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$o—4r = (0.219%0.001)X 10 ' a.u. , (14)

obtained by neglecting the effects of the nuclear motion.
The comparison indicates that these effects are of

the order of 2 parts in 10' and 4 parts in 10', respectively,
and thus must be considered in accurate work.

The differences remaining between the theoretical

values (11) and (12) and experimental values (1) and

(2), particularly in the case of ($)p, r may be attributed,
in part, to the neglect of the effects of small interactions
between the electronic and nuclear motions. " These
effects would tend to cancel out for ($o)o, r —(far)o, r

Lsee Eq. (4)].
"J.H. Van Vleck, J. Chem. Phys. 4, 327 (1936); see also

J. P. Auffray and J. W. Cooley, Phys. Rev. 124, 137 (1961).
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The differential and total cross sections for elastic scattering
of electrons by atomic hydrogen are calculated below the threshold
for excitation of the second target quantum level (10.2 ev). A
close-coupling approximation is used in which the total wave
function is expanded in hydrogen eigenstates, and only terms
corresponding to the 1s, 2s, and 2p states are retained; the wave
function is symmetrized or antisymmetrized explicitly.

The coupled set of integro-differential equations resulting from
the approximate wave function is integrated numerically on an
IBM 709 computer, subject to standard boundary conditions, to
yield the phase shift in each total spin and total angular-mo-
mentum state. The solution involves an iteration procedure to
treat the integral terms, and a specialized integration scheme,
including an asymptotic expansion of the solution, to overcome
certain numerical difficulties associated with low-incident electron
energy.

The results of this calculation agree reasonably well, in regions
where comparison is possible, both with previous analyses and
with experiment —although in states in which short-range correla-
tion effects are important, the close-coupling expansion is seen to
converge very slowly. It is suggested that this situation may be
rectified either by including continuum hydrogen eigenstates in

the wave function, or by replacing the close-coupling approxima-
tion by some different method, such as the alternative expansion
suggested in the present work.

The most striking feature of our results is the appearance in
many of the spin and angular-momentum states of pronounced,
extremely narrow Breit-Wigner resonances at energies slightly
below the second quantum excitation threshold. The resonance
lying lowest in energy has been analyzed in most detail; it occurs
in the singlet S state. It is found to have a full width at half
maximum of 0.109 ev, and to be centered at 9.61 ev.

The long-range polarization effect is found to be dominant only
at and very near zero energy for S and I' states; for D states it is
important up to 6 or 7 ev, and for P' states it is of central impor-
tance for almost the entire range of energy below threshold.

The results of the calculation differ most from previous calcula-
tions at small scattering angles in the differential cross section, and
in the existence of resonances near threshold. It is suggested that
the former discrepancies can be resolved by differential cross-
section rneasurernents at angles of 30 deg and less, whereas the
latter phenomenon requires electron-energy resolutions less than,
or of the order of, 0.1 ev for experimental verification.

I. INTRODUCTION

' "N this paper we describe our investigation of elastic
~ electron-hydrogen collisions. This work was under-

taken to bring to bear upon this problem calculational
opportunities placed at the disposal of theorists by
modern computing facilities, in the hope that certain
discrepancies between theory and experiment may be
resolved by the more nearly exact solutions now pos-
sible. These discrepancies are most serious for certain
reaction processes' but here we examine the less compli-
cated case of elastic scattering, which we intend to be

*Work done under the auspices of the U. S. Atomic Energy
Commission.

' See, for example, A. E.Kingston, B.I . Moiseiwitsch, and B.G.
Skinner, Proc. Roy. Soc. (London) A258, 245 (1960), and D. G.
Hummer and M. J. Seaton, Phys. Rev. I etters 6, 471 (1961).

the first of several investigations of problems of in-
creasing complexity. Further, improvements in ex-
perimental techniques now make possible more com-
plete and accurate data. ' Our calculation is intended to
make use of the data already available, as well as to
point out where, and what kind of, new data would be
useful.

In what follows we shall regard the proton as in-
finitely massive and therefore stationary during the
interaction. Under such circumstances, the wave func-
tion for the electron-hydrogen system will depend only
upon the coordinates of the bound and free electrons.

' High-resolution electron-hydrogen scattering experiments have
been proposed by Stephen Smith at the National Bureau of
Standards, Washington, D. C.
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The starting point in our analysis is an expansion of this
wave function in eigenstates of the hydrogen atom.
Having said this, we must immediately admit the
complete impossibility of dealing with such an ex-
pansion containing, as it does, in6nitely many terms.
Our major approximation is to exclude from the ex-
pansion all continuum states of the hydrogen atom and
all but a finite number of low-lying discrete states. This
is frequently called the strong-coupling or close-
coupling approximation. ' The resulting expression for
the wave function is explicitly symmetrized or anti-
symmetrized in accordance with the requirements of
the exclusion principle, and we note (after the fact)
that the additional terms included to satisfy these re-
quirements simulate, to some extent, the effects of the
omitted continuum states.

This approximate wave function leads, ultimately,
to a set of coupled radial linear integro-differential
equations, the number of which depends upon, among
other things, the number of terms retained in the origi-
nal expansion. These radial equations are solved nu-
merically on an IBM 709 by means of techniques
described below.

Analyses of the kind described above have been made

by many authors over a period of many years. ' For the
history and development of the earlier work in this
field, which generally involves the solution of a single
equation, the reader is referred to the reviews given by
Massey. ' More recent work' has begun to utilize
modern computing machines, and has, in some cases,
dealt with sets of two coupled equations resulting from
the retention of the 1s and 2s hydrogen states in the
wave function. Our investigation follows in this tradi-
tion with, however, the scope of the work widened to
the extent that the approximations involved can be
refined and analyzed numerically. For example, the
convergence of the total wave function in terms of
hydrogen states can be examined by the straightforward
procedure of noting the effect of including different
numbers and different combinations of states. Analysis
can also be made of the convergence in total angular-
momentum states.

It is also worthwhile to emphasize the general nature
of our procedure; it is applicable to a wide range of

'N. F. Mott, and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, New York, 1949), 2nd ed. ,
p. 146.

4 J. MacDougal1, Proc. Roy. Soc. (I.ondon) A136, 549 (1932);
P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933); S.
Chandrasekhar and F. H. Breen, Astrophys. J. 103, 41 (1946);
and M. J. Seaton, Proc. Roy. Soc. (London) A241, 522 (1957).' H. S. W. Massey, Handblch der I'hysik, edited by E. Flugge
(Springer-Verlag, Berlin, 1956), Vol. 36, p. 354. See also H. S. W.
Massey, Revs. Modern Phys. 28, 199 (1956).' R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958};T. L.
John, Proc. Phys. Soc., (London} 76, 532 (1960};K. Smith, W. F.
Miller, and A. J. P. Mnmford, Proc. Phys. Soc. (London) 76, 559
(1960};K. Smith, Phys. Rev. 120, 845 (1960); R. P. McEachran
and P. A. Fraser, Can. J. Phys. 38, 317 (1960); A. Temkin and
J. C. Lamkin, Phys. Rev. 121, 788 (1961); K. Smith and P. G.
Burke, Phys. Rev. 123, 174 (1961),and K. Smith, R. P. McEach-
ran, and P. A. Fraser, Phys. Rev. 125, 553 (1962).

II. THEORY OF THE CLOSE-COUPLING
APPROXIMATION

The basic assumption of the close-coupling method
is that the total wave function can be expanded in the
antisymmetrized form

Fr(rs)
F (rl&lr2o 2) p Qr (rl&1 r2&2)

v2 r r2

Fr(rt)—
lf r (rso, ,r,o,) . (1)

Here, in the notation of Percival and Seaton, ' the
representation is labeled J'=(Nk„ltl, LMr, SMs) and is
diagonal in the total orbital angular momentum I. and
the total spin 5 of the system; m and l& are the principal
and angular-momentum quantum numbers, respec-
tively, of the atomic electron; and 12 and k„are the
orbital angular momentum and the wave number,
respectively, of the scattered electron. The sum over F
in Eq. (1) must in principle include the continuum
states of the hydrogen atom. However, due to the addi-
tional difhculties that arise in the solution of the re-

' A. Salmona and M. J. Seaton, Proc. Phys. Soc. (London) 77,
617 (1961).

I. C. Percival and M, J. Seaton, Proc. Cambridge Phil, Soc.
53, 654 (1957).

energies both above and below the thresholds for ex-
citation of the various hydrogen-atom quantum levels.
Hence, we may chart the large scale behavior of the
cross section as a function of incident electron energy
and, in addition, learn something of its detailed struc-
ture at and near excitation energies. Finally, with little
change, the method can be made to treat the collision
of electrons with heavier atoms' —specifically, those in
the alkali group, which are more amenable than hy-
drogen to experimental measurement.

A detailed analysis of our results leads to the con-
clusion that in certain regions of incident electron
energy, notably near thresholds, and in states of par-
ticular symmetry, the expansion in eigenstates de-
scribed above converges very slowly. We are thus led
to propose, as a possible basis for future investigation,
an alternative expansion which may provide a more
satisfactory approach to the threshold problem.

In Sec. II we give the theory of the close-coupling
approximation with explicit formulas expressing the
cross sections in terms of the solutions of the coupled
integro-differential equations. In Sec. III we give de-
tails of our method for solving the coupled integro-
differential equations on an IBM 709. In Sec. IV we
state our results and draw pertinent conclusions. In
Sec. V we give a short comparison with the latest ex-
perimental results. In Sec. VI we discuss in some detail
the alternative expansion mentioned above. Finally, in
Sec. VII we make some general statements on the basis
of our results.
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suiting equations for the functions Fl, (r), ' the standard
close-coupling approximation attempts to represent 4
by including in the summation a few terms correspond-
ing to discrete hydrogen states. In this paper we also
adopt this approximation as our starting point and we

shall, as far as possible from our results, point out where
this is most lik.ely to be in error, and, also, possible ways
of improving the approximation.

In order to obtain a means of calculating the func-
tions Fr(r) in Eq. (1), we observe that the exact @
satisfies the Kohn-Hulthen ' variational principle,

@Ls"(v) (~ P)@rs(v')dr&drs is+ t.—s P ' =0

(2)

so-called R matrix, give the asymptotic amplitude of
the cosine term in the open channels v'. In Eq. (2) Az, s
is a normalization constant, and, finally 6 signi6es
arbitrary infinitesimal variations of the functions
F„~ (v;r) contained in @~ (v) about their correct
values which, however, still satisfy the boundary con-
ditions of Eq. (3).

If we carry out the manipulations implied by (2)
a,nd use the boundary conditions (3), we find that the
functions Fp s(r) must satisfy, for all v,

—d' ls(is+1)
+k ' F ~s(r)

dr' r

=2+ LV„.—W .~sjF ~s(r). (5)

F,~ (svr) =0 (3b)

For all channels v' both closed and open,

F„is(v; 0) =0. (3c)

In Eq. (2), the total Hamiltonian (H) of the system
is given by"

1 2
B= ——V'1 ——V'2

r1 r2 r12

where ri, ——
~
ri —r2~ is the interelectron distance. Also,

Z is the total energy, and +~s(v) is that part of the
wave function N given by Eq. (1) that corresponds to
the total orbital angular momentum I. and the total
spin S.The argument v in %~s(v) and also in F„~s(v; r)
refers to the quantum numbers ml132, and denotes the
one channel in 4~8 in which there is a component
sin(k„r —sls7r), in addition to the cos(k„r—silty. ) term
present in all open channels. The R„„~8,elements of the

' Among the difhculties involved when continuum functions are
retained in the expansion are: 6rst, the Coulomb wave functions
which represent the continuum hydrogen states are difhcult to
obtain with sufBcient accuracy; second, the arbitrary functions
multiplying these continuum functions have, asymptotically, very
rapidly increasing exponential parts, which make numerical ac-
curacy difBcult to obtain; and, third, the interpretation of the
cross section is complicated by the fact that continuum functions
contribute to the scattered Rux.' L. Hulthen, Kgl. Fysiograf. Sallskap. Lund, Forh. 14, 21
(1944). See also W. Kohn, Phys. Rev. 74, 1763 (1948).

"We adopt atomic units throughout this paper (see, for ex-
ample, D. R. Hartree, The Calcllattort of Atomec Structures (John
Wiley & Sons, Inc. , New York, 1957), p. 5. In particular, the
electron energy in electron volts is given by 8=13.6k2.

The Fr(v) corresponding to@as(v) satisfy the boundary
conditions Lwhere we write I' explicitly as LSv'; the
meaning of v is described following Eq. (4)j

~I.S
F„.~B(v; r) = $5., sin(k„r ——',ls'tr)-- k.—:

+R„~scos(k„r ', ls'—s)-j, (3a)

for all channels v' that are open, i.e., in which the wave
function propagates. For all channels v' that are closed,

The full complexity of this set of equations, first derived

by Percival and Seaton, ' is perhaps not evident in the
form shown; in Appendix A, Eq. (ii) we give explicitly
the potentials V„„~and 8'„„~8 and it is seen that the
latter are integral operators. Thus (5) is, in fact, a set
of coupled sntegro-differential equations I see Eq. (6),
belowj. We note that the argument v appearing ex-
plicitly in the F's as given in (3) has been omitted in
(5); if there are rt, open channels there will be a tt,
linearly independent solutions of (5). Appropriate
linear combinations of these will yield e, solutions that
satisfy the boundary conditions (3), and in which v

ranges over all I, open channels.
The scattering matrix S, as defined by Blatt and

Biedenharn, " is given in terms of the R matrix by

S= (1+iX)/(1—iE).

The cross section can be written in the usual manner
in terms of the S-matrix elements. We shall be con-
cerned in this paper with the case in which only one
channel is open. The R matrix then reduces to a single
element, tan6, where 6~ is the phase shift. The dif-
ferential cross section in either spin state for elastic
scattering is then

2

P (2L+ 1))exp(2ib~ )—1jFr, (cose)
2jk L

and the total cross section is

4m
~s"'=—Z (2L+1) sin'6'8.

O' L

Our procedure is then to decide which states we e ish
to include in expansion (1), this decision being dictated
both by numerical expediency and by physical intuition
and experience. The appropriate coupled Eqs. (5) are
then set up and solved in the manner described in
Sec. III.

'~ J. M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
238 (1932).
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III. METHOD OF SOLUTION OF THE INTEGRO-
DIFFERENTIAL EQUATIONS

In this section we describe the method we adopt to
solve the set of coupled integro-differential Eqs. (5). A
preliminary discussion of some of these methods has
been given elsewhere by Smith and Burke, ' who deal
with the simpler set of equations resulting from the
retention of only the 1s and 2s states of hydrogen in
the wave function. We shall describe here the extension
to the general problem where an arbitrary number of
states is included in expansion (1).

The set of equations given by (5) can be rewritten
in the form

=P Vv(r)F, (r)+Q K,;(rr')F;(r') dr', (6)

where i, j=1, 2, , m. In (6) the V,, (r) represent the
direct potentials, the energy, and the centrifugal barrier,
whereas the K,;(rr') represent the exchange potentials.
We suppose that the first e, functions F, (1&m, &~e)
satisfy open-channel boundary conditions, and that the
rest, e& in number, satisfy closed-channel boundary
conditions (see Eq. 3). We now define r, such that the
kernel K,; (rr') =0 for r or r'~&r, . For r &~r„each of the
V,, (r) can be written as a 6nite sum of inverse powers
of r. We determine a solution of Eq. (6) by an iteration
procedure to be described below for r in the range
0~&r~&r, . For r&r„a general solution satisfying the
asymptotic boundary conditions of Eq. (3) is com-
pletely speci6ed by two arbitrary parameters for each
open channel, and one arbitrary parameter for each
closed channel; thus the solution in this region is deter-
mined by e+e, arbitrary parameters. In Appendix 8
we derive an asymptotic expansion that expresses the
general solution in this region in terms of these pa-
rameters and the coefficients of the inverse powers of
r that represent the V;,. The accuracy of this asymp-
totic expansion depends upon energy as well as r, but
in general improves as r increases. The procedure we
use is to choose an r~&~r, that lies in a region in which
this expansion is sufficiently accurate, and then inte-
grate the equations inward numerically from r& to r, .
At almost all energies considered, the asymptotic ex-
pansion gives sufficient accuracy using r& ——r . At cer-
tain energies, however, difhculties arise which are
associated with threshold effects. Thus, at, and very
near, zero energy it is necessary to introduce a modifica-
tion of the asymptotic expansion (see Appendix 3);
at other thresholds the problem has not yet been treated
in general, although the unappealing and time-consum-
ing technique of taking r& very large is usually available.

Since we require F,(0)=0 for alii, a solution of (6) is
determined by e arbitrary parameters at the origin.
If we were to proceed straight-forwardly —first taking
an arbitrary set of e parameters as the starting values,
and then carrying out a numerical integration of (6)

to r =r —we would immediately encounter a difhculty
intimately related to the presence of the eg closed
channels. At large values of r one component of the
solution in each closed channel is an increasing ex-
ponential that in simpler situations, would be elimi-
nated by combining appropriately chosen linearly
independent solutions. The value of r, however, is so
large in the present case that the positive exponential
grows to the extent that it overwhelms the other com-
ponents of the solution; in particular, the decaying
exponential component, the part that satisfies the
boundary conditions at infinity, is lost. One might seek
to circumvent this difficulty by integrating inward
from r=r, choosing starting values in a way that
eliminates the positive exponential at the outset. In
general, this procedure is also doomed to failure since
the integration will introduce some of the irregular
solution at small r that, far from vanishing at the origin
in accordance with the boundary conditions, is gen-
erally infinite there.

Thus, neither the conventional outward integration
from the origin, nor the inward integration from the
asymptotic region affords a means to solution. We adopt
a compromise. We choose an intermediate value of r,
hereafter referred to as ro, where the offending terms
in both the inward and outward integrations have not
assumed significant proportions (this proves possible
for all cases considered). We can then obtain e linearly
independent solutions by outward integration from the
origin to ro, and also m+0, linearly independent solu-
tions by inward integration from r~ to ro. In general,
these solutions will not be continuous at ro, and must
be matched there in the manner described below.

Our procedure is then as follows. First we set the
kernel term in (6) equal to zero, and evaluate the e
inner solutions F,&'»'(r), j=1, 2, , I—and the e+e,
outer solutions G, +&(r), j=1, 2,',@+I,—where in
each case the superscript in parentheses corresponds to
the iteration number, and i is the channel index which
runs from 1 to e, as in Eq. (6). We combine these solu-
tions to form one continuous solution, i.e., one whose
function and derivative are continuous at ro for each
i=i, 2, , e. We now use this continuous solution,
denoted by F,&oi (r), to evaluate the second term on the
right-hand side of (6) for 0~&r~&r, . Inserting this as
an inhomogeneous term in the differential equation, we
solve the equation once more to give one inner solution
P, ~" (r) in the range 0~&r~&r aOnd one outer solution
g, ' (r) in the range roar(r, We add linear .combina-
tions of F, i i'(r) and G,' i'(r) to these inner and outer
solutions in order to form a solution continuous at ro,.
this solution we denote by F;oi (r). The iteration process
is continued until we obtain convergence, i.e., until
two consecutive iterates F "'(r) and F,&"+'i(r) are
equal to within some predetermined amount. "

'3A possibi1ity of avoiding this iteration procedure involves
solving additional simultaneous differential equations, each one
representing an exchange term. This method has been adopted
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In achieving a continuous solution at each stage of
the iteration by adding a linear combination of the
2rt+rt zero-order solutions F, to) t(r) and G, &"»(r), we
have introduced 2rt+st, parameters, the coefficients
multiplying these functions, but only 2e equations re-
lating them —because of the demand for continuity of
m functions and e derivatives. We use the other e,
degrees of freedom to impose e integral conditions on
the first rt functions to speed convergence (see below). "
We thus solve the following set of 2tt+st, simultaneous
equations at each stage of the iteration:

rp n+na rc

P a, F,t'»(r)dr+ g b G t'» (r)d'r
ro

rp

=C;— r; 1"& (r)dr—
0

rc

P a.Pqlo)t(rs) P b.G~lo)t(rs)

dF &,
f"'(r)

Pa,
j=l

n+n, dG&, t'» (r)—P b,
r0 r0

rp

where the index i runs from 1 to e, and the index k
runs from 1 to e. The C; are constants described in full
below. The resulting continuous solution is given by

p l ) (r) = p .f ) (r)+Q a, p, f )t'(r)
j=l

0&r&r0

n+ RQ

= b,f")(r)+ P b,G, &o» (r), ro~&r~&'r„

withi=1, 2,
Equation (7) determines the tt coefficients a, and the

tt+rt, coefficients b;, which are used in (g) to construct
the continuous solution. The first e functions of
F;t")(r) satisfy, through Eq. (7), the integral condition

rc

F t "& (r)dr =C;,

must satisfy the condition 0(r, ~&r, , We have written
(7) for the case r, &~re. The modification for r, &ro is
obtained by dropping the last (integral) term on each
side of the first equation, and by replacing r0, the
upper limit of the other integrals, by r, in the first
term on both sides. The real coeScients C;, which are
independent of iteration number, can also be chosen
arbitrarily. Each linearly independent vector C; gen-
erates a linearly independent solution F,t "& (r). We thus
obtain the complete set of solutions of Eq. (6), satisfying
the boundary conditions (3), by using all n, linearly
independent vectors C; which span the appropriate
e -dimensional vector space.

The solution of the set of equations (6) is obtained nu-

merically by replacing them with an equivalent set of
difference equations and adopting the Runge-Kutta
integration method. " For simplicity we use an equi-
spaced grid in the r and r' variables over the whole
range of integration. The integral terms are evaluated
by a straightforward application of the trapezoidal rule.
Convergence is usually most rapid with r, =2 atomic
units (au) and re=5 au." With only the 1s hydrogen
state retained in the expansion (1), r, =12 au is satis-
factory; with either the 2s and/or the 2p states in-
cluded in addition, r, =30 au suffices; and with states
from the third quantum level included, a somewhat
larger value, about 37 au, is required. In all cases con-
sidered, a basic interval of 0.1 au proved to be suffi-

ciently small to give the phase shifts correct to four
decimal places.

We conclude this section with a brief description of
the operating characteristics of the IBM 709 program.
The code requires specification of: the atomic hydrogen
states to be included in the expansion of the wave func-
tion, the total orbital angular momentum of the system,
the total spin, the parity, and the incident electron
energy. Also needed is information about the degree of
convergence required, the interval of integration, and
the number of intervals from the origin to the matching
point and to the asymptotic region. With this informa-
tion the code sets up and solves the equations for all
linearly independent solutions. A typical run on the
IBM 709 to solve, for example, the 1s-2s-2P L=0 equa-
tions for one total spin state and one energy below ex-
citation of the second quantum level, requires 10 to 15
min —with convergence to one part in 104 in the phase
shift —and involves four to six iterations.

where i=1, 2, , e . In general, r„which is otherwise
arbitrary and can be adjusted to speed convergence,

by K. Omidvar, New York University Research No. CS—37
(unpublished), and by R. Marriott (reference 6). We have found
this method difhcult to incorporate into our procedure in a general
way, because of the large number of extra equations required
when more than one or two hydrogen states are included in Eq. (1).' An equivalent criterion, which held the maximum of the un-
known function constant in value for each iteration, was applied
to the solution of a single integro-differential equation by R. A.
Buckingham, S.J.Hubbard, and H. S.W. Massey, Proc. Roy. Soc.
(London) A211, 183 (1952).

IV. RESULTS

We have evaluated the singlet and triplet phase
shifts for energies from k'=0 to k'=0.75 for the total
angular-momentum states L=O, 1, 2, and 3 by using
only the 1s-2s-2p states in the close-coupling approxi-
mation. This gives three coupled integro-differential
equations for L=O, and four each for L=1, 2, and 3.

"F.B. Hildebrand, Zrttrodlctiort to iVttmerica/ Analysis (Mc-
Graw-Hill Book Company, Inc. , New York, 1956), p. 233.
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T anr. F I. Phase shifts, in radians, calculated in the 1s-2s-2p close coupling approximation for singlet (S ) and triplet (s ) I =0,
1, 2, and 3 states. Entries for h'=0 are the corresponding scattering lengths, in a.u. (atomic units). Phase shifts are accurate to within
one or two in the last 6gure quoted.
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0.0194
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0.0209
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0.0028

~.' ~ ~

0.0104

0.0199

~ ~ ~
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We present our results in Table I. The blanks in this
table represent, in some cases, phase shifts that can be
obtained with sufficient accuracy by interpolation.
Other blanks represent phase shifts for which we have
as yet been unable to obtain converged solutions, a
situation occurring only at energies in the neighborhood
of certain resonances which appear near the threshold
for excitation of the second quantum level in hydrogen
(j't'=0. 75). These resonances, which appear in most of
the angular momentum and spin states, are described
in detail below.

Singlet S Phase Shift

The fact that the spatial part of the wave function is
symmetric, and the absence of a centrifugal barrier are
two characteristics of the singlet 5 state which imply
that, on the average, the electrons are in closer prox-
imity than in any other state. For this reason the inter-
electron interaction (e'/r») plays its largest role here.
But it is precisely this interaction which prevents the
one-body approximation (that is, the approximation in
which only the 5 state is retained in the expansion)
from providing an exact solution to the scattering
problem. For this reason, we expect that in the singlet
8 state the one-body approximation gains the most
from the partial inclusion of correlation effects repre-
sented in the total wave function by the 2s and 2p
states. Fortunately, in this state we have some rather
accurate calculations of the phase shift by Schwartz, "

'e C. Schwartz, in International Conference on the Physics of
Electronic and Atomic Collisions, Znd, University of Colorado,
Boulder, June, 1961 (W. A. Benjamin, Inc. , New York, 1961),
Paper I1, and also C. Schwartz, Phys. Rev. 124, 1468 (1961).

and also by Temkin, " for comparison. In Fig. 1 we
show a plot of our 1s-2s-2p phase shift and the results
of Schwartz and of Temkin, as well as those of John'
(1s), and of Smith, McEachran, and Fraser' (1s—2s).
Figure 1 shows, in addition, the phase shift given by
Temkin from his solution of the spherically symmetric
part of the singlet 5 equation. We expect both
Schwartz's and Temkin's results to be accurate, be-
cause the former are derived on the basis of a varia-
tional treatment in which the trial function provides
for a very thorough representation of the interelectron
interaction, and the latter are obtained by a direct
integration of the three-dimensional wave equation.

If, in Fig. 1, we concentrate our attention upon
energies less than k'=0.65 and assume the Schwartz-
Temkin results to be substantially correct, we see that
our 1s-2s-2p curve has moved somewhat less than half-

way from the one-body (1s) approximation towards the
"correct" Schwartz-Temkin result; whereas the 1s-2s
curve goes only half as far as the 1s-2s-2p result. Al-

though this discrepancy is not large, we would like to
understand whether it is due to the short-range correla-
tion effects discussed above or to the long-rangepolariza-
tion terms in the potential arising from the multipole
distortions of the target atom due to the field of the
projectile electron. This latter effect is taken into ac-
count by methods such as the Bransden et u/. "varia-

"A. Temkin, in International Conference on the Physics of Elec-
tronic and Atomic Collisions, Znd, University of Colorado, Boulder,
June, 1961 (W. A. Benjamin, Inc. , New York, 1961), Paper I5,
and also A. Temkin, Phys. Rev. Letters 8, No. 3, A9 (1962)."B.H. Bransden, A. Dalgarno, T. I . John, and M. J. Seaton,
Proc. Phys. Soc. (London) 71, 877 (1938).
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Fro. 1.The singlet S phase shift as a function of k', as given by
various calculations. The points with their associated errors refer
to the calculation of Temkin. "

"A. Temkin, Phys. Rev. 116, 358 (1959)."L.Castillejo, I. C. Percival, and M. J.Seaton, Proc. 1&oy. Soc
(London) A254, 259 (1960).

tional approach, and the polarized orbital method of
Temkin'; this effect is by no means limited to the
singlet 5 state.

In order to throw more light on this problem we
solved the singlet L=0 equations for a variety of closely
coupled states, up to a maximum of Ave. EVe present
these results in Table II. The most striking impression
is that once all states corresponding to the second quan-
tum level have been included, states of higher principal
quantum number have almost negligible effect. It thus
appears that convergence in closely coupled states be-
comes very slow. This slow convergence can probably
be attributed to the short-range correlation effect,
rather than to the long-range polarization. Our reason-
ing is as follows. The 2p state in the expansion of the
wave function gives rise to about 66% of the n/r4
polarization term. " On the other hand, we see that
adding only the 2p state to the 1s state provides about
17.5% of the difference between the single-body ap-
proximation and the "correct" (Schwartz-Temkin)
result. We expect, by direct comparison with the effect
of the 2s state (which, of course, contributes nothing
whatever to the polarization), that some fra.ction of the
17.5% must come from the short-range correlation. We
are left with the conclusion that the polarization cor-
rection at these energies is very small. This conclusion

TABLE II. Singlet S phase shifts, in radians, at two values of k'"

for a number of combinations of closely coupled states. The corre-
sponding results obtained by Schwartz' are also given. Phase
shifts are accurate to within one or two in the last figure quoted.

States included

1$
1s-2s
1$-2p
1s-2s-2p
1s-2s-2p-3s
1$-2$-2p-3p
1s-2s-2p-3d
1s-2s-2p-3s-3p
Schwartz

k'= 0.55

0.7004
0.7352
0.7338
0.7846
0.7894
0.7920
0.7841
0.7975
0.908

k'=0.60

0.6704
0.7115
0.7040
0.7707
0.7738
0.7770
0.7694
0.7814
0.894

a See reference 16.

' K. M. Watson, Phys. Rev. 105, 1388 (1957); M. Mittleman
and K. M. Watson, Phys. Rev. 118, 198 (1959);B. A. Lipptnann,
M. Mittleman, and K. M. Watson, Phys. Rev. 116, 920 (1959);
and B. A. Lippmann and H. M. Schey, Phys. Rev. 121, 1112
(1961).

is again borne out by the extremely small effect of the
3p state.

The results summarized in Table II also show that the
2s state gives a larger correction to the 1s phase shift
than does the 2p state. This indicates that the 2s state
is at least as effective as the 2p state in allowing for the
short-range correla, tion, thereby providing another in-
dication that the short-range correlation dominates the
long-range polarization in its contribution to the phase
shift. Further, the fact that the combined effect of the
2s and 2p states on the 1s phase shift is larger than the
sum of the individual effects of the 2s and 2p states
indicates that the 2s-2p coupling plays a significant role
in elastic scattering. A similar, although smaller, effect
can be observed in the influence of the 3s and 3p states
on the 1s-2s-2p phase shift.

Two more points must be made concerning the range
of energies below k'=0.65. First, the contribution of the
3d state of hydrogen is so small that, within the ac-
curacy of our calculation, it is essentially zero. Second,
the apparent a,dditivity of the effect on the phase shift
due to different closely coupled states indicates that the
effect of one state cannot be taken into account, except
perhaps partially, by another —a fact which is consistent
with the slow convergence of the series.

Our general conclusion is that the close-coupling
approximation ha, s been fully exploited with the use of
the 1s-2s-2p states of hydrogen; very little is gained, at
least at the energies considered here, by the inclusion
of additional hydrogen eigenstates. Adding a term to the
potentials to represent the long-range polarization also
will not improve matters at these energies, other than
fortuitously, unless this added term allows for short-
range correlations as well, in the manner of a correct
optical-model potential. "

AVe now come to the most striking feature of our re-
sults, that of the sharp increase in phase shift above
k'=0.65. Unfortunately, neither Schwartz" nor Tem-
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where

and
A„,= exp(2i5~, t) )exp(2i8„,) —1],

A ~,t,
——exp (2i8»t) —1.

2 —'

The resonant part of the singlet S cross section can now
be defined by the expression

o.„,= (7r/k')
~
A „,

~

' = (4s./k') sin%„,

In Fig. 2(b) we give a plot of o-...as a function of k'. By
making a Breit-Wigner" fit to this cross section,

1p2

CJ f.0—

0.8—

o 0.6—
C3

S

0.68 0.69 0.70 0.7I 0.72
1

Q73 . Q74

we obtain I"=0.109 ev and 8„,= 9.61 ev. The resonance
associated with the nonexchange phase shift lies at a
slightly higher energy, and is somewhat narrower.

We do not wish to comment further upon the mecha-
nism of these resonances at this time. We are presently
investigating this intriguing phenomenon, and any
understanding of it we may gain will be set forth in a
later publication. "'

k'(a u)

FIG. 2 (a). The singlet S phase shift and the no-exchange S
phase shift as function of k', as given by the is-2s-2p close-coupling
approximation in the neighborhood of resonance. (b) The corre-
sponding resonant part of the singlet S cross section as a function
of k'.

kin'~ has carried his calculation into this energy region,
although what may be a similar effect is evident at a
somewhat higher energy in the 1s-2s results of Smith,
McEachran and Fraser. ' In Fig. 2(a) we show our
singlet I.=O phase shift together with the nonexchange
I.=O phase shift in the interval from k'=0.68 to 0.74.
As can be seen, both curves show a pronounced reso-
nance behavior, with a de6nite Battening out before the
threshold is reached (at ks=0.75). Of course this is not
a standard threshold effect,"although we believe that
the effect is intimately connected with the new scatter-
ing channels that enter at k'=0.75. It should be re-
marked here that this effect is not confined to the
singlet S state; we observe similar effects in higher
angular-momentum states. However, due to numerical
difficulties in the solution of the coupled equations in
the energy range of the supposed resonances, we are not
yet able to analyze them as well as in this present case.

In discussing the singlet S resonance, let us decom-
pose the phase shift into two parts. We put

&tot =~-.+&p.t,

where 5„t is the slowly varying (nonresonant) potential
part of the phase shift. We then write

ai.t,
= (s/k') ~A,.„,,+A~.t, ~',

"E.P. Wigner, Phys. Rev. 73, 1002 (1948). See also R. G.
Newton, Ann. Phys. 4, 29 (1958),

Triylet 8 Phase Shift

The triplet S phase shift given by our calculation can
be characterized by the fact that it agrees very well,
on the one hand, with Schwartz's result, ' and, on the
other, with both the single-body (1s) and the 1s-2s
values. The agreement with Schwartz indicates that the
short-range correlation present in this state is well
represented by our approximation. The agreement with
the more restricted close-coupling approximations, in
which only spherically symmetric hydrogen eigenstates
are retained, supports our belief that the effect of the
polarization potential is negligible at least in S states
removed from thresholds (see Fig. 3).

In the triplet S state we carried out a search for a
resonance similar to the one found in the singlet S state
and though we have uncovered no equivalent effect, we
note that our calculation does not converge in the
energy region from k2=0.71 to 0.74. This may be due
to the fact that the nonexchange solution, which is used
as the starting point in the iteration scheme Lsee Fig.
2(a)], is itself resonating in this region and, therefore,
provides a poor first approximation to the triplet-state
solution if the latter is not resonating.

The I' Phase Shifts

We have plotted our singlet and triplet I' phase shifts
in Figs. 4(a) and 4(b), respectively. In the same figures

"G.Breit and E. P. Wigner, Phys. Rev. 49, 519, 642 (1936}.2" 31ote added ie proof. It has been suggested to us by Professor
H. S.)W. Massey (private communication) that these resonances
may occur in a multi-channel problem when at least one of the
channels is closed. For example, in a two-channel problem below
the threshold in one channel the resonance would be expected
when the energy in the closed channel is at an eigenvalue for mo-
tion in &hat channel uncoupled from the drst,
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we also show: the Bransden et a/. "phase shifts obtained
from an adiabatic variational polarization potential;
the Temkin-Lamkin phase shifts obtained from their
polarized orbital method; the results of Malik and
Trefftz, '4 who solved the one-body exchange equations
modified with a polarization potential; the is phase
shift of John'; and, finally, the 1s-2s results of Smith,
McEachran and Fraser. '

The first feature of our results which we would like to
point out is the fact that the polarization again appears
to play a relatively minor role away from thresholds.
In fact, in this instance polarization is not a dominant
effect for energies somewhat above k'=0.02. This fol-
lows from the observation (see Fig. 4) that the singlet
and triplet phase shifts, which would be identical if the
potential arose sojely from polarization effects, begin to
deviate from each other at this very small energy. It is
near this same small energy that the triplet phase shift
departs from the k' dependence given by a polarization
potential. The relatively unimportant nature of polari-
zation phenomena in this case is also manifested by the
fact that the 2p term in the total wave function pro-
vides, in the triplet state, only a small correction to the
1s-2s result; we suppose that only some fraction of this
correction comes from polarization. In applying this
assumption to the singlet case, we suppose that the

large correction to the 1s-2s result, obtained by includ-
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I'zG. 3. The triplet S phase shift as a function of k', as
given by various calculations

ing the 2p state, comes mainly from the extra short-
range electron-electron correlation allowed for by the
2p state. If this is so, it seems surprising to us that the
2s state changes the 1s result so little, inasmuch as we
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FIG. 4 (a). The singlet P phase
shift as a function of k', as given
by various calculations. (b) The
triplet I' phase shift as a function
of k', as given by various calcula-
tions.
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s4 F. B.Maliir and E. Trefftz, Z. Astrophys. 50, 96 (1960).
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learned from our singlet S result that the 2s state con-
tributes as much as does the 2p state to the short-range
correlation. Perhaps this is more evidence that the 2s-2p
coupling term plays an important role in allowing for
this correlation.

On the basis of the above argument, we believe that
our results provide further evidence in support of the
view of Martin et al." that the adiabatic polarization
potential provides a gross overestimate of the effect of
the polarization potential.

With regard to the accuracy of our calculation, we
believe that our result is quite accurate for the triplet
phase shift, being no more than about 0.02 to 0.03 rad
below the correct value. This follows from the assump-
tion that the short-range correlation effect is small in
the triplet state, and is probably well taken into ac-
count by the inclusion of the 2s and 2p states. We note
however, that the convergence in closely coupled states
is not as good here as in the triplet S state. The singlet
I' phase shift is certainly not given to this accuracy by
the 1s-2s-2p approximation, and it may well prove to
be the case that the correct phase shift is positive, like
the adiabatic polarization result (although for a different
reason, since most calculations overestima. te the po-
larizability o), over most of the energy range up to the
e= 2 threshold.

» V. M. Martin, M. J. Seaton, ancl J. H. G. Wallace, Proc.
Phys. Soc. (London) 72, 701 (1958).

Above k'=0.70 we observe, in both spin states, the
start of what we assume to be sharp resonances in the
phase shifts, although convergence difficulties have
prevented our amassing enough data in this region to
enable us to say much about their exact positions or
widths.

The D and E Phase Shifts

We show our singlet and triplet D phase shifts in
Figs. 5(a) and 5(b), respectively. In these figures we
also show the Temkin-Lamkin' polarized orbital results
and the 1s and is-2s close coupling values of John' and
of Smith, McEachran, and Fraser. ' The main feature of
our results is that the long range polarization now be-
gins to play a dominant role over the entire energy range
below threshold. This is evidenced by the linear be-
havior of the phase shift as a function of energy (see
Bransden et at. ,

rs O' Malley et at."), as well as by the
large change induced in the phase shift in the close-
coupling approximation by the inclusion of the 2p state.

In the singlet D phase shift there appears an appreci-
able deviation from linearity for k )0.5, and this effect
becomes violent for k'=0.74. For L~&2 a cusp of the
Wigner type wouM occur in derivatives of the phase
shift higher than the first. The variation with energy
which we observe is thus almost certainly too strong to
be a normal threshoM effect. We, therefore, suggest
tha, t this strongly energy-dependent behavior is due to
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another resonance similar to that found in the singlet
S state. Because it occurs in so high an angular-mo-
mentum state, this resonance must have a large effect
on the value of the total cross section; however, indic-
tions are that its width is even narrower than the 0.1
ev of the singlet 5 resonance, so that rather sophisti-
cated experimental techniques would be required to
see it.

It is worthwhile to point out at this stage that the
long-range polarization potential has destroyed the
rapid convergence in angular-momentum states associ-
ated with short-range forces. However, it appears
possible to calculate the higher partial waves quite
accurately —up to energies close to the second quantum
level —by use of an expression due to O' Malley et aL.,26

(9)

which is valid for all L &~ 1 at small values of k. This is an
expansion in k', exchange effects, being of short range,
inhuence only the higher-order terms. Using the value
2.96 (which is 66% of the correct value, 9/2) for the
polarizability n, and putting k'=0. 1, we find that Eq.
(9) gives Be=0.0089 and 8s=0.0029. These values agree
remarkably well with our results (see Table I), which
are obtained from the solution of the coupled equations.
Therefore, we conclude that Eq. (9), the leading term

O.I2—

0.

0.04

a
-004

-00

-0

-O.I

-0

-0.4
40

-048
-04

Al ~
20

0
O
lh

emkin ond Lomkin

Bronaden et ol.

IO-
Mc Eochron ond Froser;
Smith; John; Geltmon7-

6-

th

0
(3

et ol.

0

~ Brockmonn, Fite,
ond Neynober

t

0.2 04
]0

0.6 0.8 I.O

FIG. 7. Total cross section as a function of k', as given by
various calculations, compared with experimental results (from
Neynaber et al.").

of the O' Malley et aL." expansion, provides a good
approximation to the D phase shifts for k'&0.5, and
to the F phase shift for k'&0.75 (see Table I). Further,
this conclusion will probably be approximately correct
even for an exact solution of the electron-hydrogen
problem, since we feel our calculation reproduces the
general features of an exact solution, if not all the
details.

Zero-Energy Behavior of the S
Phase Shifts

In Figs. 6(a) and 6(b) we plot the quantity k cot5s
as a function of k' for both the singlet and triplet phase
shifts, respectively, as given by our calculation. Shown
in the same figures are results of the 1s-exchange calcu-
lation. The triplet curve evidences strong nonlinear
features near zero energy, due to the presence of terms
in the effective range expansion whose dependence on
energy (according to O' Malley et al.ss) is given by k and
k'ink. However, these terms seem to have little in-
huence on the singlet effective-range expansion, which
is nearly linear in k'. Because the term in k' ink is gen-
erally small, the behavior evidenced by k cotb in the
singlet case is readily ascribed to the smallness of the
coefficient of the term in k. This coeKcient depends
upon the reciprocal of the square of the relatively large
singlet scattering length, which we find to be 6.742.

From the work of Spruch et aL. ,
'7 we know that our

value for the triplet scattering length (ar = 1.983) is an
upper bound; and indeed, Schwartz, whose calculation
we have taken as "correct, " finds uz = 1.7686.

-0

-0.560
I

0.05
I

Q.lo O.I5

V. COMPARISON WITH EXPERIMENT

In Fig. 7y on a plot taken from Neynaber et a/. ,
"we

show our result for the total cross section. Also shown

k'(au)

Fro. 6 (a). The singlet etlective-range expansion in the 1s and
the 1s-2s-2P close-coupling approximation. (b) The corresponding
triplet effective-range expansion.

'~ T. F. O' Malley, L. Spruch, and L. Rosenberg, J. Math. Phys.
2, 491 (1961}.

"L.Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959}.
See also L. Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev.
119, 164 (1960)."R. H. Neynaber, L. L. Marino, K. W. Rothe, and S. M.
Trujillo, in International Conference on the Physics of Electronic and
Atomic Collisions, Znd, University of Colorado, Boulder, June. 1961
(W. A. Benjamin, Inc. , New York, 1961),Paper G10; Phys. Rev,
124, 135 (1961).
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four incident electron energies. Circles indicate the experimental
results of Gilbody et al.31

~' S. Geltman, Phys. Rev. 119, 1283 (1960)."R.T. Brackmann, W. L. Fite, and R. H. Neynaber, Phys.
Rev. 112, 1157 (1958).

"H. B. Gilbody, R. F. Stebbing, and W. I,. Fite, Phys. Rev.
121, 794 (1961).

in the figure are the calculations of McEachran and
Fraser ' Smith ' John ' Geltman "Temkin and Lamkin '
and Bransden et at."; and the experimental results of
Brackmann et al. ,

"as well as of Neynaber et al. There
is very little to choose between the results of several
different calculations, from the point of view of agree-
ment with experiment, although the I' phase shifts
obtained by Bransden et al. seem to give somewhat too
large a cross section.

The high-energy end of our curve shows the effect
of the singlet resonance at 9.61 ev, but we have been
unable to extend the curve to 10.2 ev (which is the I= 2
threshold) because we do not know the triplet S and P
phase shifts in this region. We feel that the resonances
are probably quite accurately given by our approxi-
mate solution of the electron-hydrogen problem, but it
is clear that with present techniques it would be difficult
to detect the singlet S resonance experimentally. The I'
state resonances, however, may be more easily observed,
since they will have a much larger effect on the total
cross section.

In Fig. 8 we compare the angular distributions pre-
dicted by both the 1s-2s and the 1s-2s-2p approxima-
tions with the experimental results of Gilbody et al."
If we assume that the experimental results are good,
apart from an over-all normalization at the lower
energies, then we observe that they do not distinguish
between the two theoretical predictions, and the agree-
ment with both is quite satisfactory. Because the two
calculations deviate substantially only for small scatter-

VI. EXPANSION IN ORTHOGONAL STATES

Our work has shown certain inadequacies in the
1s-2s-2p close-coupling approximation tha, t can be
traced back to the fact that either very short-range or
very long-range effects have not been treated adequately.

Although short-range correlations are not well repre-
sented by the 1s-2s-2p expansion, their representation
by any close-coupling approximation composed exclu-
sively of bound states would scarcely be better. The s
and p states corresponding to m) 2 resemble the 2s and
2p states for small values of r closely enough, so that
an expansion in bound states is simply not sufficiently
versatile to provide an adequate representation of short-
range effects; their inhuence must be accounted for by
functions markedly different from the bound-state
terms at small r. Such functions are provided by terms
coming from the continuum.

The treatment of long-range polarization phenomena
is also little improved by the inclusion of additional
bound states, for, as Castillejo et at.20 have pointed out,
even an expansion which includes all bound states will

provide only 86%%uq of the polarizability. Once again,
continuum functions must be retained in the expansion
to overcome the difficulty.

Continuum functions, suggested above as a solution
to both the short- and long-range problems are, in fact,
extremely awkward to deal with. We, therefore, intro-
duce a new expansion of the wave function —one that
simulates some effects of the continuum functions, but
at the same time avoids their disagreeable features. We
propose replacing (1) by the expression

+(rl&1 rso2)

G~(r2)
+P 7tg(riotrso. s) . (10)

r2

Here Eq2 is the space and spin exchange operator, and F
has the same significance as in Eq. (1). Also, A repre-
sents (mptpsLMzSM, ), where pi and ps are the orbital
angular momentum of the bound and free electrons,
respectively, and m distinguishes atomic states of dif-
ferent radial dependence corresponding to the same pi.
In general, mpi is a linear combination of hydrogen
states which can contain both bound and continuum
contributions. To simplify the analysis we require that
the hydrogen states el& included in F, and the addi-
tional states mpi of A, together constitute an ortho-
normal (though not necessarily complete) set.

'IA'hen (10) is substituted for the wave function in the
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Schrodinger equation, or used in an expression equiva-
lent to (2), the resulting set of equations is given by

) d' l, (l,+1)
+P 2

~F is(r)
&dr' r' i

=2+ LV„„i—8" isjF is(r)

+2 Q LU„ i—W„ is/G is(r)

p (p+1)
1~2 ~G is(r)

&dr' r' i "

=2 Q LV i W„;isjF—;(r)

+2K EV, i W, isjG, is(r)

where the potentials V and W are as given in Appendix
A. The solution (11) is no more difficult to obtain than
that of (5), although the potentials are more difficult
to evaluate.

The point to this approach is that a few terms judi-
ciously chosen in both sums of (10) may be sufficient
to obtain reasonably accurate results for electron-
hydrogen scattering and reaction processes. For ex-
ample, we might retain only one term in the F sum,
and one in the A.. The single F.(r) function would then
represent scattering from the is state of hydrogen,
whereas the term from the h. sum could be chosen to
have a p state (/= 1) angular dependence and a radial
dependence which would give rise, asymptotically, to
the total n/r' polarization potential. Such a term would
obviously receive contributions from the continuum
states.

Ke conclude this section by remarking that no
assessment of the worth of the alternative expansion
(10) has been attempted here, and ultimately its utility
must be ascertained by direct calculation.

VII. CONCLUSIONS

We have investigated the elastic scattering of elec-
trons by atomic hydrogen for incident electron energies
below the threshold for excitation of the second quan-
tum level. From our results we draw the following
conclusions:

1. The close-coupling approximation in which only
the is, 2s, and 2p eigenstates of hydrogen are included,
gives, in general, an adequate representation of elastic
scattering over the whole energy region below threshold.
The approximation is least successful in the singlet 5
state where the short-range interelectron correlation is
largest. Even here the results obtained agree reasonably
well with the "correct" results of Schwartz" and of
Temkin, "having halved the error incurred by the single-
body (is) approximation. However, scarcely any im-

provement results from the inclusion of additional
bound states with e & 2 in the close-coupling expansion.
Ke take this as an indication of very slow convergence.
A better representation of short-range correlation, and
of long-range polarization as well, requires either the
inclusion of continuum states in the close-coupling
approximation, or (perhaps more convenient numeri-

cally) an alternative expansion such as that suggested
in Sec. VI.

2. At energies close to, but somewhat below, the
second quantum-level excitation, the 1s-2s-2p close-

coupling expansion indicates the existence of extremely
narrow resonances in nearly all angular-momentum and
spin states. Such resonances are, of course, entirely
absent in the one-body approximation. On the basis of
this fact, we are led to the not unexpected conclusion
that at incident electron energies near the threshold for
excitation of a target level it is imperative that all eigen-
states corresponding to this level be present in the close-

coupling expansion.
3. Earlier work has shown the importance of the

2s-2P coupling on the 1s-2s, 1s-2p, and 2s-2p' "reaction
cross sections. Our work indicates this coupling is
significant even for elastic scattering.

4. The long-range polarization effects play a decisive
role in scattering at or near zero energy, and the energy
range in which such effects are important increases with
total angular momentum. Inclusion of the 2p state in
the close-coupling approximation allows for only 66/o
of the asymptotic polarization, and improvements can
probably result only from some scheme such as that
suggested in Sec. &I, wherein an orthogonal p state is
included with a radial dependence chosen to give the
full asymptotic polarization. Ke believe, however, that
the 1s-2s-2p expansion utilized in the present work
will indicate the range of energy in which polarization
is important. Ke find that for I.=0 and 1 the polariza-
tion potential is important only for k'(0.05; for 5= 2

it is important for k'&0.5; and for L,=3 it dominates
for k'&0.75. Our results indicate that some of the earlier
work which allows for polarization, either by including
ad hoc terms in the Schrodinger equation or by correct-
ing the single-body approximation with a variational
method, overestimates, for I.=O and 1, the region in
which the polarization figures importantly in the scat-
tering. This may be due to the fact that such analyses,
in effect, carry the polarization potential to values of r
that are too small.

5. Our results for the total cross section agree with
experiment reasonably well, as do those of many earlier
calculations. The same is true for the differential cross
section except that, at small scattering angles, devia-
tions among theoretical predictions exist and might be

3~N. A. Kroll and E. Gerjuoy, in International Conference on
the I'hysics of Electronic and Atomic Collisions, Znd, University of
Colorado, 'Boulder, Jerome, 1961 (W. A. Benjamin, Inc. , New York,
1961), Paper 84.
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resolved by measurements —so far lacking —at angles
less than, and of the order of, 30 deg.

To make possible an experimental search for the
resonances we find below the n=2 threshold, electron-
energy resolution &0.1 ev will be required.
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APPENDIXES

A. An Alternative Expansion

The expansion implied by Eq. (10) for each LS com-
ponent of the wave function is given by

'Ls(r„r2)

(1+P12) 2 P l («1)F l l («2) JLl l («1 «2)
y]r2

+Q Rm„, (ri)Gm„,„,(r2) 'JJL„,„, L(rlr2), (A1)
II yyf 2

where

'JJL1,1, L(rir2) = p Cl, l, (LML j 2«11«122) F'1"&(ri) Vi 2(r2),
m 1m/

and F'1 (r) is the usual spherical harmonic. " Also,
1 =«ilil2 and lil=mpip2. All functions P and R are nor-
malized to unity and are orthogonal for the same orbital
angular-momentum quantum numbers. The I' func-
tions are reduced hydrogen-atom wave functions, and
the R functions are arbitrary apart from the above
orthonormality conditions and the following boundary
conditions:

derive the set of coupled integro-differential equations
for the F and G functions given by Eq. (11).

The definition of the quantities occurring in Eqs. (5)
and (11) are

k„'=2E—2E„, y'= 2E,

V,„(r)= — +Q fl, (l14ti'l2', L)yl, (P„l,P„.1, , r),
y

V,„(r)=g f1(/jl2pi'p2', L)y), (P„l,R „, ; r),

V."'(r)=2 f1(P1P2li'~2'; L)y1(R-. P"1;«),

V„„. (r)= — +g f), (pip2pi'p2', L)
y

XP1o&»'(Rm»Rm'»') +yi(Rm»Rm'»' j «)]1

,LSF,LS(«) —( )1—S Q gX(~1~2~1 f'2 L)

Xgw(& +& —&)~(P l,F")

+yi(P„l,F„;r)]P. 1;(r),

(r)=( )' Zg (I~P P 'L)

XPio(&.+L„—&)&(P.l, ,G, )

+yi(P-1,G. ; «)]R- „(«),

8'„, F„=(—)' Qgl, (P1P2ti l2, L)

Xf40L&l, (R „,F, )

+(E F)~(R» F")]—
+y, (R.,,F„;r))P„„(r),

~'„"G'"(r)= (—)'-' 2 g (P1P Pi'P2'; L)

X(~. f~..(R.„,G, )

+ (L„;(r)—E)h(R„„„G„.)]

and
R„~(«)~nr"+' for small r,

R ~(r) 0 for large r.

+y1(R „.G„;r))R» (r), (A2)

where we have written

The operator P12 in Eq. (A1) is the space-exchange
operator and the + and —signs go with the singlet
and triplet spin states, respectively.

Substituting (A1) into a variational principle equiva-
lent to that given by Eq. (2), or, alternatively, operating
on (A1) with H F. when H is given by Eq.—(4), and
then premultiplying by either P„l,(rl)'JJL1, 1, L(ri, r2) or
R „,(ri)'JJL„,~, L(ri, r'2), and integrating over dr, dr2, we

1 d' f(3+1) 2
Ll(«) = ——— +-,

2 dr2 r2 r

Ai(A, B)=6(A,L1B),

a(A, B)= A (r)B(r)dr,
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B. An Asymytotic Expansion

y), (AB; r) =
yX+1

"A (r')B(r')
+rx dr'.

The fi and g&, functions are defined by

fi (11121112 +) (~1~2+
~
FX(rir2)

~
/1 /2 &),

and

g&, (lil2li'l2', I) = (—)"+" (li4I.
~
F&(rir2)

~
l2 ll L).

and

td' 2A
~

—+k' Fi, (r) = ———G(r),
&dr' V3 r'

fd' 2 ~ 2A
I

———+~' IG()=——F.()
&dr' r' i v3 r'

(A3)

As an example of a possible use of this extended ex-

pansion, consider the case mentioned in Sec. VI, where
we retain one P function and one R function, the form
of the latter being chosen to give the full polarization
potential experienced by the scattered function Fl, in
the asymptotic region.

The coupled equations describing Ii and 6 reduce, in
the asymptotic region, to

In the region where the exchange terms are negligible
the coupled differential equations can be written, ac-
cording to Sec. III, in the form

de,
=Z I"~(r)F~(r),

dt'
(81)

where i, j=1,2, , e. Here V,; includes the direct
potential, the centrifugal barrier, and the energy term
as follows:

mij g, .x 1.(1.+1)
V,, (r) =P —k,'S,,+

X=1 rX+1 r2
(82)

In Eq. (82) we use the fact that each element of the
direct potential can be written as a finite sum of inverse
powers of r, starting with a power no higher than —2.

We now assume that there are m, separate and inde-
pendent wave numbers k„, ~=1 to m, above threshold,
and mb separate and independent wave numbers n,
=

~
k, ~, r = 1 to mq below threshold. Ke note that each

k„and n, may include more than one channel; thus, for
example, channels corresponding to the 2s and 2p
states have the same k, (or n,).

We write our asymptotic expansion for each Ii; in
Eq. (81) in the form

ma oo

It is shown by Castillejo ef al.2i that Eq. (A3) is F.(r)=g sinkrgo, &&r +ic skor+P ~~r i
equivalent to the following equation for Fi,(r): ~1 y=o y=o

where

A—+k'+ —F .(r) =0,
df2

)2 ~' A'

kv3J k' —0'

(A4) +g exp( —n, r) Q 7„"r—&. (83)

Substituting (83) into (81), and equating the coefFi-
cients of sin(k„r)/ri', cos(k„r)/r& and exp( —a,r)/ri' for
all relevant a, r, and p, we obta, in the following recursion
relations for the n, p, and 7 coeKcients in (83)

Now, from Eq. (A2) we have
L(k '—k ')n '"+(p —1)(p —2)n„m'"+2k„(p —1)p„ i'"j

A = rFi, (r)G(r)dr, k' —0'=26i(R, R) —2Ei. (A5) n mi7'

Our requirement is that n=4.5, the polarizability of L(k.~ k ~)p '+(p 1)(p 2y ', 2k (p
hydrogen. If we assume a radial form for R, such as

t'ai j
R (r) = (ar'+br') exp (—pr), =2 Z ~' "P.-~-i'", (84)

we can determine u and b as functions of p by using Eq.
(A5) and the normalization condition Jo R'(r)dr= 1.
Having obtained an analytic form for R(r), we can solve
Eq. (11),assured that the asymptotic region is correctly
represented. In the triplet case, where a, lower bound for
the scattering length exists, we can plot the scattering
length obtained from Eq. (11) as a, function of p, and
choose the minimum in the curve as the best value.

L(k"+~.')7."+(p —1)(p—2)7.-2"+2~.(p —1)7.-i"j

=Z Z ~„"7.-i i',
j=l X=1

where' = 1 to e, ~=—1 to m, and. r = 1 to vsb. A particular
solution of (81) given by (84) is defined uniquely by
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specifying the 2N+e, parameters

no'""' Po'""', where i=1 to e, ;

where i=m, +1 to I;
here we mean, by the notation ~(i) and r(i), that a

(or r) which is determined by channel i In. terms of the
values (85), all the remaining n, P, and yaregivenby
(84), thus determining the F; by means of (83).

Near any threshold, i.e., at any energy for which
some k„' or n,' is less than about 0.005, expansion (83)
provides a good representation of Eq. (i) only for ex-
cessively large values of r. This difhculty arises from the
inability of a sine, cosine, or exponential function to
simulate the straightline behavior manifested in the
asymptotic region by the solution near threshold. We
overcome this diKculty at zero energy by dropping the

term in (83) whose wave number k„or n, is close to
zero, and by adding to each F; in (83) a term

rgb 'r-~,
p=0

(86)

p(p 1)4'=—Z 2 &'A ~+i'
j=1 X=1

(87)

This procedure enables us to obtain a solution at zero
energy.

where 50' and 81' are arbitrary parameters for that i
which corresponds to the zero-energy channel —that is,
for i =1. This gives, upon substituting (86) into (81)
and equating coefFicients, the additional recursion
relations


