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Effect of Thermal Vibrations on Diffraction from Perfect Crystals.
I. The Case of Anomalous Transmission

BORIS W. BATTERIKAN

BeQ Telephone Laboratories, Murray Hill, New Jersey
(Received November 30, 1961;revised manuscript received January 16, 1962)

The temperature behavior of anomalously diii'racted x rays in thick crystals (pot 2=0) of germanium
has been experimentally determined. The behavior is consistent with a Debye-Wailer factor of exp (—1.323I)
which, from the present state of the theory is unexpected. Theory suggests e ~.The possibility of explaining
this behavior in terms of a thermally vibrating standing wave field is presented. The absolute value of the
imaginary part of the scattering factor for a nonvibrating atom has been experimentally determined for
several reQections. The experiment indicates that this quantity is sensibly independent of angle which is
is disagreement with a classical treatment of anomalous dispersion. The possibility of explaining these
results by a more refined calculation is discussed.

INTRODUCTION

ECENTLY, much interest has been centered on
diff'raction from perfect crystals, in particular, on

the wave fields that exist within the lattice and the
phenomenon of so-called anomalous transmission. ' One
facet of diffraction from perfect crystals which has
scarcely been treated experimentally or theoretically is
the effect of thermal motion. We have undertaken an
experimental study of thermal effects in both the Bragg
(reflection from a face) and Laue (transmission through
a slab) cases of diffraction. We have reported briefly' on
the former experiments. In this paper, we present some
unexpected experimental results on the eGective Debye-
Waller factor for anomalous transmission and some
contradictory data on the eGective size of an absorbing
atom in a standing wave 6eld.

NOMENCLATURE

/=thickness of crystal in direction of incident
beam.

po
——linear absorption coeKcient.

p, = atomic absorption coefficient= ps/X', where
E' is the number of atoms per unit volume.

p„-=average atomic absorption coefficient of the
jth electron in the wave field.

Iz, I&——intensity of the di8racted and transmitted
beams.

RD, Rz ——integrated intensity of the di8racted and
transmitted beams on an angle scale.

E=number of unit cells per unit volume.
Ii, J'0 ——structure factor of unit cell at temperature T

and at rest, respectively.
e, so= E times the ratio of the imaginary part of E at

(hkl) to (000) of the unit cell, at temperature T
and at rest, respectively.

E=polarization factor equal to unity or cos28 for
electric vector perpendicular or parallel to the
plane of incidence.

' A review of recent work in this field has been given by G.
Borrmann in Trends in Atomk Physics, edited by O. R. Frisch,
F. A. Paneth, F. Laves, and P. Rosabud (Interscience Publishers,
Inc., New York, 1959) and by A. Authier, Bull. soc. franc.
mindraL et crist. LXXXIV, 51 (1961).' B. W. Batterman, Bull. Am. Phys. Soc. 6, 109 (1961).

e'/mc'= classical electron radius.

y = (8n,«,—8)w (sin28)/E(e'/mc') 1V)tsI .
M =Sn'(I') sin'8/(3V)

(u') =mean square vibrational amplitude.

RD=
ÃX'(e'/mc )Iie ""cosh@ate

+ sin20

+" coshpste/(1+y') &7

X (3)
o (1+y') cosh(lr, etc)

and the expression for Rp is the same except for the X
term in the cosine function of the integral.

For convenience we abbreviate the integral as J~ and
Jp for the diffracted and transmitted beams, respec-
tively. Expressed as in Eq. (3), the fz and fr are
slowly varying functions of the parameter po/e. The two
integrals have been evaluated on an IBM 7090 com-
puter for pote=0 to 30. The results are given in the
Appendix.

The main interest in this paper is the temperature
behavior of Eq. (3). The two quantities F and e are, in
general, temperature dependent. Par thasarthy' has

s P. B. Hirsch, Acta. Cryst. 5, 176 (1952).
4 These equations hold for the case of an incident beam plane

polarized with the electric vector perpendicular to the plane of
incidence. The diffracted beam for the other polarization is not
present in this particular experiment.

s R. Parthasarthy, Acta. Cryst. 13, 802 (1960).

THEORY

The intensity of the transmitted (Ir) and the
diffracted (In) beams in symmetrical anomalous trans-
mission is given as t Hirsch, Eqs. (11) and (12)7,

In 1 exp( —pot) / po4
ED = ———-cosh'

Is 2 (1+y') k(1+y')'*)

Ir 1 exp( —pet) f p, pie
cosh' +X i, (2)

Ip 2 (1+y') k (1+y') &

where coshX = 1+2y' and Xhas the same sign as y.' The
integrated intensity on an angle scale is

146i
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when the nodal planes occupy random positions in the
lattice.

For the reflections studied in this work, (220) and
(400), all the atoms in the germanium structure scatter
in phase, and c is simply the ratio of the imaginary part
of the atomic scattering factor at the (hkl) reflection,
f"(hkl), to the value for the (000) reflection, f"(000).
The latter term is directly proportional to the atomic
absorption coeKcient p of the germanium atom.

The angular dependence of the imaginary part of the
scattering factor represented by f"(hkl) is not a clearly
dered quantity. If we treat the problem semiclassically
(Zachariasen, " p. 95, and Batterman") f"(hkl) is the
sum of the atomic absorption coefhcients of each elec-
tron, p;, weighted by the form factor of that electron.
This may be expressed as follows:

-NET PLANES

f"(hkl) Q, p„f;(hkl)

f"(000) p,
(6)

Fro. 1.The wave field of minimal absorption is composed of E1
and E2 with wave vectors k and k0. The energy Qow S is parallel
to, and zero at the net planes.

shown that in certain cases the temperature behavior of
F is Fpe™,where exp( —M) is the Debye-Wailer factor
for amplitudes. The temperature dependence of e has
not been rigorously treated theoretically. To give a
physical picture of the signi6cance of e, we rewrite Kq.
(3) in closed form in the limit' of ppte large:

N'As(e'/mes)Fpe e
E.g)—

l expC. —t «(1—e)j (4)
m sin28 Sister

From the exponential factor in Eq. (4), it can be seen
that e in effect determines the anomalously low absorp-
tion coefficient, through the factor (1—e). Thus,

(5)

If the crystal is thick enough, it has been shown
theoretically' ' ' and experimentally"" that, in sym-
metric transmission, the waves existing in the crystal
far from the point of entrance can be represented as a
standing wave with nodes at the lattice planes and with
energy Qowing parallel to the planes. This is shown
schematically in I'ig. 1.The reason for the anomalously
high transmission is, therefore, that the absorbing
atoms in the lattice planes see a reduced electric Geld
intensity and absorb considerably fewer x rays than

Equation (4) is accurate to 0.6% for the value of apts used in
this work. It should be pointed out that the observed integrated
intensity, RD, is very sensitive to e when the latter is close to
unity. For instance, at p0t=20 and &=0.9 a 1% change in e pro-
duces a 20% change in observed intensity.

G. Borrmann, Z. Krist. 106, 109 (1954).' M. von Laue, Acta. Cryst 5, 619 (1952)..' W. H. Zachariasen, Proc. Natl. Acad. Sci. U. S. 38, 378 (1952).
rs G. Borrmann, Z. Physik 127, 297 (1950).
"H.

¹ Campbell, Acta. Cryst. 4, 180 (1951).

where Q; p, =p„and f; (hkl) is the form factor for the
jth electron at a given temperature. When treated
strictly quantum mechanically, it is not obvious that the
angular dependence of f"(hkl) is so simple. This point
will be discussed in more detail in a later section. With
the particular conditions of this experiment (CuE
radiation on germanium), y, rc

——0, and most of the ab-
sorption takes place in the I. shell.

Physically, e can have a value no higher than unity.
This would be the case when the atom behaved in effect
as a point atom with f;= 1. Even if the absorbing elec-
trons are close enough to the nucleus to be considered
point electrons, the value of e should still be less than
unity because of thermal vibrations.

The question to be answered both by theory and ex-
periment is then: How are thermal vibrations to be
taken into account in Eq. (6)? The customary approach
when considering thermal motion in perfect crystal
diffraction is to argue that one can merely replace the
stationary structure factor I 0 by Ii Oe ~. As pointed out
above, it is only recently that a rigorous theoretical
treatment has been attempted' to show that this is
valid in the Bragg and Laue cases when no absorption is
present, and preliminary experimental evidence' to
justify this in the Bragg case has only been attempted in
the past few years. If one applies this argument to
anomalous transmission where absorption is present,
one would account for thermal motion by representing
e by ep exp( —3II), which follows by replacing the f, (hkl)
in Eq. (6) by f;(hkl) exp( —M).

We can arrive at this result in a less arbitrary way by
invoking an intuitive argument similar to one used by
Borrmann to arrive at an expression for the minimal
absorption coeKcient in anomalous transmission. We
present the details of this in the Appendix, and merely

"W. H. Zachariasen, Theory of X-Ray DiJraction in Crystals
(John Wiley 8z Sons, Inc. , New York, 1945)."B.W. Batterman, J. Appl. Phys. 32, 998 (1961).
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Fxo. 2. Schematic diagram of crystal furnace.

'4 Available from Linde Air Products, Inc., New York, N. Y.

state at this point that it gives an exp( —M) dependence
fol 6.

EXPERIMENTAL

It is the purpose in this experiment to investigate
anomalous transmission in thick highly perfect single
crystals at elevated temperatures. Since anomalous
transmission exists because of a critical match between
a standing wave and an extended path of perfect
periodicity in the lattice, it is essential that no lattice
strain be introduced by mechanical or thermal means.
The furnace design has to be such that temperature
gradients are kept to a minimum. A schematic view of
the furnace is given in Fig. 2. The beryllium windows,
which are also a radiation shield, are kept in the vicinity
of crystal temperature. The Mylar windows are vacuum
tight. For high-temperature work in vacuum or in an
inert atmosphere the windows have to be air cooled. The
part holding the crystal attaches to an adjustable
cylinder so that adjustments of several degrees for the
crystal and the entire furnace are possible. The furnace
has been operated continuously up to 850 C. Crystal
temperature was measured by several thin-wire Chromel-
Alumel thermocouples placed near or touching the sides
of the specimen. Because of the good thermally con-
ducting helium atmosphere, no difficulty was experi-
enced in measuring the crystal temperature since it was
within a fraction of a degree of the surrounding helium.
The temperature measurements were made with the
crystal in an atmosphere of pure helium obtained by
passing the gas through a Linde 8 molecular sieve" kept
at liquid-nitrogen temperature.

The crystals were cut from a pulled germanium single
crystal containing approximately 4)(10"indium atoms
per cc and less than 5 dislocations etch pit counts per
square centimeter. The crystals were carefully lapped to
within 50 p of the desired. thickness and slowly etched
in a 1:20 volume parts HF-HN03 solution to anal size.
The amount etched off was several times the depth of
the surface abrasion. The crystals were cut into the
shape of a T, and held on a quartz rod with a waterglass-
powdered quartz cement.

For the (400) measurements, described in a later
section, the furnace was used to cool the crystal. This
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FIG. 3. Log integrated intensity of the anomalously diffracted
(220) reiiection of germanium va temperature.

was accomplished by passing dried nitrogen gas through
a copper coil immersed in liquid nitrogen and then
through the water cooling coils on the furnace jacket.
With the help of insulation around the jacket a tempera-
ture of —40'C was reached.

The first crystal of the double crystal spectrometer
was a germanium crystal diffracting in the (333) posi-
tion. Since the Bragg angle is very nearly 45, the
diffracted beam (which is the primary beam for the
crystal being studied) is completely plane polarized. The
operating conditions of the copper target tube were 30
kv and 15 ma. No difficulty was experienced with short-
or long-wavelength harmonics. For an integrated in-
tensity measurement, the crystal was rotated with uni-
form angular velocity through the 0.& and e2 copper E
doublet well into the background. Separate background
counts were taken at fixed points on either side of the
peak. The detector consisted of a NaI thallium-doped
scintillation counter in conjunction with a pulse height
discriminator. The primary beam was monitored by a
second counter set to pick up radiation scattered from
the first crystal. All counting rates were kept within the
linear range of the detecting system.

Because of physical limitations in the furnace we
investigated only the anomalously diffracted beam as a
function of temperature. At room temperature, both
diffracted and transmitted beams were measured.

RESULTS

The measurements for the diffracted (220) and (400)
reQections of germanium as a function of temperature
are shown in Figs. 3 and 4. Within an experimental error
of +2%, both curves are linear in the logarithm of the
integrated intensity. The (220) curve in Fig. 3 is a
heating curve, i.e., all data are taken above room tem-
perature. The (400) curve in Fig. 4 contains both
heating and cooling data and shows some interesting
experimental difficulties which are worth discussing.
The points indicated with the circles were the initial set
of data taken. The curve is linear below and slightly
above room temperature, but decreases more rapidly
than linearly as the temperature increases. The curve
indicated by the triangles represents data taken under
identical conditions, except that the crystal was trans-
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Fio. 4. Log integrated intensity for the (400) difFracted beam vs
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beam and the crystal for the two curves.

» G. Borrmann and G. Hildebrandt, Z. Naturforsch. 11a, 585
(1956).

G. Hildebrandt, Z. Krist. 112, 312 (1959).
L. P. Hunter, J. Appl. Phys. 30, 874 (1959).

lated so that the beam (with a cross section of approxi-
mately 0.5&&0.2 mm) entered the crystal I-mm further
distant from the quartz mount. (These positions are
shown schematically in the figure. ) Upon examination of
the point of contact between the crystal and the quartz
holder it was observed that the quartz cement was not
symmetric on either side of the crystal. Thus the most
probable explanation of the lower curve in the figure is
that mechanical strain produced by a temperature
gradient across the specimen near the point of entrance
of the beam caused a reduction in the anomalously
transmitted beam. The quartz specimen holder is with-
drawing heat from the hot region because its lower end
is cooled. When the crystal was translated 1 mm, the
beam was far enough from the strain point so that the
data were not affected. At lower temperatures the two
curves converge and agree at room temperature where
no gradients can exist.

One critical point to be considered in these measure-
ments is the effect of thermal gradients. One must show
strong evidence that the reduction of intensity with in-
creasing temperature is a real diffraction effect for a
perfect crystal and is not due to a thermally produced
strain in™',the specimen. Borrmann and Hildebrandt"
Hildebrandt, '6 and Hunter" have shown that strain
produced mechanically, or by a thermal gradient, can
strongly affect the intensity of both the anomalously
transmitted and diffracted beams. An explicit experi-

ment to show if this strain effect exists would be an
intensity measurement upon cooling. In a heating ex-
periment both strain and temperature cause a reduction
of intensity. In cooling, however, the effects are opposed,
since the reduction in thermal vibrations should increase
the transmitted energy while strain would still decrease
it. The cooling experiment was performed for the (400)
reQection. The results, as shown in Fig. 4, were a
straight line dependence extrapolating very well from
the heating curve.

A further check on the effect of a thermal gradient
was made as follows: With the furnace removed, a jet of
cooled air at 10'C below room temperature was blown
only on the exit face of the crystal. The integrated in-
tensity increased, corresponding to the amount the
crystal was cooled, (ascertained by a temperature
measurement of the crystal) and thus showed no meas-
urable effect of a thermal gradient. These checks give
very strong evidence that the observed temperature be-
havior is a result of changing vibrational amplitudes and
is not due to strain effects.

If we now use Eq. (4), together with assumption of an
exp( —cV) temperature behavior, it can readily be
shown that, neglecting second-order terms, the slope of
a plot of lnED vs T is

d(lnRD) dM
(s+Isstss).

8T
(7)

The Debye model relates 3f and 0 by

6h'T ( x sin8) '
3f=

i q (x)+-
gk8s k 4

where g is the mass of the germanium atom and
Lq (x)+x/4) is the Debye function for amplitudes which
is a slowly varying function of temperature. In de-
termining 0 from the slopes of Figs. 3 and 4 the Debye
functions was evaluated at the average temperature of
the experimental run. From the slopes are calculated
8»s ——254'K and 84ss ——257'K, which, although they
agree internally, are not at all consistent with a room
temperature Debye 0 from specific heat data in the
vicinity of 365'K.

Our initial interpretation of the data was based on a
Debye temperature in the vicinity of 360'K, a value
consistent with recent heat capacity measurements'~"
and neutron diffraction" results. When the assumption
was made that the temperature dependence of e is
exp( —2M), the slopes of Figs. 3 and 4 gave for the
Debye temperature 0»0=354'K and 8400=358'K, in
very good agreement with the specific heat value.

' P. J. Flubacker, A. J. Leadbetter, and J. A. Morrison, Phil.
Mag. 4, 273 (1959).

's R W. Hill and D. H. Parkinson, Phil. Mag. 43, 309 (1952).' I. Kstermann and J. R. Weertman, J. Chem. Phys. 20, 972
(1952).

~ B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747
(1958).
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gABLE I. Absolute experimental integrated intensities and corresponding values of e
for the (220) and (400) reiiections in anomalous transmission.

220
400

E.aX10'

2.162
0.4589

Z,X106

2.482
0.5032

p exp(25'C)

0.974
0.917

p exp (Hunter)

0.964
0.921

Exp.

1.15
1.10

Rr/Rn
Theory

1.117
1.133

Consequently, it was concluded that the Debye-%aller
factor is exp( —2M), not exp( —M), in anomalous
transmission.

In a subsequent investigation, " the mean-square vi-
brational amplitude of the germanium atom was de-
termined from the temperature dependence of the Bragg
reQections of 6nely powdered germanium. The results

gave a mean square amplitude Debye temperature, for
germanium of esr =291'K, differing by about 22% from
the speci6c value 8D= 360'K. We have shown that this
diGerence is real and can be explained directly from the
frequency distribution of normal vibrational modes of
germanium.

To express our results in terms of a Debye-Wailer
factor, we assume that e is represented by E-=Cps ™,
where 0. is an experimental parameter and itj/f is the
amplitude factor appropriate to a Debye temperature
of 291'K. From Eq. (4) it follows that the slopes in

Figs. 3 and 4 are given by

slope= —(1 n/2)k II—pteprxke —™, (9)

where k=M/T. The equation is solved for n with the
exponential evaluated at the mean temperature of the
run. The solution of Eq. (9) for the two reflections gave
o22p ——1.30 and o.4pp= 1.33. Thus, the empirical tempera-
ture behavior of e is e= ep exp( —1.32Msp], +) It is coinci-
dental that this factor is algebraically equivalent to
exp( —2Mppp'I).

Before investigating the consequences of the slope
data, a description of the measurement of the absolute
integrated intensities of the anomalously transmitted
and diGracted beams is in order. With the furnace and
cover removed, it was possible to measure both beams
separately by placing the scintillation counter in either
the primary or diGracted beam directions. For an abso-
lute measurement, two independent methods were used
to ascertain the primary beam intensity, which was the
order of 10' cps. The methods are described in the
Appendix. The results for the absolute measurements
are given in Table I.Using Eq. (4), a value of e (kkl) can
be calculated. These results and the experimental values
of Hunter" are also given in Table I. The present value
of esse is higher than Hunter' s, (indicated greater trans-
mission) by 0.9%, while the e4pp is lower by 0.6%. A

~ Performed arith D. R. Chipman and submitted to this journal.
~ L. P. Hunter, Koninkl. Ned. Akad. Wetenschap. Proc. 61, 214

(1958); IBM J. Research Develop. 5, 106 (1959).Note: Hunter' s
e values have been corrected for an experimentally determined
absorption coeKcient of CuK radiation in germanium. The
method is described in the Appendix.

signi6cant experimental quantity, independent of the
absolute measurement is the ratio of the anomalously
transmitted and diffracted beams. These are also given
in Table I, together with the theoretical ratio, the latter
being sensibly independent of the choice of Debye-
Waller factor. The ratios agree with theory to within 3%
which is within experimental error.

DISCUSSION

The present experiment has an important bearing on
several aspects of both dynamical diGraction theory and
published experimental results. The conclusions to be
drawn from this work can be separated into two nearly
independent portions. One is the temperature behavior
of a given reQection, and the other is the absolute value
of e for each reQection.

The straightforward conclusion concerning the tem-
perature behavior is that the temperature factor for the
anomalously diffracted beam is experimentally shown to
be exp( —1.32M) and not exp( —M). The conclusion is
reached, not from an assumed value for M based on a
Debye temperature from speci6c heat measurements,
but is based on an M value experimentally determined
from the temperature dependence of the Bragg reQec-
tions of a mosaic powder of germanium.

We can reinforce our intuitive ideas concerning the
absorption of a vibrating atom in a standing wave 6eld
by a quantitative argument. Consider the wave Geld of
Fig. 1 which is the result of two plane waves of equal
amplitude traveling in the primary and diffracted beam
directions. It is a simple matter to calculate from these
plane waves the Poynting vector as a function of posi-
tion between the planes. Next we place an atom on one
of the net planes and let it vibrate with some mean
square amplitude (r„'), , where r is the component of
the amplitude perpendicular to the net planes. If i.t is
now assumed that the probability of photoelectric ab-
sorption is proportional to the Poynting vector at the
position of the electrons between the planes, we
Gnd that the time average of the absorption coefIj.-
cient has a factor (1—e) as in Eq. (5) and. that
e= ep exp{—8rr t (sln8)/)I] (r ) ) = epe where ep is
the value for a stationary atom. In order to keep the
present argument simpler, the details of the calculation
are given in the Appendix. The point to be made is that
an intuitive treatment of a vibrating atom in a sta-
tionary wave 6eld gives a value for e which is modi6ed
by exp( —M) and not exp( —1.32M) and this is contrary
to experiment. At this point we can only speculate where
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TABLE II. Comparison of experimental and theoretical values of 6.

hkl

e (25'C) exper.
Present

work Hunter'

e theory
[0=360'K, (0=291'K,

s—M] s
—1.32M)

220
400
422
440

0.974
0.917

0.964
0.921
0.879
0.828

0.939
0.884
0.836
0.796

0.916
0.843
0.778
0.723

+ See reference 23.

the error might be. In the treatment just presented we
have kept the field stationary and the atom vibrating.
This may very well be where the difFiculty lies. Since the
wave field itself is created by vibrating atoms, it is con-
ceivable that the field is not static with respect to the
average net planes, but vibrates with a positional varia-
tion comparable to those of the thermally agitated
atoms. The experiments of Cole and Brock" show that
the wave will follow the crystal planes even if the planes
are bent, and this implies that the wave field is sensitive
to local atomic positions. Thus, from the frame of refer-
ence of a single atom, the field may be vibrating in a
manner close to that of its neighboring atoms. If this is
indeed the case, the field vibrates very nearly in a
random phase with respect to the atom in question, and
in the calculation, a double averaging must take place;
one of a stationary field and a vibrating atom, and the
other, a field vibrating with respect to a stationary
atom. If the average vibrational amplitude of the field
is equal but at random phase with the absorbing atom,
the absorptive behavior will now be exp( —2M), one M
from each half of the double average. If, however, as is
more likely, the field vibrates with an amplitude which
is not exactly equal to or at random phase with that of
the atoms, the absorption factor would be somewhere
between exp( —M) and exp( —2M). The quantitative
aspects of this argument are obviously not firmly sup-
ported. We merely offer as an ad hoc speculation that the
exp( —1.32M) behavior may be explained by the con-
cept of independently vibrating nodal planes of the
standing wave field. In any event we conclude that a
careful re-examination of dynamical di6raction theory
including thermal motion is necessary.

Since the experimental temperature dependence of e

is known, one can compare the absolute value of e with
predictions of theory. In Table II are the absolute
values of e measured at room temperature in this work,
and that of Hunter. "The independent results for the
(220) and (400) are in rather good agreement. The
present e22p is greater than Hunter' s, and this lies in the
direction of higher perfection for the crystals in this
work. This may be either a result of the errors in the
different absolute measurements or actually due to
higher crystalline perfection. Hunter found it necessary
to apply corrections to e as high as 4%, due presumably
to internal strains. Our 622p is slightly larger even than

~ H. Cole and J. Broclr, Phys. Rev. 116, 868 (1959).

TABLE III. The value of 60 for a static atom compared with the
form factor, fl„ for the L electrons and the theoretical value when
3f electrons are included.

220
400
422
440

fr,

0.978
0.956
0.938
0.918

ep(theory)

0.962
0.930
0.900
0.872

ep ——e exp(+1.3231)

1.010
1.012
1.013
1.000

"L. G. Parratt and C. F. Hempstead, Phys. Rev. 94, 1593
(1954)."The agreement using 0=400'K is even better than the values
in column 4, especially for the higher-order reQections. Using
400'K the agreement between theory and experiment for all re-
Qections is 2/q.

Hunter's strain corrected value. The fourth column in
Table II gives the theoretical values reported by
Batterman" using exp( —M) for the temperature be-
havior and an ep as defined classically in Eq. (6) and
calculated from the treatment of anomalous dispersion
by Parratt and Hempstead. " The values have been
changed slightly in that the Debye temperature was
changed from 400' to 360'K to conform with specific-
heat OD. The agreement must be considered remark-
ably good" especially since an incorrect form for the
Debye factor, i.e., exp( —Ms« ic) was used in the calcu-
lation. Using the experimental factor exp( —1.32Mspt x)
and the same ep values as before, the values in the last
column of Table II were determined. These are in very
poor agreement with experiment, and it must be con-
cluded that the accord between theory and experiment
in the initial calculation was fortuitous.

An experimental value of 6p for a stationary atom can
be obtained from the room temperature e values and the
experimental factor exp( —crM), since ep= e exp(+crM).
These ~p values for a stationary atom are given in
Table III. It should be noted that they are independent
of the choice of the form of the temperature factor and
depend only on the observed variation of intensity with
temperature. The surprising result here is that the ep for
all refiections are within experimental error of unity.
The semiclassical treatment leading to Eq. (6) gives
for 6p

(10)

If, for simplicity, we assume that all absorption takes
place in the L shell (i.e., all p„=0 except p,,z), Eq. (10)
reduces merely to the form factor of the L electrons. The
third column of Table III gives the ep of Eq. (10) as
computed in reference 13, including the M electron
contribution. It can be seen that these values are
nowhere near unity. Actually they fall oG even faster
than the L electron form factor (column 2 of Table III)
because of the M electron contribution. On the basis of
Eq. (10), all the ep could be unity, only if we assume that
all absorbing electrons have essentially a point distribu-
tion with all f, (hkl) equal to unity. This is surely not
the case, since the L form factor alone has dropped to
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0.92 at the (440) reflection while inclusion of the M
shell reduces se further to 0.8'/ (Table III).

A possible explanation for this discrepancy lies in the
classical assumptions used to derive Eq. (10). The
dynamical diffraction theory defines e only as the ratio
of the imaginary part of the scattering factor at the hkl
reflection to that for the (000) forward beam, but it does
not commit itself as to how the quantity f"(kM) is
to be calculated. In the classical treatment used by
Zachariasen" and this author, " it is assumed that the
total complex scattering amplitude, D, , from any por-
tion pdv of the cloud of electron (j) is D;p,de. Thus,
when one integrates over the entire electron cloud,
taking path length differences into account, the total
amplitude is merely D; times the usual form factor and
this gives rise to the f;(kkl) appearing in Eqs. (6)
and (10).

An exact solution to the scattering problem is of
necessity a wave mechanical one."The problem was
first treated by Wailer" and calculations were initially
carried out by Honl2' for E electrons, and further ex-
tended by Eisenlohr and Muller, " and Parratt and
Hempstead" to L and M shells. The Wailer scattering
formula shows that the total scattering amplitude from
an atom involves two parts. The first part represents
scattering for wavelengths far from a characteristic fre-
quency giving fs J'P;*e"&f——,dv, whi'ch is the usual real
electron form factor. The second term, which gives the
anomalous dispersion, involves matrix elements of the
electron of the type J gy*e'" gradlt;dv, where f; and f;
represent the electron wave functions in an initial and
some excited state. Thus, it is not obvious that the dis-
persion terms should have the usual form factor de-
pendence fs To date. , no calculation has been published
which gives the wave mechanical angular dependence of
the imaginary part of the scattering factor. Most
diffraction experiments measure the total amplitude

~ f ~

=
) fs+f'+if"

(
for which f"(hkl) is a small correc-

tion. Consequently, it has not been necessary to make a
detailed calculation of f"(kkl). In anomalous trans-
mission, however, one measures in effect only the imagi-
nary part f'(h8), and thus it is necessary to have a
more exact calculation than has heretofore been
attempted.

The experimental results of this work imply that the
wave mechanical treatment should give almost no angu-
lar dependence to the imaginary part of the scattering
factor for germanium and copper E radiation. Equa-
tions (6) and (10) predict that e will depend on the x-ray
wavelength because the factors p„.depend on X/X;. For
instance, the e(hkl) for molybdenum radiation should be
closer to unity than for copper radiation because most

'~The author is indebted to Dr. S. Tamor of the General
Electric Research Laboratory for a very helpful discussion of this
problem.

's I. Wailer, Z. Physik 51, 213 (1928).
H. Honl, Ann. Physik 18, 625 (1933).

~ H. Eisenlohr and G. L. J. Miiller, Z. Physik 136, 491 (1934).

of the absorption would now take place in the E shell
for which fz is very nearly unity for the reflections
considered. We have measured the anomalously dif-
fracted beam with monochromatic MoE radiation
with the same (400) crystal as before and obtained
from an absolute measurement at room temperature,
e(400)$25'Cj=0.915. This is almost identical with the
value of 0.917 obtained for copper radiation and gives
added support to the contention that there is little, or
no angular dependence to the imaginary part of the
scattering factor. In fact, the (sin8)/)I. dependence of e

is, within experimental error, due entirely to thermal
vibrations and independent of the distribution of ab-
sorbing electrons.

A word about crystalline perfection is in order. It is
difficult to see how crystalline imperfection could ex-
plain this peculiar result. If the crystal were not ideally
perfect, the measured e values would be too low. Since
the maximum value of e is unity, any correction for
imperfections would make the experimental e greater
than unity, which would be physically unreasonable.

CONCLUSIONS

It can be concluded from these experimental results
that the Debye-Wailer factor for anomalous transrnis-
sion in thick crystals of germanium is exp (—1.32M), not
exp( —3E), if the data are to be consistent with an
experimentally determined Debye temperature for am-
plitudes of 291'K. The dynamical theory of diffraction
has not yet been applied rigorously to predict the correct
temperature dependence. We offer as a speculation that
the observed exp (—1.32M) behavior results because one
must consider the possibility that the standing wave is
also vibrating with a thermal amplitude. A careful re-
examination of the dynamical theory including thermal
effects is necessary.

From an absolute measurement of the anomalously
diffracted beam as a function of temperature we have
arrived at experimental values for the angular depend-
ence of the imaginary part of the scattering factor, f",
for an atom at rest. The values indicate that f" is very
nearly independent of the angle of scattering in dis-
agreement with a semiclassical treatment of anomalous
dispersion. The classical calculation could explain ex-
periment by demanding that the germanium atom be-
have as a point as far as the distribution of absorbing
electrons is concerned. This is surely not the case under
the present experimental conditions. It is possible that a
quantum mechanical calculation such as first performed
by Honl, "but with a detailed evaluation of the angular
dependence of f", would give better agreement with
experiment.
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APPENDIX

A. Absorptive Behavior of an Atom Vibrating
in a Standing Wave Field

If we refer again to Fig. 1, we see that the wave field
far from the point of entrance of the beam is a stan ing
wave with nodes at the lattice planes. This limiting

amplitude traveling in the primary and diffracted beam
directions.

e Fi . 1 forW represent the electric field amplitude, ig. , or
these waves as Ej=Eoe e andscot ikp ~ r and Q g ~scot~rk. r

where ks and k are the wave vectors for the waves in the
primary and diffracted directions respectively, and r is
a position vec or int

'
the crystal. Two similar expressions

consistent with Maxwell's equations represent the as-
sociated magnetic field. It is then a straightforward
calculation to show that the Poynting vector, , as
components parallel only to the diffracting planes and
depends on position perpendicular to these planes in the
following way:

~S~ 1—cos(k —ko) r.

The vector k—ko is normal to the diffracting plane

spacing between the (hItl) planes. For brevity, we set
b =1/d(hki) and n as a unit vector normal to the
diffracting planes. Using complex notation for the cosine
function and the fact that the Poynting vector is pro-
portional to the square of the electric Geld amplitude,

E'~1 exp( —2sribm—n r).

We invoke the condition that the probability of
photoelectric absorption is proportional to the square of
the electric 6eld amplitude to compute the absorption of
an electron in the Geld of Eq. (11).

In Fig. 5, let ro(t) be the time dependent position of
the atomic nucleus, and r the vector tr to the volume de
which contains the fraction p(r, )ds of electron j. tt„(r)

th tomic absorption coefficient of electron j in t e
wave Geld at point (r), and p„.is the average absorp

'
o tion

dv

This follows from Eq. (11) and the normahzing condi-
tion that the average value of tt„(r) in the wave Geld

for theThe value of the atomic absorption coeKcient for e
entire atom centered at ro(t) in the wave Geld, tt, (ro), is,

t'(ro)=Z . (r)p(')a~

=p. ex—p( 2s—rib„n rp)g p.;

p(r, ) exp( —2srib„n r;)dv. (13)

&exp(sp)) = exp(i(p)) =exp( —s(p')), (16)

where the angular brackets indicate a time average.
The last step in (16) is a close approximation to that

originally erive yd
'

d b Ott" and takes into account t e
owers in thefact that the time average of the odd powers in e

f '& is zero. If we let r„be the com-series expansion o e is z
ponent of rs(t) parallel to n, we have from Eq. (16) and
Hragg's law,

ex (—-'(p')) = exp( —Ssr'E(sin8)/)t$'(r o')ev} =& ~)

Wailer factor. Thus, the dynamical value of e is

The last integral represents the stationary form factor
of the jth electron fs' Substit. uting this and factoring
out p we get

tt,Lrs(t) j=p.f1—exp( —2srib„n ro)

X(Z t. f&'/t. )j (14)

Companng qs.E s. (6) and (14), we have for the time-
dependent atomic absorption coeScient in t e wave

ttt, gr, (t)g= tt, L1—exp( —2srib n rp)col,

where eo is the static value of e.
For the case where the equilibrium position is in the
d 1 1 (t) represents the displacement due to

thermalvibrations. To get the time averageo q. ( )
d

'
ll the time average of the exponentia

on the right, and this is very close in form to that o t e
Debye-Wailer factor exp( —2M) that appears in diffrac-
tion from an ideal mosaic crystal (see James, "p. 22).

If we let 2m b n ro ——p, then

—Me= eoe (17)

0

FIG. 5. A single atom In the standing-wave e ' g.Geld of Fi . 1.

3'R. W. James, e ica, Th Opt' l Prirtceptes of the Dsffractt'on of
X-Rays (G. Bell and Sons, London, 1950), p.

"H. Qtt, Ann. Physik 23, 109 (1935).
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TABLE IV. Tabulation of Eq. (18) as a function oi B = usta

0
0.5
1.0
1.5
2.0
3.0
4.0
5
6
8

10
12
14
16
18
20
22
24
26
28
30

J'n

1.5375
1.4519
1.2672
1.0854
0.9429
0.7582
0.6489
0.5761
0.5234
0.4506
0.4016
0.3657
0.3381
03159
0.2975
0.2821
0.2688
0.2572
0.2470
0.2379
0.2298

J'r
—1.5375—1.1074—0.2274

0.5342
0.9996
1.2786
1.1795
1.0029
0.8447
0.6334
0.5168
0.4458
0.3984
0.3635
0.3364
0.3146
0.2965
0.2813
0.2681
0.2567
0.2466

~ ~ ~

1.7724
1.2533
1.0233
0.8862
0.7236
0.6267
0.5605
0.5117
0.4431
0.3963
0.3618
0.3350
0.3133
0.2954
0.2803
0.2672
0.2558
0.2458
0.2368
0.2288

Physically, the reason M appears here, while 2M is
correct for diffraction from mosaic crystals, is that p in
the latter case involves a vector connecting two atoms
and the rms length change is twice the value for each of
the independent atoms at either end of the vector. In the
anomalous absorption case, only the rms amplitude of
one atom is involved.

Thus, we see that an intuitive argument predicts a
Debye-%aller factor that is equivalent to the expedient
of replacing a static atomic scattering factor fs by fee ~,
whereas experiment, on the other hand, does not sub-
stantiate this.

The second term in the integral for the transmitted
beam in effect subtracts the background transmission
far from the diffracting region. The term approaches zero
for thick crystals. For large values of B, JD ~ Ji ~A.
The three values of Eq. (18) are given in Table IV.

C. Measurement of Absolute
Integrated Intensities

Two independent methods were used to ascertain the
primary beam intensity, which was the order of 10' cps.
The first was an absorption technique described in an
earlier publication" involving the use of polystyrene as
the absorber. The linear absorption coeScient of the
material was measured using thin sheets, and a large
single piece was accurately machined which reduced the
primary beam by approximately a factor of 50 to the
linear region of the detector.

In the second method, similar to one described in
another work, '4 the (111) integrated reQection of a
highly perfect germanium crystal (used as the second
crystal in the spectrometer) was measured. Since the
first crystal was a germanium (333) reflection and the
second crystal now (111),the spectrometer disperses the
different wavelength components in the beam di8'racted
from the first crystal and, hence, at any one setting of
the second crystal, the diffracted beam did not exceed
the linear region of the detector. From the measured
di6racted energy, and an experimental value" for the
integrated intensity of the (111), Ere/I=0. 871&&10 4,

the primary beam intensity could be obtained. The two
measurements agreed to within 2'P~.

(1+y') cosh(B)

1+2ys) cosh(B/(1+y') &7

r o 1+y' ) coshB

E8B)

(18)
coshB

B. Numerical Evaluation of Integrated
Intensities of Transmitted and

Diffracted Beams

The integrals in Eq. (3) for the diGracted beam, Rn,
and the corresponding one for E~, have been evaluated
with an IBM 7090 computer as a function of the
parameter pote= B.

"cosh[B/(1+y') &7

D. Measurement of the Linear Absorption
Coefficient of Germanium for CuK

Radiation

Single crystals of germanium were carefully lapped to
sheets approximately 25 p thickness and cut into squares
1X1 cm. The transmission coefficient of monochromated
CuE radiation was measured at approximately 15
points distributed over the 1 cm2 sheet. From the weight
of the crystal, an accurate measurement of the area, and
the transmission coefficient, p~ could be calculated. The
result of measurements from three crystals of slightly
diBering thicknesses is p~

——352%2 cm '.

"B.W. Batterman, Rev. Sci. Instr. 29, 1152 (1958).
'4 B.W. Batterman, D. R. Chipman, and J. J. DeMarco, Phys.

Rev. 122, 68 (1961)."B.W. Batterman, J. Appl. Phys. 30, 508 (1959).


