
P H YSI GAL REVIEW VOLUME 126, NUMBER 4 MAY 15, 1962

Range of Excited Electrons in Metals*

JOHN J. QUxNN

ECA Laboratories, Princeton, Eem lersey

(Received January 12, 1962)

The energy of interaction of a single excited electron with the sea of conduction electrons in a metal has

been calculated by a self-energy approach. The imaginary part of the self-energy of the excited electron can
be interpreted in terms of a total rate of real collisions with the sea of conduction electrons. By weighting

the di6'erential scattering rate by the amount of energy lost in each scattering event, one obtains an expres-

sion for the instantaneous rate of energy loss of the excited electron as a function of its initial energy. The
extremely strong dependence of this rate on the initial energy is the main result of this paper. For slow

electrons, by which we mean those of initial energy smaller than the sum of the Fermi energy and the plasma

energy of the electron gas, the rate of energy loss is determined by the small imaginary part of the dielectric

constant. For electrons close to the Fermi surface this rate is proportional to (p —po)', where p is the mo-

mentum of the excited electron and po the Fermi momentum; therefore in this range the rate of energy loss

is very sensitive to the initial energy. For fast electrons, a new contribution to the rate of energy loss arises
due to a pole of the inverse dielectric constant. This new process corresponds to the excitation of plasma
oscillations by the excited electron, and causes fast electrons to lose energy very rapidly.

I. INTRODUCTION IL LIFETIME

Since the wave function for a single excited electron
has a time dependence' e '~'»', where E(p)=Eg(p)—
+iEr(p) is the renormalized quasi-particle energy, the
probability of an electron occupying a given excited
state decays in time with the factor e '~~'~'. The factor
2lErl can be interpreted as a transition rate, or its
inverse as a lifetime. In the erst reference the following
formula for the imaginary part of the self-energy is
derived:

HE self-energy or quasi-particle approach to
interactions in a degenerate electron gas has

proven quite useful in the study of the electronic
properties of metals. 2 The simplicity of the quasi-

particle approach arises from the fact that for many
electronic properties one need only know the renormal-

ized quasi-particle energies. It is well known' ' that the
renormalized quasi-particle energy is a complex function
of momentum. The imaginary part of the quasi-particle

energy results from the fact that quasi-particle states
are not eigenstates of the system. The excited quasi-
particle can transfer energy and momentum to the
electron gas. The transition rate for these real collisions

is responsible for the imaginary part of the electron self-

energy, while the real part is due to virtual collisions.

In the present paper we investigate the imaginary part
of the self-energy in an attempt to understand the rate
of energy loss of excited electrons.

When discussing electronic properties of metals, one

normally points out the fact that quasi-particles close
to the Fermi surface have very long lifetimes. This is
essential to su'ch considerations since it becomes
meaningless to describe a system in terms of excitations
whose lifetimes are short compared to characteristic
times of interest in the system (e.g. , cyclotron period).
In this work we need only the restriction that the

energy uncertainty due to the finite lifetime is small

compared to the real part of the energy of the excited
particle. Thus, unless the imaginary part is small

compared to the real part of the quasi-particle energy,
the concept of a quasi-particle becomes meaningless.

g2 d'k
Er(P) = Im

2z' k'e(k, E(P)—E(y—&)+i5) (1)

Es&E(p—I )«(P),
where Im denotes imaginary part of, e(k,co) is the
Lindhard dielectric constant, 8 is a positive in6ni-
tesimal, and Eo is the Fermi energy. The Lindhard
dielectric constant is given by the expression
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'

where re~ is the plasma frequency and eo the Fermi
velocity of the electron gas; z is the ratio of wave
number k to twice the Fermi wave number 2ka. The
parameter p is equal to &o/kzs. The dielectric constant
has both a real and an imaginary part; we shall use the
notation e(k,&u) = sr(k, ~)+ies(k, &o). The imaginary part
of & k~ is sim I a measure of the number of states(, ) py

~ J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1938).
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Plasma Physics 2, 18 (1961). s Throughout this paper we take )1, the reduced Planck constant,». M. Hugenholtz and L. Van Hove, Physica 24, 363 (1938) equal to unity.
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Fxo. 1. The region of momentum space contributing to the
integral appearing in Eq. (6). The region of integration lies
between the concentric spheres of radii po and p. The imaginary
part of e(k,E(p) —E(p—Ir)) is nonzero only in the region lying
between the two branches of the Pascal limacon, the curve given
by k= p cos8&po centered about the point p in momentum space.
8 is the angle between —p and k. The region giving a Qnite
contribution to the integral is indicated by the striped area.
Figure 1(a) is for the case where p is approximately equal to pp,
Fig. 1(b) corresponds to p considerably larger than po.

uncertainty in the energy of the quasi-particle due to
its finite lifetime is small compared to its excitation
energy. Because the dielectric constant appearing in
Eq. (1) is quite a complicated function of k, it is not
possible to obtain a simple closed expression for Er(p).
By making some simplifying assumptions, one can
obtain reasonably accurate approximations for diferent
contribution to Er(p) in certain limiting cases. By
resorting to numerical integration in the range where
it is impossible to obtain an accurate analytical ex-
pression, one can obtain a fairly good picture of
Er(p)» p.

(a) Low-Energy Excitations

For an excited electron whose initial energy is very
close to the Fermi energy E(p) =Ep, the frequency
LE(p) —E(y—k)] entering the dielectric constant
which appears in Eq. (1) is always small. For such
frequencies one is always safely removed from the pole
of e '(k, cp), and Eq. (1) can be written

available for real transitions involving a given energy
co and momentum transfer k. The imaginary part of e

expressed in the form

Er(p) =
27r9

d'k es(k, hE(k))

k'
~
e(k,hE(k))~' (6)

~ (» )=(3 '/k' o')( /2)P f +f &I
= (3cp '/k'tYp') (z./gs) L1—(s—p)')

for fs—fi) &1&[a+ii/
=0, otherwise. (3)

To obtain an approximate idea of the behavior of
ei(k, cp) one can expand the logarithmic terms in powers
of the appropriate small parameters. For example, for
2'«1, p«1 one can obtain

(» ) =1+(k'/k') (1—p') (4)

The dielectric constant has a zero at the plasma
frequency corresponding to the natural oscillations of
the system. From the behavior of the dielectric constant
and the form of Eq. (1), it can be seen that two separate
contributions to the imaginary part of the self-energy
exist One contribution results from the pole of 1/e at
the plasma frequency and corresponds to the creation
of a plasma oscillation by the excited electron. The
second contribution arises from integration over that
portion of k space for which es (k,hE) is finite. We want

to obtain the value of Er(p) as a function of p for
values of p in the range pp& p& several times pp. The
lifetime of the excited quasi-particle state is then

r=L2Er(p) j '. We also wish to demonstrate that the

where k,', the square of the reciprocal Fermi-Thomas
screening length, equals 4kp/zap. ap is the radius of the
first Bohr orbit in hydrogen. For p))1 one can easily
show that

et(k, rp) =1—rp s/(o'

Ep&E(p —k) &E(p),

where AE(k) =E(p) —E(p—k). Since we are consider-
ing the case where hE is always very small LE(p) =Epj,

e(k,hE) ~' in the denominator can be replaced by
e(k,o) ~' to a reasonably good approximation. The

region of momentum space over which es(k, hE(k)) is
finite lies between the surfaces k=p cos8&pp centered
about the point y in momentum space. Here we restrict;
0, the angle between —p and k, to the range zero to
z./2. The entire surface k=p cos8+pp is a surface of
revolution of a two-dimensional curve known as the
Pascal limacon; we shall refer to the plus and minus
sections of this surface as the two branches of the
surface. The entire contribution to the integral appear-
ing in Eq. (6) comes from that region of momentum
space between the two branches of the Pascal limacon
which also lies between two concentric spheres of radii
p, and p centered about the origin. Examples of the
region contributing to the integral are shown in Fig. 1
for two different values of p/pp. By substituting from
Eqs. (3) and (4) into Eq. (6) one obtains for p=pp

g2

Er(p) =-
2ap 32(ar, )I

X tan-'~ ~+
'hnr, ) 1+nr, /~ g

where cr= (4/9z)&, r,—is the radius (measured in units
of the Bohr radius &p) of a sphere equal in volume to
the volume per electron, and x is p/p, .
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Fin. 2. Graph of Ez(p), measured in units of—the Fermi energy,
as a function of p, measured in units of the Fermi momentum for
the case r, =2. The curve labeled "individual particle collisions"
is the contribution to Ez(p) obtained from Eq. (6). Near p/po = 1,
Ez(p) is proportional to (p/po —1)'. For p considerably larger
than p0, the "individual particle collision" contribution to I'1(p)
was obtained by numerical integration. The points obtained
numerically are indicated by crosses. The curve labeled "plasmon
creation" is the contribution from Eq. (8). The correction given
by Eq. (11) shifts the threshold for plasmon creation from 1.526
to 1.606. These points are indicated on the graph. The curve
labeled total is the sum of the other two.

7 J. J. Quinn and R. A. Ferrell, Bull, Am. Phys. Soc. 1, 44
(1956).

K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout, Phys.
Rev. 108, 507 (1957).

(b) High-Energy Excitations —Plasmon Creation

For high frequencies ~&co„ the dielectric constant is
real and can be approximated by Eq. (5). The zo„

appearing in Eq. (5) actually depends on k, but this
dispersion is fairly small and, for the present, we shall
neglect it. With this approximation, the integral appear-
ing in Eq. (1) has a simple pole at E(p) —E(p—k) =co„.
The i5 appearing in the dielectric constant gives the
prescription for integration around the pole. We per-
form the integration as follows: first integrate over the
component of k parallel to p. The only contribution to
the imaginary part is xi time the residue at the pole.
Then integrate over angle, restricting k to the interior
of the Pascal limacon, where the imaginary part of
e(k,oz) is zero. The result for E(p))Eo+oz„ is:

coy (po +2rzzzo„) *—po)
Ez(p) = — ln ~, (8)

2a p p —(p' —2euu )& I
The upper factor in the logarithm is simply k„ the
cut-o8 momentum for plasma oscillations:

&./ho= L(1+to„/Eo)
'*—17. (9)

In the limit of high densities (r, ~ 0), this reduces to
k, =0.47r,&ko, by now a well-known expression. "

Actually near the threshold for creation of plasma
oscillations we should correct Eq. (8) for the dispersion
of the plasma oscillations as a function of k. Near the
threshold, E(p) =Eo+oz„, the mornenturn change of
the excited electron is always close to k, . Since the
plasmon created must take up this momentum as well

Q20—

OJ6--2EI (P)

p) Eo

Q08—

OQ4—

Pg
po

f =2

FIG. 3. The ratio of the uncertainty in the quasi-particle
energy to its excitation energy as a function of p/po.

as the energy, the energy of the plasmon is somewhat
higher tha, n &o~(0):

Substituting k, for k, one obtains for the threshold
excitation energy

(c) Intermediate and High-Energy Excitations-
Individual Particle Collision

It is extremely difficult to obtain any accurate
expression for the integral appearing in Eq. (6) when
E(p) is more than 20% to 30% bigger than Eo. For
initial energies in this range one must resort to numerical
integration. The double integral, over angle 8 and
magnitude of k, has been evaluated for the case r, =2
(roughly corresponding to aluminum) for several values
of p/po. The results are included on the graph labeled
"individual particle collisions" of Fig. 2. Figure 2 is a
plot of —Er(p)/Eo as a function of p/po for r, =2. The
curve labeled "individual particle collisions" is the
contribution to Ez(p) resulting from the finiteness of
es(k, hE(k)). The points on this curve marked by a
cross were obtained by numerical integration of Eq. (6).
The values for p/po(1. 30 were obtained by using Eq.
(7). The curve labeled plasmon creation is obtained
from Eq. (8), making the correction for the threshold
described by Eq. (11).This correction shifts the thresh-
old for plasmon creation from p/po

——1.526 to 1.606.
The curve labeled "total" is simply the sum of the
other two. All the curves are rather roughly sketched
through a series of points. This is in accord with the
accuracy of the calculation which shall be discussed
later. Figure 3 is a plot of the uncertainty in the

6 Eo zo

~n(& )=~&(0) 1+- 1+—
l

—1
5 ~,'(0) — Eo&

This correction factor can amount to about a, 15%%u~ to
20% shift in the excitation energy required for plasmon
creation.
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FIG. 4. The mean
distance traveled by
an excited electron
along its own path
in losing one half
an electron volt
of energy, plotted
as a function of
its 6nal excitation
energy. The ordinate
is measured in ang-
strom units, the abs-
cissa in electron
volts.

tion energy p; [E,(p)=ED+),] to a final excitation
energy $r.

l(g, ,gx)

24(a.r, /m) LED'(1/$r' —1/$,')+2EO(1/Pr —1/$, )jgo

I tan '(m/nr, ) '*+ (nr, /7r) '*/(1+nr, /m) j
(14)

For the case of aluminum (r, =2, ED=12 ev) the
equation reduces to

-)1 1y 1~1 1)
«&„&,) =»0

I

——I+-I -—
I A,

g'' j 6k ~r g'i-
quasi-particle energy divided by its excitation energy
as a function of p/po. For the quasi-particle concept
to be meaningful the uncertainty in energy must
always be small compared to the excitation energy.
For this case (r, =2) the uncertainty is never more
than 16% of the excitation energy, so that the quasi-
particle concept is not too bad.

III. RANGE OF EXCITED ELECTRONS

(a) Low-Energy Excitations

Perhaps a more interesting parameter than the life-
time 7 for the low lying excitations is the instantaneous
rate of energy loss. Since we have interpreted 2

I Er(p) I

as the total transition rate for real scattering events,
we can obtain the rate of energy loss by weighting the
differential scattering rate by the energy lost in each
collision. For low-lying excitation LE(p) =Eoj, one
obtains

where $; and $r are measured in electron volts and l is
measured in angstrom units. Figure 4 is a graph of the
average distance traveled by an excited electron before
it loses one half of an electron volt energy, plotted as a
function of its final excitation energy. This distance is
obviously extremely sensitive to the final energy. The
mean distance traveled in going from 1 to ~ ev, about
2200 A in aluminum, is not inconsistent with the long
mean free paths observed by Spratt et Ol.' It should
be emphasized that this mean distance is measured
along the path of the excited electron, and we have not
considered how the excited electron random walks
through the crystal. It should also be pointed out that
the mean energy lost by an excited electron which does
suffer a collision is not small compared to its initial
excitation energy. In fact, for the present case of low-
energy excitation one can easily show that an excited

10000

dE(p) e' d'k

k'

I:E(P)—E(p—k) 3~2(k,E(p) —E(p—&))
X )

I (k,0)l

Eo«(I —I)«(P) (12)

Dividing both sides of the above equation by the
velocity v gives the energy loss per unit length, along
the path of the excited electron. Carrying out the
integration with the same approximations used in
obtaining Eq. (7) gives

IOOO—

CHINA

IOO—

dE(P) e' 2m' 2kp 2kpk,
tan ' +

2ao 3~k, 'E(p) k, 4ko'+k. 2 IO
0

t I I

3 4 5

XLE(p) —Eo]', (13)

where l measures the position of the electron along its
path. By straightforward integration one can obtain
the following equation for the parameter /, which is a
rough measure of the distance along its path that an
excited electron travels in going from an initial excita-

INITIAL EXCITATION ENERGY IN ev

Fro. 5. The "mean free path" for electron-electron collision as
a function of the initial excitation energy. The "mean free path"
is de6ned as the product of the velocity and the lifetime of the
excited particle, and is measured in angstrom units. The initial
excitation energy is measured in electron volts.

' J. Spratt, R. Schwarz, and W. Kane, Phys. Rev. Letters 6,
341 (1961).
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FIG. 6. The mean free path for plasmon emission plotted as a
function of the initial energy of the excited electron. The ordinate
is measured in angstrom units, the abscissa in units of the Fermi
energy.

electron loses 3 of its excitation energy in a typical
collision. This implies that the integration of Eq. (13)
to obtain Eq. (14) is not really altogether appropriate.

Perhaps a more signihcant number, as far as the hot
electron tunneling experiment is concerned, is the
"mean free path" for any electron-electron collision.
We define this quantity as the product of the lifetime
of the excited particle and its velocity. If no other
mechanism (phonons or impurities) are of importance,
this mean free path is equal to the distance at which
1/e of the excited electrons have not suffered any
collision. For an excitation energy of 1 ev in aluminum,
this mean free path is approximately 1000 A. A graph
of this "mean free path" as a function of the initial
energy is given in Fig. 5.

(b) Mean Free Path for Plasmon Creation

The lifetime for plasmon emission is equal to
L2Ez(p)e~„, $ ', where Er(p)~~«~, is the contribution
to Er(p) resulting from the pole in e '(k, cd). The product
of v and e, the velocity of the excited electron, is equal

For E(p)))Es, as for example in the characteristic
energy loss experiments, this expression reduces to the
result of Ferrell. " Figure 6 contains a graph of the
mean free path for plasmon emission as a function of
the initial energy for the case of aluminum (r,=2).

IV. SUMMARY

The results of this paper are based upon the dielectric
constant approach to the electron-electron interaction.
This treatment is strictly valid only for r, small com-
pared to unity. Since we have applied the results to
aluminum (r,=2), we cannot hope for very good
quantitative results, but certainly the qualitative re-
sult that the rate of energy loss is strongly dependent
on the excitation energy should be true. The calcula-
tions of DuBois" indicate that the dielectric constant
approach may be reasonably good even in the range
1&r,&2. It should be possible to study the dependence
of the rate of energy loss on the excitation energy both
by tunneling experiments in which different barrier
heights are used at the collector, and by photoelectric
emission from wedge-shaped specimens whose surfaces
have been treated so as to give a range of di6erent
work functions.
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