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energy goes into lattice distortion. It must be re-
membered that the actual lattice expansion will be less
because of the opposing tendency toward contraction
due to the electrostatic attraction considered above.

We conclude that the contribution of lattice distortion
to the energy of diffusion in the diamond lattice should
be negligible (of the order of a few percent), except for
much larger impurities than the ones considered here.
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Using the partial-wave method, ionized impurity scattering in degenerate semiconductors is discussed.
It is shown that the scattering process is adequately described by considering only the zeroth-order phase
shift. By making use of Kohn s variational principle this quantity is determined analytically and an analyti-
cal formula is derived for the resistivity due to ionized impurity scattering alone.

I. INTRODUCTION

'ONIZED impurity scattering is an important factor
- in determining the charge transport in semicon-

ductors. Theoretical treatments' of the scattering proc-
ess make use either of the Born approximation' or of the
more exact partial-wave method. ' The latter approach
has been used by Blatt4 for discussing ionized impurity
scattering in nondegenerate semiconductors. Unfortu-

nately, the form of his scattering potential did not
permit the derivation of analytical formulas for the
phase shifts of the partial waves.

The present paper considers ionized impurity scat-
tering in degenerate semiconductors. It is shown that in
this case the scattering process is adequately described

by considering only the zeroth-order phase shift. By
making use of Kohn's variational principle' this quan-

tity is determined analytically. As an example, the
scattering of electrons by donor ions is discussed and an
analytical formula is derived for the resistivity due to
ionized impurity scattering alone. The scattering po-
tential used is of the same form as that of Blatt, ' namely
a screened Coulombic potential. ' It is assumed that in
an elastic scattering act only one donor ion participates.
As in Blatt's work, anisotropies in the electronic effective
mass are ignored and a scalar effective mass is used.

The subject is reviewed by F. J. Blatt, Solid State Physics,
edited by F. Seitz and D. Turnbull (Academic Press Inc. , New
York, 1957), Vol. 4, p. 343 ff; H. Brooks, Advances in Electronics
and Electron Physics, edited by L. Marton (Academic Press Inc. ,
New York, 1955), Vol. VII, p. 156 ff; W. Shockley, Electrons and
Holes in Semiconductors (D. Van Nostrand Company, Inc. ,
Princeton, New Jersey, 1950), p. 258 ff.

'L. I. Schiff, Qaaatttrrt Mecharttcs (McGraw-Hill Book Com-
pany, Inc. , New York, 1955), 2nd ed. , p. 161 ff.

3 See reference 2, p. 103 ff.
4 F. J. Blatt, J. Phys. Chem. Solids I, 262 (1957).
5 W. Kohn, Phys. Rev. 74, 1/63 {1948).
s R. B.Dingle, Phil. Mag. 46, 831 (1955).

II. CALCULATIONS

1. Calculation of the Total Scattering
Cross Section

where

Q'= 2sr o (st) sinstdet,

1
o.(8)=—

~ P (2t+1)e'"I sinrttPt(cosset) ~'
t=o

(2)

is the differential scattering cross section. If a weighting
factor is introduced for large-angle scattering, then Eq.
(1) becomes, r

Q=27r (1—cosset) o. (et) sins)dst. (3)

Using Eq. (2) one finds from Eq. (3) that

Q= P Qt ———g ((+1) sin'(st t
—r)t+)),

t=O P Lm

where g~ is the phase shift of the /th partial wave and 4
is the wave number of the scattered particle. Assuming
a radius E beyond which the scattering potential is
"negligible, " the summation for practical computations
extends' from /=0 to a maximum l of the order of M.
In what follows it is assumed that the electron's energy
is such that kR&1. In this case Eq. (4) reduces to

Qs= (4a/k') sin'(sls —sir).

' K.Huang, Proc. Phys. Soc. (London) 60, 161 (1948).

In the partial-wave method' the total scattering cross
section for elastic scattering of a particle by spherically
symmetric potentials is given by
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The physical conditions under which a degenerate
semiconductor meets the above requirement will be
examined later.

A variational principle, formulated by Kohn, ' states
that pp can be determined by minimizing the quantity

I.(cr,cs, ,u) = P, (H E)g—,*dr,

BL/Ba =4rrk,

BL/Bc„=0, r=1, 2,

then the zeroth-order partial-wave shift is given by

rip ——arc tan/a L/4rrk]—, (8)

where L = L(c,,cs, ,a) and the bars on the variational
parameters denote values which make I. a minimum.

For electrons being scattered on screened donor ions
the Hamiltonian, in atomic units, is given by

where f, (cr,cs, ,a) is a suitably chosen trial wave
function of the impinging electron; c~, c~, , a are
variational parameters; H is the Hamiltonian and E is
the energy of the system of an electron and a donor ion.
If one minimizes Eq. (6) with the aid of the relations'

2~
L(a,b) = —— XX"dr+k'

0

X'dr

oo X'2~—ar

+— dr, (12)

where the primes on X denote di6erentiation with re-
spect to r and n stands for 1/R. Performing the inte-
grations in Eq. (12) one obtains

L = —(2'/y)W,
where

W =a'Fr+b'Fs+aFs+bF4+abFs+Fp.

The F's in Eq. (14) can be expressed as

(13)

electron the only unknown component is the free-
electron wave function, the good agreement might be
looked upon as evidence that the form of the trial wave
function for the free electron is well chosen. It is there-
fore assumed that the same wave function also will be
well suited for the study of slow electrons scattered on
donor ions.

With the aid of Eqs. (9) and (11) one can rewrite
Eq. (6) as

H =—(1/2y) V' —(1/sr) e
—'~, (9)

where y=m*/nrp is the ratio of the effective electronic
mass to the real electronic mass, ~ is the static dielectric
constant of the semiconductor, and R is a screening
length. The problem of the screening of donor ions by
electrons has been investigated by Dingle, ' who, for
degenerate semiconductors gives the following expres-
sion for the screening length

Fr (2y/s)Gsr ——kjr+kIs —Jr+Js, —
Fs (2p/s)G»+——kIs —3kIp+2kI4+ Js—5Jp+4J4,
Fp (2y/s) (M——p

—Mr) —-', Ir—2kEr,
F4= (2y/s) (Ml M2)+ sI I 2Is+2kEr —4kIt s,

Fs= (4 r/K)Gss+kIr 4kIs+3kI3+ I—] 6Js+5I;,
Fs (2y/lr) Gr, ——

(15)

hf(.

3 4mepnzp
(10)

where the quantities on the right-hand side have the
following meaning:

It is seen from Eq. (10) that It'. is a function of the
electron concentration e only.

The choice of a suitable trial wave function is based
on the following considerations. Massey and Moisei-
witsch, ' in discussing the problem of the scattering of
slow electrons by hydrogen atoms, obtained very good
agreement between the numerically computed exact
zeroth-order phase shift and the approximate one that
they calculated by assuming a trial wave function for
the free electron. In atomic units, the trial wave function
they used is of the form

P~(g, b) =X/r= t sinkr+(a+be ')(1 e") cosk—rj/r, (11)

(1—e ")' cos'krdr

(++1)'L(n+ 1)'+4k@'
=~~ ln

Q'(rr'+4k') (Q+2)'I (rr+2)'+4k/

I ~ e
—nr

e "(1—e ")'cos'krdr
p

(16)

(rr+ 2)4L (rr+2) '+4k')'
=~ ln

(rr+1) '[(rr+ 1)'+4k'] (n+3) 'L (a+3)'+4k' j
(17)

where u and b are variational parameters. Since, in their
case, the Hamiltonian is known exactly and since in the
wave function for the system of a hydrogen atom and an

G33= e '"(1—e-")' cos'krdr

'H. S. W. Massey and B. L. Moiseiwitsch, Proc. Roy. Soc.
(London) A205, 483 (1951).This paper also reviews various varia-
tional approaches for the determination of the phase shift.

' cps/ap =27.2 ev, ap =0.529 A.

(o.+3)4L (rr+3) '+4k')'
=-,' ln

(n+2)'[(rr+ 2)'/4k'] (n+4) 'L (Q+4)'+4k']
(18)
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TABLE I. Calculated values of the resistivity and several related quantities arising from ionized impurity scattering in degenerate n-type
germanium. (An isotropic effective mass of in*=0.254N4 and a static dielectric constant of a=16 was used. )

n
(in cm')

1018

5X 1018

P
(in ohm-cm)

1.14X10-2
5.23X10 3

(in cm ')

3.10X10'
5.31X106

Q
(in cm')

8.90X1O-»
2.41X10-»

90
(in radians)

0.969
0.830

R
(in cm)

29.4X10 8

22.4X10 8
0.911
1.19

Gi ——

p

n'+4k'
sin'krdr =-,' ln (19)

given" by

r = 1/(iV+vQs). (23)

and

e ""sin2krdr=, e= 1, 2, 3, 4
n'+4k'

00 1 2k')
e "r cos'krdr= n+ i, n=1, 2, 3, 4

n'+4k' n )

Since Qs and e are functions of the electron energy, an
average value of v- must be used. In case of degenerate
semiconductors the averaging over the electron dis-
tribution shows" that the average relaxation time (r) is
a function of the Fermi energy" E& only. Accordingly,
Eq. (23) becomes

(24)
oo

e ""sin'krdr= ——J e=1 2
~ 0 'g

—(a+n) re
sin2krdr =arc tan, n= 0, 1, 2.

n+n

The evaluation of the integrals in Kqs. (16) to (19) is
somewhat involved and will be discussed in Appendix I.

With the aid of Eq. (7), one finds from Eq. (13) that
the values of the variational parameters which minimize
I. are

g= (F4F4 2FsFs 4k'—Fs)/(4F, Fs F,'))—
(20)

b = (FsF4 2FiF4 j2kyF—s)/(4FiFs Fss). —

k' 3nq f k'kF'

8m* ir j 8z'm*

where the left-hand side is the Fermi energy and the
right-hand side is the kinetic energy of the electron.

According to theory" the electron mobility p, is given
by

p, = (es/m*)(r), (26)

where the superscript P indicates that the corresponding
quantities are to be taken at the Fermi energy. The wave
number of an electron at the Fermi level, kg, is calcu-
lated from the expression

Substituting rf& from Eq. (8) into Eq. (5), the total
scattering cross section is given by

and the resistivity by

p = 1/(neo@). (27)

Qs
——(4 /kyar') sin'Pare tan(a L/4rrk) —rlif. —(21)

If one assumes now that
~

r)i
~

is negligibly small com-
pared to

~ rls~, which, as will be shown later, is actually
the case, then one

finds

fro Eq. (21) that

4m (a L/47-k)'—
0 (22)

k' 1+(a L/4rrk)'—
where I =L(g,5) is given by Kqs. (13) and (20). It is
mentioned that as a consequence of using atomic units,
the total scattering cross section in Eq. (22) is measured
in units of ap', where ao is the first Bohr radius.

2. Calculation of the Resistivity

If one's aim is the calculation of the resistivity p due
to ionized impurity scattering alone, then one has to
compute the relaxation time r at first. This quantity, in
terms of the total scattering cross section Qs, the number
of scatterers E+, and the velocity of the electrons v, is

Resistivity values calculated from Eq. (27) are shown in
Table I. The ks, QP, rls~, R, and kr R values are also
listed as functions of the electron concentration n.

The resistivity in Eq. (27) does not depend on tem-
perature. Measured values at low temperatures, where
ionized impurity scattering is the dominant scattering
process, are also known to be fairly independent on
temperature. Since other scattering processes are not
considered in this paper no strict comparison can be
made between experimental resistivity values and the
calculated values based on ionized impurity scattering
alone. It should, however, be remarked that Fritzsche's"
measurements show that at 77'K germanium samples
doped with 10' to 10" antimony atoms per cm' have
resistivities in the 10 ' to 10 ' ohm-cm region. This

"C.Krginsoy, Phys. Rev. 79, 1013 (1950)."See p. 280 of third work in reference 1.
"A. H. Wilson, The Theory of Metals (Cambridge University

Press, New York, 1953), 2nd ed. , p. 16."See p. 240 of first work in reference 1.
"H. Fritzsche, J. Phys. Chem. Solids 6, 69 (1958).
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suggests that the calculated resistivity values in Table I
can be considered fairly reliable. Unfortunately, no
comparison can be made between Blatt's work4 and the
present work because Blatt considered weakly doped
semiconductors and his graphs do not cover the range in
which the present parameters are.

III. DISCUSSION

To estimate the range of validity of the present treat-
ment, three questions must be answered. First, how well
justified is the use of only the zeroth-order phase shift po
in computing the leading term Qp of the total scattering
cross section Q? Second, how good an approximation is
the consideration of Qp only in computing Q? Third, how
well justified is the picture of individual scattering of the
electrons by the donor ions?

The first and second questions can be answered easily.
The maximum available energy for an electron in a
degenerate semiconductor is the Fermi energy. There-
fore, the magnitude of kpR will determine how many
Impartial waves one has to consider in Eq. (4).

It is seen from Table I that kpR is approximately
equal to unity at the electron concentrations considered.

This means, according to partial-wave theory, ' that
the terms of importance in Eq. (4) are those with /=0
and l=i. According to an approximate formula' the
higher-order phase shifts can be calculated from

APPENDIX I. EVALUATION OF THE INTEGRALS
G31, G32, G33, AND G1

The integral in Eq. (16) is defined as

x& g
—at'

(1—e ")' cos'krdr. (A1)

It is seen that the integrand has a singularity at r =0.To
evaluate Eq. (A1) one considers Gsi as a function of n.
Differentiation of the integral with respect to e results in

00—G, i(n) = — e ~"(1—e ~")' cos'krdr. (A2)
dQ

The integrand in Eq. (A2) is nonsingular at both limits
of integration and Eq. (A2) can easily be evaluated as

—Gsi(~) =-
do,

1 2k'
Cl'+

o.'+4k'

problem" it has been concluded that, at electron con-
centrations of ts~10' /cc, about half of the scattering
acts are independent while the rest are inQuenced to
variable degrees by the nearest neighbor ions. In view
of this fact, one may conclude that at the electron
concentrations considered in this paper the assumption
of individual scattering is still a reasonable one.

g$- —si2~~()!)s(k R)s&+s/I (2)+])qs

where e& must satisfy the condition

I., I «i/k, R.

From Eq. (28) one obtains

(28) 2k'
+2 (n+1)+

(n+1)'+4k' (n+1)

2k'
(is+2)+ . (A3)

(n+2)'+4k' (n+2)
rli = 4

pi�(k

rR) /36, iiz =—cs (k rR) '/225,

which, assuming
I
pi ——IssI =0.1 and using krR=1,

leads to
I&, I

=o.o11, I&, I
=o.oo44.

If one now integrates Eq. (A3) with respect to n, the
resulting expression is

G»(~) = gi(~)+—2gs(~) gs(~)+—C», (A4)
where

Since IgiI is small compared to IiipI (see Table I), and
IiisI is small compared to IriiI, the first two terms in
Eq. (4) can be written, to a good approximation, as gi(~) = 1 2k2

o.+
n'+4k'- o.

Qp= (4s./k p') sin'imp,

Q, = (4s-/k p') 2 sin'i1i = (8'/k r') elis.
(29)

This answers the first question raised above.
To answer the second question, one has to compute

Qi~. One finds from Eq. (29), using kr ——4&&10' cm '
that QP = 1.89X10 "cm' Comparing this value with
the Qp~ values in Table I one sees that Qi~/Qpr (10 '.
Since this ratio is small, compared with unity, one con-
cludes that the consideration of QP alone is justified.

No such clear-cut answer can be given for the third
question, namely to what doping level is the scattering
of an electron on a donor ion independent of the sur-
rounding other donor ions. From an analysis of the

gs(~) =

=—' 1nn'Ln'+4k')+Ci,

2k'
(o.+1)+ dn

(o.+1)'+4k' (n+1)

=-', ln(n+1)'L(n+1)'+4k'j+C,

g()= (n+2)+ do.
(n+2)'+4k' (n+2)

= —,
' ln(n+2)'I (n+2)'+4k'j+Cs,

"P.Csavinszky, J. Phys. Soc. Japan 16, 1865 (1961).

(A5)
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and Csr ——Cr+Cs+Cs is a constant of integration which
has to be determined. With the aid of Eq. (AS), one
rewrites Eq. (A4) as

0=4 ln
~8+. . .

~8+. . .
+Csr

(n+1)4[(n+1)'+4k']'
Gsr(n) =-', ln +Csr

n'(n'+4k') (n+2)'((n+ 2)'+4k')
(A6)

To determine C» one may assume that o.= ~. In this
case Eq. (A1) shows that Gsr is zero. The logarithmic
term in Eq. (A6) is also zero as can be seen by rewriting
both numerator and denominator as a power series in n.
Denoting only the leading terms, one obtains

Using l'Hospital's rule' repeatedly, one finds that the
bracket has the value of unity and therefore the

logarithmic term is zero. For this reason Eq. (A7) can
only be satisfied if C3l ——0.

The evaluation of the integrals G32, G33, and GI,
displayed in Eqs. (17), (18), and (19), is done in a quite
similar manner.

re P. Franklin, Methods of Adoaaced Catellls (McGraw-Hill
Book Company, Inc. , New York, 1944), p. 15 ff.
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Double quantum transitions were observed at high rf 6elds in hyperhne spectra of electron spin resonance

of the free radical p'roduced by the gamma irradiation of acetyl-d, l-alanine. The presence of interaction
between the free radicals give rise to the double quantum transitions. A theoretical explanation is given.

P~OUBLE quantum transitions have been observed
in the electron spin resonance of Mn++ and Ni++

ions as impurities in a single crystal of MgO. ' The
absorption lines were interpreted as arising from the
simultaneous absorption of two photons, the absorption
being excited from the S.=M to the S,=M+2 state.
Three consecutive energy levels participate in this
transition.

In the present article the absorption due to a different
kind of double quantum transition is reported in the
electron spin resonance of a gamma-irradiated single

crystal of acetyl-d, l-alanine. Here, the four energy levels

of two free radicals are taking part in the transition.
The analysis of the electron spin resonance spectra

of the free radical produced by gamma irradiation
from acetyl-d, l-analine' shows that the free radical has

*This research was supported by U. S. Air Force through Air
Force Once of Scientihc Research of the Air Research and
Development Command.

)On leave from the University of Electro-Communications,
Tokyo, Japan.' P. P. Sorokin, I. L. Gelles, and W. V. Smith, Phys. Rev. 112,
1513 (1958).J. W. Orton, P. Auzins, and J. E. Wertz, Phys. Rev.
Letters 4, 128 (1960).

2M. Katayama and W. Gordy, Bull. Am. Phys. Soc. 6, 258
(1961).

the following form:

H C

CH

The interaction between the unpaired electron and the
CH& protons is responsible for the hyperfine structure
of these spectra.

Figure 1 shows the hyperfine spectra measured at
9 kMc/sec and 23 kMc/sec with varying microwave
power. The spectrum mea, sured at 9 kMc/sec using
6 mw of power consists of a quartet, the intensity ratio
being 1:3:3:1.As greater microwave power was applied,
three weak lines were observed at the midpoints of the
main lines. The intensities of these lines increase when
the amplitude of the microwave II& is raised. The weak
lines were observed to have the same separation at
23 kMc/sec as at 9 kMc/sec.

The appearance of forbidden transitions, the simul-


