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Correlation Function Calculation of Thermal Conductivity
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Recent theories of transport in fluids express the thermal conductivity in terms of correlation functions
of the thermal Qux. It is shown here that such an expression for the thermal conductivity reduces to that
conventionally obtained by use of the Boltzmann transport equation for phonon scattering in crystals, if
the rate of change of phonon occupation numbers due to scattering may be characterized by a relaxation
time per mode of vibration. The elastic scattering of phonons by randomly arranged scatterers in anisotropic
crystals is also discussed. We show that a new relaxation mechanism can, in certain cases, simply characterize
the thermal conductivity.

Boltzmann's constant, T is the absolute temperature,
and

EVENT theories of transport in Quids express the
thermal conductivity in terms of correlation
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functions. ' ' It appears that these theories are su%-
ciently general to be valid for phonon transport in
anisotropic solids. In this note we show that the
quantum-mechanical expression due to McLennan'
gives the same results as the calculation utilizing the
Boltzmann transport equation, provided the scattering
mechanisms may be characterized by a relaxation time
per vibrational mode. In addition it is assumed that
for both methods the canonical density matrix and the
thermal Qux operator are those for the harmonic
(unperturbed) lattice.

We also discuss the elastic scattering of phonons in an
anisotropic crystal. We note that for scattering of
phonons by randomly arranged point defects, having a
mass or near neighbor binding force different from the
normal, thermal conductivity is governed by relaxation
times connecting modes of equal energy and opposite
wave vector.

The formula for the thermal conductivity tensor
which we take as our starting point is'

(s'(0)s (t)&—=T Eps'(0)s (t)3

is the time correlation function of the components of
thermal Qux. Also, p is the canonical density matrix and
s(t) is the Heisenberg representation of the flux defined

by
s(t) =exp(ih 'Zt)s(0) exp( —ih 'Ht).

The Hamiltonian H is that for the system not including
the surroundings. It may be divided into two parts, H'
for the harmonic system, and B' responsible for. the
scattering of the phonons. Physically, Eq. (1) establishes
a connection between the thermal conductivity de-
scribing the irreversible transport of energy and the
dissipation of an equilibrium Quctuation in the energy
Qux.

The correlation function of Eq. (1) in general is not
real and does not satisfy the principle of microscopic
reversibility. ' A way to avoid this difhculty is simply
to assert that the correlation function is to be sym-
metrized, but this does not seem to be a natural
consequence of the quantum mechanical theory.
However, for the choice of equilibrium density matrix
and thermal Qux operator usually made, the correlation
function of Eq. (1) is, in fact, , real and time reversible.

Our aim here is to compare the results of the corre-
lation function calculation with the results of the
Boltzmann transport equation calculation for phonon
transport. Since in the latter, one chooses the canonical
density matrix and Qux to be that for the harmonic
lattice, ' '

tt;;= V(kT') ' dt (s;(0)s,(t)), i, j=1, 2, 3. (1)

Alternative expressions to Eq. (1) for tc,;, and other
transport coeKcients''4 include an additional inte-
gration over the temperature. However, Verboven' has
shown that these expressions reduce essentially to
Eq. (1). Here V is the volume of the crystal, k is
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we make the same choice here. In Eqs. (2) and (3)
P= (kT) ', and k is the wave vector of the phonon of
polarization s; Aro(k, s), v(k, s), and N(k, s) are the
energy and group velocity and number operator, respec-
tively, of the phonon in mode (k,s). The Hamiltonian
for the unperturbed lattice is

B'= P Aoo(k, s)(N(k, s)+,'j.-
k, s

Thus, s(0) and p commute ensuring the reality and time
reversibility of the correlation function. The sym-
metrized form of Eq. (1) then also reduces to the same
result for these choices. Further, only diagonal matrix
elements of p, s(0), and s(t) are now needed.

From Eq. (3) the time-dependent flux per mode can
be written

s, (k,s; t) = V—
'A&a(k, s)v;(k, s)N (k,s; l).

Here N(k, s; t) is the Heisenberg representation of the
number operator governed by the equation of motion

dN(k, s; t)/dt=sA —'LH, N(k, s; t)g. (4)

The diagonal elements of the left-hand side of Eq. (4)
give the time rate of change of the phonon occupation
numbers due to the scattering by the perturbation H'.
This is just the collision term of the Boltzmann trans-

port equation. 2' If this equation can be solved even

approximately the solutions appearing in the two
formulations of the thermal conductivity will be the
same.

Suppose there is a solution to Eq. (4) that has the
form of a relaxation time per mode,

(rn [N(k, s; t) [ nt) = expLt/r(k, s)](nt [ N(k, s) J
tn).

Then
(s'(o)s (l))= 2 (s's (»s)) exp'/r(k s)j. (5)

k, e

The time-independent correlation function (s,s;(k,s))
can be written

(s;s;(k,s))

=P"A'ro(k', s')co(k, s)v;(k', s')v;(k, s)
k's'

&&(N(k', s')N (k,s))

+A'res (k,s)v;(k,s)v;(k,s) (1P(k,s))

+A'to( —k, s)co (k,s)v, (—k, s)v;(k, s)

X(N(—k,s)N(k, s)). (6)

The summation is over all modes except (k,s) and

(—k,s). We now use the symmetry relations

&o(k,s) = co(—k, s); v( —k, s) =—v(k, s),

and the fact that

(N(k, s))=(N( —k, s)),

(N(k', s')N(k, s))= (N(k', s'))tN(k, s)); (k', s') W (k,s).

Thus, the summation in Eq. (6) is identically zero, and
the other terms combine to give

(s;s, (k,s))=A'ros(k, s)v, (k,s) v;(k,s)
X$(N'(k, s) )—(N(k, s) )'j. (7)

Upon integration over the time in Eq. (5) the thermal
conductivity becomes

tr;;=A'(VkT')-' P r(k, s)tc (k,s)v;(k, s)v;(k, s)
k, s

XL(N'(k, s))-(N(k,.))'j. (g)

Equations (7) and (8) can be expressed in terms of a
heat capacity per unit volume per mode via a formula
from fluctuation theory

c(k,s) =A'(Vk T')—'co'(k, s) ((1P(k,s) )—(N (k,s) )'j
The thermal conductivity tensor becomes

tt;, = P r(k, s)v, (k,s)v;(k, s)c(k,s).
k, s

This is the usual expression for the thermal conduc-
tivity in an anisotropic crystal. ' ' Not only is the form
of the expression the same, but the relaxation time is
identical to that obtained from the Boltzmann equation.
Thus, we have shown that the correlation function
formulation of transport theory gives in the relaxation
time approximation the same results as the Boltzmann
equation for phonon transport in crystals. Discussions
of this have been given previously" "for a classical gas.
However, it is not clear that these hold for phonon
transport in solids. Further, our demonstration is quite
simple. We might note that the two methods are
equivalent for a wider class of problems than considered
here. Any one-body operator can be expressed in terms
of number operators. The above proof, therefore,
applies to all systems for which the Aux operator can be
written in the manner of Eq. (3).

We nor consider the problem of the elastic scattering
of phonons by point imperfections in a crystal. We have
in mind here imperfections such as isotopic mass
variation, impurities, vacancies, and interstitials. In
these cases the terms in the Hamiltonian causing
scattering are quadratic in the creation and annihilation
operators. It can be shown, then, that Eq. (4) reduces
to2, 8

dn(k, s; t) =a P IV(k,s;k', s')
81

)&Ln(k', s'; t) —n(k, s; t)7 (10)

(minus sign for negative times), where

(n~N(k, s;t) in)=—n(k, s; t).

R. C. Tolman, Prcncsples of Statsstscat Mechastlcs (Oxford
University Press, New York, 1938), p. 632.
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This master equation is conventionally obtained by
standard lowest order time-dependent perturbation
theory. As such it holds over time intervals shorter
than the relaxation time implied by the equation itself.
However, Van Hove" has shown that the master
equation is in fact true under certain conditions to all
orders of the perturbation. Therefore, long-time
solutions to Eq. (10) are valid.

The transition probability per unit time, W(k,s; k', s'),
is symmetric in its indices. In addition if the point
imperfections are randomly arranged in the crystal the
transition probability in certain important cases has the
symmetry property

Of course, one would not expect to obtain a relaxation
per mode since elastic scattering alone cannot lead to
thermal equilibrium.

We now show that this exact relationship, which
holds for anisotropic as well as isotropic crystals, is
sufhcient to characterize the thermal conductivity. The
correlation function may be written as

(s;(0)s,(t))=V ' P Ace(k, s)v, (k,s)
k&o, e

X(s;(0)($(k,s; t) —N'( —k, s; t)]).

Using Eq. (12) and Eq. (13) this becomes

W'(k, s; k', s')=W( —k, s; k', s'). (11) (s;(0)s,(t))= V ' g Ace(k, s)v;(k, s) exp(t/rL( —k, k)s])
k&0, s

That is, the transition probability for elastic scattering
of phonons in a given mode is the same into modes of
equal energy and opposite wave vector. This is true for
example for the scattering of phonons by atoms of a
different mass (isotopic scattering) or with atoms having
a different near neighbor binding force."

Writing Eq. (10) for dn( —k, s; t)/dt and then
subtracting this equation from that for dn(k, s;t)/dt,
making use of Eq. (11), we obtain

—Pn(k, s; t) n( k,s—; t)]—
=Prc(k, s; t) —n( —k,s; t)]rL(—k,k)s]-',

where

X(s;(0)(1V(k,s)—1V(—k, s)])
= Q (s;(0)s,(k,s)) exp(t/rL( —k, k)s]).

k, s

This is identical to Eq. (5). Equation (9) is again
obtained just as with the single mode relaxation
discussed earlier. Consequently, the expression for the
thermal conductivity tensor is the same but with the
meaning of the relaxation time altered.

Equation (13) can also be used in the Boltzmann
equation calculation again giving the same result as
the correlation function calculation.

For spherical energy surfaces and isotropic scattering,

rP(—k,k)s]—'= P W(k,s; k's')

g W(—k,s; k's'). (12)

This equation may be integrated immediately giving

n(k, s; t) —n( —k, s; t)
= Ln(k, s) —n(—k, s)] exp(t/rL( —k, k)s]). (13)

Thus, the excess of phonons of equal energy but opposite
wave-vector decay exponentially with a characteristic
time r((—k, k)s]. This is not a relaxation per mode.

"L.Van Hove, Physica 23, 441 (1957)."P.G. Klemens, Proc. Phys. Soc. (London) A68, 1113(1955).
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The thermal conductivity, Eq. (9), then becomes a
scalar quantity which is formally equivalent to the
results obtained by the familiar Boltzmann transport
equation calculation of the thermal conductivity due
to the isotropic elastic scattering of phonons by
randomly arranged point imperfections. ' Further-
more, we have shown that the thermal conductivity
due to mass-diGerence and binding force scattering
of phonons in ani sotro pic crystals with randomly
arranged point defects is also given by Eq. (9) with
the new relaxation time, rP(—k, k)s], defined by
Eq. (12).


