiff' who discuss the similarity of these ratios for
Nl=2s, 2p. In order to test this postulated equality of
the ratios for a larger group of final states, the author
has calculated the Born and BK cross sections to an
accuracy of three significant figures for the following
values of el:

rtl = is, 2s, 2P, 3s, 3P, 4s, Ss.

Another motivation for this calculation was to learn
whether these cross-section ratios differed significantly
from the corresponding ratios for electron capture from
other atoms, In this connection, the Born cross sections
are available for the helium capture problem, ' and
these cross sections have been supplemented4 with the
BK cross sections for the two processes of Eq. (2).

H++He(is') —& H(is, 2s)+He+(1s). (2)

(Since the BK formulas listed by Bransden et al.' are
approximations, these results were evaluated inde-
pendently by the author. ) A presentation of the nu-
merical results is deferred until after a discussion of the

'D. R. Bates and A. Dalgarno, Proc. Phys. Soc. (London)
A66, 972 (1953).This paper is denoted by BD.' J. D. Jackson and H. Schiff, Phys. Rev. 89, 359 (1953). This
paper is denoted by JS.' Robert A. Mapleton, Phys. Rev. 122, 528 (1961).This paper
is denoted by I.

4 B. H. Bransden, A. Dalgarno, and N. M. King, Proc. Phys.
Soc. (London) A67, 1075 (1954).

extension of the method of BD to more complicated
atomic systems.

As was mentioned in I, the Born cross section may
fail to converge to the correct cross section at high
energies as well as at low energies, but it may provide a
good estimate to the cross section over an intermediate
energy range. Indeed, the results of I show that, for
the case of helium, the agreement is quite good in the
laboratory energy range from 40 kev to 1 Mev, the
intermediate energy range. If, as suggested in I, the
Born method is assumed to provide a good estimate to
the capture cross section in this energy range, then a
knowledge of the ratios

Rr (A) =Qn (is)/Qnx(1s)

for several target atoms A can have practical value.
(It is assumed that capture into the 1s state of hydrogen
dominates capture into all other states, and this is
indeed the case for atomic hydrogen and helium).
Whether or not the ratio Ei is of use depends upon its
sensitivity to a change of target atom. If this variation
is small, then the known ratio for one target atom could
be used with some confidence to obtain an estimate of
the Born cross section for another target atom. One
simply calculates the BK cross section, and multiplies
this result by the ratio E1 which has been calculated
for a simpler atomic system at the same impact energy.
These quantities are correlated at the same impact
energy, the laboratory energy of the incident proton,
since for a target atom initially at rest, this is the energy
for which the velocity of relative translation is nearly
the same for the separated aggregates of each system.
At the present time, E.& is available only for atomic
hydrogen and helium, and these ratios do not diBer a
great deal, as will be seen in the following paragraph.
However, it is very speculative to predict how well
these ratios would transform the BK cross sections into
the Born cross sections for a system such as atomic
oxygen. Nevertheless, when the enormous numerical
task of computing Born cross sections for the above
atomic system is considered —a distorted wave calcula-
tion would be more dificult' —such a crude estimation
procedure becomes tolerable and, it is hoped, useful.

' R. H. Bassel and E. Gerjuoy, Phys. Rev. 117, 749 (1960).



1478 ROBERT A. MAPLETON

TABLE I. Cross sections and cross-section ratios. Q(nl) =cross section in units of mao'=8, 79X10 '7 cm' for capture into the state nl.
E=center-of-mass energy in units of kev. (See text for explanation of other symbols. )

31.62 56.23 100 177;8 316.2 562.3 800 1000

1 B 2.84X10 ' 5.00X10 ' 6.01X10 ' 5.04X10 4 3.15X10 ~ 1.58X10
BK 1.75 2.63X10 ' 2.64X10 ' 1.84X10 s 9.62X10 ' 4.14X10 ' 6.77X10 s

1.57X10 '

2s B 4.42X10 7.94X10 9 27X10 7.38X10 5

BK 3.04X10 ' 4,68X10 ' 442X10 ' 2.83X10

2P B 5.03X10 ' 5,93X10 ' 4.08X10 4 1.83X10 5

BK 3.45X10 ' 3.28X10 2 1.80X10 ' 6.58X10 ~

3s B 1-37X10 ' 2.47X10 ' 2.86X10 ' 2.26X10 5

BK 9.50X10 ' 1.48X10 2 1.38X10 ' 8.72X10 5

4.38X10 '
1.38X10 5

6.02X10 7

1.81X10 s

1.32X 10-6
4.19X10 s

2.11X10 7

5.62X10 7

1.60X10—s

4.16X10 s

6.33X10 s

1.69X10 7

8.86X10 9

2.06X10-s

3.72X10 '
8.59X10—'o

2.63X10 9

6.16X10 '

3p B 1.67X10 ' 2.07X10 ' 1.45X10 4 6.52X10 s 2.14X10 7 5.68X10 '
BK 1.20X10 ' 1.19X10 6.57X10 4 2.38X10 5 6.48X10 1.48X10—s

4 B 5.87X 10 1.06X 10 s 1.23X 10 9.63X10 5.62 X 10 2.68X 10—s

BK 4.08X10 ' 6.39X10 5.95X10 4 3.73X10 5 1.78X10 ' 7.18X10

5 B 3.03X10 ' 5.46X10 6.32X10 5 4.95X10 2.89X10 ' 1 38X10
BK, 2.11X10 ' 3.30X10 ' 3-07X10 1.92X10 s 9.16X10 7 3.68X10

is BK 8.04 2.74 6.51X10 1.03X10 1.07X10 ' 7.69X10 1.32X10
2 ' BK 9.70X10 ' 4.16X10 ' 1 08X10 ' 1.68X10 ' 1.66X10 ' 1.12X10 ' 1.85X10

1.31X10 'o

3.09X10 'o

1.11X10 '
2.61X10 '

5.71X10-Io
1.34X10 '

RI H 0.162
He 0.190

Rg H 0 156
He 0.086

Rs H 0 174
He 0.121

0.190
0.199

0.159
0.107

0,178
0.152

0.228
0.217

0.154
0.125

0.167
0.166

0.274
0.244

0.146
0.134

0.154
0.163

0.327
0.275

0.139
0.137

0.143
0.155

0,382
0.302

0.134
0.135

0.136
0.146

0,315

0.133

0.140

0.431

0.131

0.131

a See Eq. (2) of teXt.

The numerical results are tabulated as a function of
the center-of-mass energy in Table I. LE= tabu-
lated energy, E'=impact energy, E'(H)=2E, E'(He)
=1.25E.] For s-state capture from atomic hydrogen,
the I ' law of JS is obeyed very well over the entire
energy range. In addition, the two ratios

Rs(H) =QB(2s)/Q&(1s), Rs(H) =Qnx(2s)/QBK(1s)

agree rather well, the disagreement becoming negligible
as the energy increases. These results show that the
estimates of BD are excellent except at very low impact
energies. Also included in the table are the BK cross
sections for the processes of Eq. (2). The agreement be-
tween the two most important ratios, Rt(H) and

Rr(He), is not as good as desired; however, either one
can be used to obtain a fair estimate of the Born cross
section, Qn(1s), for the other atom at the same impact
energy. In the Appendix, the high-energy limit of
Rr(He) is calculated with the same helium wave func-
tion that is used in I. This limit is 0.535, in contrast to
the corresponding value of 0.661 for atomic hydrogen
as given in JS. It is not known how sensitive Rr(He) is
to the choice of the helium wave function; in this con-
nection the author is currently calculating the prior,
post, and BK ground-state cross sections using the six-
parameter wave function of Hylleras. The results of
this investigation will be reported in future work.

In order to show other similarities between the two
capture problems, the ratios

Rs(He) =Qn(2s)/Qn(1s), Rs(He) =Qnx(2s)/QnK(1s)

are also included in the table. The two ratios Rs(A)
agree more closely, for the same impact energies, than
the ratios Rs(A). This is not surprising, since the BK
cross sections are very similar to one another in their
energy dependence, whereas the Born cross sections can
be expressed in terms of the corresponding BK quantity
by multiplication with an energy-dependent factor
which depends upon the target atom and the 6nal s
state of the hydrogen atom. (Only capture into s states
is being considered. ) Since these factors approach con-
stants at high energies, this dexcription of the cross-
section energy dependence, and hence, of the ratios,
R2 and R3, is in clear accord with the numerical results
of the table. /One example of an energy-dependent
factor is found in Eq. (17) of JS.j The foregoing ex-
planation likewise applies to the approximate e ' law
which is satisfied by the hydrogen and helium capture
problems.

It is this host of similarities among the ratios for these
two atoms that suggests the possible use of these ratios
to estimate the Born cross section for capture from an
atom such as oxygen, a capture process of considerable
interest in certain areas of upper atmospheric research.
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APPENDIX

The calculation of the high-energy limit (non-
relativistic) of the ratio, R~(He), is presented in this
appendix. The point of departure of the calculation is
the prior Born amplitude given by Eq. (1a) of I,
which is written for convenient reference.

g= dx~dx2dxe V; expL —nx, —x,—Zx,

+e(A~ x~+A2 x2—A3 ~ X3)j,

—I»—(»—») I

Z= 1.6875, n= 2+Z.

The common factor is omitted, and other common
factors which will emerge during the course of the
calculation likewise will be omitted, since they are not
needed. The quantity A& is set equal to zero, for reasons
given in I, and the integration over x~ is performed, all
of which reduces g to4

g= dx2dxa([x2 —x3[ '+L[x2—xe[ '+-', ag

Xexp[ —n[x2 —xe[7—Ix2[ ')

Xexp[ x2 Zxa+i(A2 x2—A3 xa)j.

The remaining integrations can be effected using stand-
ard methods, ' so with the omission of these details, the
amplitude may be represented by

g= Vg+ V2—V~2,

1 (B B)'
V,= d*x(1—x)I +

I

U-'V-:,
EBU Bvl

In these relations, e denotes the change in interna1

energy, and Ame(m) represents the minimum value of
A2'. The energy parameter E is the impact energy ex-

pressed in units of 100 kev. The angular dependence of
R is omitted for the same reasons that are given by JS
in the derivation of their Eq. (17). With this informa-
tion, it can be shown that the dominant part of V~

originates from the term

3 i
Vy= — dxx(1 —x)U 'V ',

and after integration of this expression and consider-
able simplification of the result, the leading terms of V~

can be shown to be given by

Vg=
[4+R]' 1+A2' Z(Z'+A3')

Although the integration was performed exactly in
the derivation of this result, essential1y the same result
can be obtained by neglecting the x dependence in U.
The effect of this approximation is to replace (Z'+A e2)

by (1+A2 ) in the preceding result, and this is unim-

portant in the high-energy limit; moreover, this ap-
proximation greatly simplifies the calculation of V~

which is now sketched. In the expression that defines

V2 the parametric differentiations are first performed;
then the approximation for Q' is used, and n' is neg-
lected in comparison with U. With these taks accom-
p1ished, it is not dificult to show that the dominant
part of V2 originates from the term

3 1

V2 =— dx x(1—x) U ' V ',
4 p

B ' (B B)
V,= 1——— d*x(1—x)I

2 ~e- o (BU Bvi

XL(n'+ U) V '*—2nj[ (n' —U)'+40.'Q'i —'

V 2= (Z'+Ae') '(1+A2') —'

U= (1+Ac')(1—x)+(Z'+Ae2)x, R=
I

Am —A, [e

V= 1+(Z' —1)x+x(1—x)R Q'=
[ (1—x)A,+xA, ['

The matrix element V„2 is proportional to the BK
amplitude. In the high-energy limit, the preceding ex-
pression simplifies immensely. Attention is first directed
to the evaluation of V&. )In the subsequent calculations,
the same symbol V& (V2) will be used to represent the
dominant part of V~ (V2).j If terms of the order of the
ratio of the electron mass to the proton mass are neg-
lected, then the following relations are valid at high
energies.

Ae'=A2' —e, A2 Ae=A2' —e/2,

Q'=A22 —xe, R=4E, Ae2(m) =E.

and as before, one readily finds that the leading terms
of V2 are given by

t
v,=[ 1+-

I

Z) (1+A22) (4+R)'

Thus, apart from a factor, the expression written below
represents the high-energy )imit of g.

g=
(4+R)' Z(Z'+Ae2) (1+A22)

( 1) 1 1
+I 1+-I

zj (1+A2e) (1+A 2)(z2+A ')2

In order to obtain the cross section, the angular inte-
gration is replaced by integration over the momentum
change variable A2 and the approximations

A3e+Z'=1+A p=A22 4+R=R

are used. It is now a simple task to obtain the following
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high-energy relation between the two cross sections, in
which relation E is an energy-independent factor.

. Qn(1s) =Qnx(1s) L1+5/64(1+1/Z)' —5/12(1+1/Z) 7
=0.535Q]3'(1s), QrfK=EE s.

A final point of interest that emerges from this
approximate calculation is the fact that the passive
electron interaction V„t, )see Eq. (1a) of Ij does not
contribute to the high-energy Born cross section. That
is, the integration over x~ provides a cancellation of one
of the proton-nuclear terms,

~
xs—xs~ ', however, the

residual part of V„~, the exponential term, supplies a
high-energy term which replaces the original cancella-
tion. This means that the effective interaction at high
energies is

2/ x,—x, [-'—
/
x, /-'.

These mathematical details are consistent with the
calculations of others. 5

Note added irt proof. This author is currently calcu-
lating BK cross sections for electron capture from 0 ('P)
and N('S) by protons. These results, together with the
ratios of this paper, will be used to estimate the corre-
sponding Born cross sections. This material will be
included in a forthcoming publication.
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By means of approximate self-consistent Geld calculations using a model of a Gnite metal with 2000
electrons, it is shown that over the range of densities appropriate to metals under normal conditions, the
density at the position of a single positive charge varies by a factor of about 2, whereas the variation in
the mean electron density (3/4fpr, ) is an order of magnitude greater. In a simple Hartree calculation of
the type reported here, a bound state occurs when r, &4 atomic units. Some brief remarks are made on the
application of these results to the calculation of the lifetimes of positrons in various metals.

S report in this note the results of some numerical
calculations which we have carried out to esti-

mate quantitatively the enhancement of the electron
density around a single positive point charge in a metal.
In earlier work we used both a finite metal model for
finding electronic wave functions around a vacancy' and
later we developed a density matrix approach based on
low-order perturbation theory' which enabled us to pass
to the limit of an infinite metal. Our earlier work indi-
cated that significant results could be obtained using as
a model of a metal a finite spherical system containing
1734 particles in 867 doubly filled states and in such a
model we have imposed approximate self-consistency in
the Hartree sense when a single positive charge is
placed at the origin. Mean interparticle spacings meas-
ured by r, values' of 2, 2.66, 4, 5, and 6 have been
considered and usually five or six iterations proved
sufhcient for achieving satisfactory self-consistency. In

'N. H. March and A. M. Murray, Proc. Roy. Soc. (London)
A256, 400 (1960).

'N. H. March and A. M. Murray, Proc. Roy. Soc. (London)
A261, 119 (1961).' The mean electron density ffsft=3/4fpr, '. We use atomic units
(au) throughout.

each case we have taken the same number of particles
and have obtained different r, values by altering the
size of the spherical system.

The main features of these results are then found to
be as follows: First of all, as r, is increased, we reach a
point at which a bound state breaks off from the band.
Our finite metal computations indicate that this is
occurring when r,)4. The behavior of the electron
density at the origin, denoted by p(0), does not show

any marked change due to the formation of a bound
state, as may be seen from Table I below, which sum-
marizes our results for a range of r, values covering all
metals under normal conditions.

It seemed useful to fit the numerical results given in
the table by a simple analytical formula and we did
this as follows. Two values of Lp(0) —pffj/pp were ob-
tained for each value of r, corresponding to the upper
and lower bounds of p (0) which differed by a few parts in
a thousand. 7Vhen polynomials with zero constant term
were fitted to various groups of points, the quartic terms
were found to be very small and random. It was found
that a cubic could be constructed which lay within the
bounds for each r, . The formula which gave the best


