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A theory is developed for diffusion of interstitial impurities in the diamond lattice. For ionized impurities
the theory is based on a model in which the interaction of the ion with the host atoms is given by an attrac-
tive potential produced by the polarization of the host atoms, and a repulsive potential due to overlap of
nonbonding electrons. The interaction energy is calculated at two interstitial positions of symmetry, and
the activation energy for diffusion is taken as the difference between the two. Good agreement with experi-
ment is found for lithium, copper, and silver. The theory predicts an optimum impurity size for diffusion,
and thus explains the great diffusivity of copper. It also claims that the interstitial position of lithium and

copper is not one of tetrahedral symmetry.

I. INTRODUCTION

N impurity is considered to be interstitial, purely
so or in equilibrium with a substitutional form, if
its diffusion constant is several orders of magnitude
greater than the diffusion constant of impurities which
are definitely substitutional. As an example, the diffu-
sion constants of substitutional group III and V im-
purities in germanium range from 107 to 107° cm?/sec
at around 850°C.! An interstitial impurity like lithium,
on the other hand, has a diffusion constant of about 10~°
at that temperature.! The theory of diffusion for inter-
stitial impurities which has occasionally been applied to
semiconductors? is the theory developed by Wert and
Zener.? This theory was developed to explain diffusion
of interstitial atoms in metals. Since metals have close-
packed crystal lattices, it is not surprising that Wert and
Zener assumed that the activation energy for diffusion
is expended essentially in the elastic distortion of the
lattice, as the impurity moves from an equilibrium
position over a saddle point to another equilibrium
position. In their theory the authors do not attempt to
calculate this energy; they show, however, how to
estimate the entropy for diffusion on the basis of this
mechanism, by proving that strain increases the entropy
of the lattice.*

We have developed a theory of diffusion for inter-
stitial impurities in crystals with the diamond lattice
which differs from that of Wert and Zener in two
important respects: (a) We believe that lattice distor-
tion contributes only a small fraction to the activation
energy for diffusion in such crystals. Typically, the
contribution may be of the order of 109, depending on
the size of the impurity. (b) We actually attempt to
calculate the activation energy for diffusion by estimat-
ing the interaction energy of the impurity with the host
atoms at an equilibrium site and a saddle point. We are
able to do these calculations since we are dealing with

1H. Reiss and C. S. Fuller, Semiconductor, edited by N. B.
Hannay (Reinhold Publishing Corporation, New York, 1959),
Chap. VL.

2 See for example: J. N. Hobstetter, Progress in Metal Physics
(Interscience Publishers, Inc., New York 1958), Vol. 7, p. 1

3C. A. Wert and C. Zener, Phys Rev. 76 1169 (1949§)

4 C. Zener, Acta. Cryst. 2, 163 (1949).

valence crystals in which the atoms are covalently
bonded with their neighbors, and hence have essentially
closed electron shells. The impurity will, of course,
disturb the bonding but we assume that it does not
disrupt it.

The fact that we are dealing with a very open lattice
means that the repulsion energy between the impurity
and the host atoms need not be the main contribution to
the activation energy for diffusion. A lithium ion, for
example, has a radius® of 0.60 A compared to a nearest-
neighbor distance of 2.25 A in germanium at the smaller
of the two interstitial sites [Fig. 1(b)]. Nevertheless, it
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F16. 1. Interstitial sites in the diamond lattice. (a) Tetrahedral
site (7 site)—nearest neighbors at 0.433 ao; next-nearest neighbors
at 0.500 a,. (b) Hexagonal site (H site)—nearest neighbors at
0.415 ao; next-nearest neighbors at 0.649 ao; plane of paper normal
to [1117] direction.

50. K. Rice, Electronic Structure and Chemical Bonding
(McGraw Hill Book Company, Inc, New York, 1940),
Chap. XIV.
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is found that lithium has an appreciable energy of
diffusion.! Furthermore, the larger copper ion diffuses
even faster than lithium.! The size of the impurity can
therefore not be the only factor in determining the ease
of diffusion. We have therefore devoted our main effort
to an attempt to calculate the electrostatic interaction
energy of the impurity and the host atoms, and we find
that it makes a major contribution to the activation
energy for diffusion.

In this paper we shall mainly develop a theory for the
important case of diffusion by an ionized interstitial
impurity. (A theory of diffusion of substitutional im-
purities in the diamond lattice has been given by
Swalin.®) Most interstitial impurities probably exist in
this state in germanium, silicon, and similar substances.
The only interstitial impurities which are likely to exist
to any appreciable extent in the same form as in vacuum
are hydrogen, helium, and perhaps neon, as has pre-
viously been discussed by the author.” In Sec. VI we will
give a qualitative discussion of the diffusion of such
impurities. With the exception of certain transition
elements, other interstitials are known to carry a
positive charge, as evidenced by the effect of an electric
field on their diffusion. This effect has been observed for
lithium by Fuller and Severiens®; for copper in germa-
nium by the same authors, and in silicon by Gallagher?;
for silver in germanium by Kosenko et a/.1° and in silicon
by Boltaks et al.''; for gold in silicon by Boltaks ef al.?

In the case of transition elements new effects can
occur as a result of the possibility of transferring elec-
trons to the partially filled & shell. Ludwig and Wood-
bury, by studying electron spin resonance,'® have ob-
served some of these elements not only in electrically
neutral form but even as negatively charged ions. The
theory developed here is based on estimating the inter-
action of an ion with the host atoms at different inter-
stitial sites. To include the transition elements it would
be necessary to calculate the magnitude of the splitting
of d levels by the crystal field at various sites, and this
calculation is beyond the scope of this paper.

II. INTERACTION ENERGY OF AN ION WITH
THE HOST LATTICE

A. Diffusion Path

The interaction energy of an ionized interstitial
impurity with the atoms of the host crystal will consist

6 R. A. Swalin, J. Phys. Chem. Solids 18, 290 (1961).

7K. Weiser, J. Phys. Chem. Solids 17, 149 (1960).

8 C. S. Fuller and J. C. Severiens, Phys. Rev. 96, 21 (1954).

9 C. J. Gallagher, J. Phys. and Chem. Solids 3, 82 (1957).

V. E. Kosenko, E. G. Miselynk, and L. A. Khamenko, Fiz.
Tverdogo Tela U.S.S.R. Sbornick (Supplement) I, 100 (1959).

1 B. I. Boltaks and H. Shih-Yin, Fiz. Tverdogo Tela 2, 2677
(1960); [translation: Soviet Phys.—Solid State 2, 2389 (1961)].

12 B. I. Boltaks, G. S. Kulikov, and R. Sh. Malkovich, Fiz.
Tverdogo Tela 2, 2395 (1960); [translation: Soviet Phys.—Solid
State 2, 2134 (1961)7].
( 136% W. Ludwig and H. H. Woodbury, Phys. Rev. Letters 5, 98

1960).
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primarily of two components: (a) an attractive potential
produced by the interaction of the ion with the dipoles
it has induced in the host atoms, and (b) a repulsive
potential characteristic of the interaction of atoms or
molecules with closed shells.* We shall neglect the
contributions of the attractive van der Waals potential,
which is an order of magnitude smaller than the
induced dipole-ion interaction energy, or polarization
energy, which we shall calculate. It will be seen below,
that the polarization energy is of the order of 5 ev while
the van der Waals energy is of the order of a few tenths
of an ev.” Furthermore, the existence of an attractive
van der Waals potential will not affect the conclusions
which will be reached.

If it were not for the existence of polarization energy,
the impurity would choose sites of symmetry with
respect to the surrounding host atoms; at those sites it
will be farthest away from any one of them, and hence
the repulsive energy will be a minimum. In the diamond
lattice there will be two such sites, as illustrated in
Fig. 1. One site, which we shall call tetrahedral, is
characterized by four nearest neighbors at a distance of
0.433 ao from the center, and six next-nearest neighbors
at a distance of 0.500 ao; a0 is the unit-cell edge length.
The center of the hexagonal site is at a distance of
0.415 ao from six nearest neighbors, and 0.649 a, from
eight next-nearest neighbors. It is clear that considera-
tion of nearest neighbors only makes the hexagonal site
one of greater repulsive energy for the impurity than the
tetrahedral site. When next-nearest neighbors are con-
sidered [Eq. (7)] the difference is somewhat reduced.
On the other hand, calculations of the polarization
energy Upol, at the two sites [see Sec. II(B) ] show that
Uypol Is greater, i.e., more negative, at the hexagonal site
than at the tetrahedral site. From the point of view of
lowering its electrostatic energy, the ion thus prefers the
hexagonal site.

The diffusion path will then be given by: hexagonal-
tetrahedral-hexagonal, or tetrahedral-hexagonal- tetra-
hedral, depending on which ot the two sites is a position
of lower energy. If the atom were to continue in this
direction it would encounter a host atom, and thus be
repelled. As a result it will have to branch off into
another [111] direction, and in this manner it will
diffuse through the crystal in zig-zag fashion. It is clear
that the main conclusions of this paper can be reached
already at this point: For a very small ion, for which the
repulsive energy at the center of the two “cavities” is
small, the hexagonal site will be the equilibrium site,
and the tetrahedral site the saddle point; the activation
energy for diffusion will then be given mainly by the
difference in polarization energy at the two positions.
For a very large ion, the repulsive energy will dominate
the picture, and the tetrahedral site will be the equilib-
rium position ; the energy of activation for diffusion will

14 See for example: M. Born and K. Huang, Dynamical Theory
of Crystal Lattices (Oxford University Press, New York, 1954),
Chap. I.
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then be given mainly by the difference in repulsive
energy at the two sites. The intriguing possibility may
then arise that for an ion of intermediate size the differ-
ence in polarization energy can just balance the
difference in repulsive energy so that the activation
energy for diffusion vanishes.

A correction to this simple picture arises from the
fact that in the presence of the electrostatic attraction
between the ion and the dipoles it has induced in the
surrounding host atoms, the ion will not remain at the
center of either cavity since this will not be a position of
stable equilibrium. In the Appendix this displacement
will be considered, and it will be seen that it does not
alter the conclusions drawn above which are based on a
model in which the ion is at the center of the cavity.

Another approximation of the model is that the lattice
is rigid, which cannot be entirely correct: On the one
hand, the electrostatic attraction of the ionic charge will
tend to pull the lattice toward it; on the other hand, the
repulsive forces will push the host atoms away from the
impurity. In the Appendix we examine the importance
of this effect and conclude that it is relatively
unimportant.

In parts A and B of this section we shall estimate the
electrostatic energy and the repulsive energy, respec-
tively, at the centers of the hexagonal and tetrahedral
positions. The difference between the sum of these
energies at the two sites should equal the activation
energy for diffusion, except for the corrections con-
sidered in Appendices A and B. It is assumed that the
potential energy curve along a [1117] direction is
monotonic between the centers of the two sites. If a
hump exists, then the activation energy calculated by
our theory (aside from the inevitable simplifications
involved in the treatment) must be a lower limit for
the true activation energy along this path.

B. Polarization Energy in the Diamond Lattice

The polarization energy of a charged ion in a dielectric
medium is the energy released when the ion is placed
into the medium. The physical origin of this release in
energy lies in the decrease in the electric field in the
medium surrounding the ion compared to its value in
free space.!® An atomistic approach to the polarization
of a lattice by a charge was first developed by Mott and
Littleton,'® in an attempt to estimate the energy of
formation of a lattice vacancy in an alkali halide. With
minor modifications, introduced by Rittner, Hutner,
and du Pré'” their method will be employed here.

The polarization of an atom at a given distance from
the charge will be calculated on the basis of the following
model: (1) The dipole u induced on an atom varies

15C. J. F. Bottcher, Theory of Electric Polarization (Elsevier
Publishing Company, Inc., New York, 1952), Chap. V.
(lm\’igl F. Mott and M. J. Littleton, Trans. I'araday Soc. 34, 485

938).

17 E. S. Rittner, R. A. Hutner, and F. K. du Pré, J. Chem. Phys.
17, 198 (1949).
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linearly with the field E. The constant of propor-
tionality, the polarizability «, is thus taken to be
independent of the polarization of other atoms, par-
ticularly those of its neighbors. (2) The polarizability is
taken to be isotropic. (3) The direction of the dipoles is
along the radius vector from the charge. (4) The field
at the center of an atom is the vector sum of the field
which originates at the charge and the fields which are
produced by all the other dipoles induced on the atoms
of the crystal. (5) The field produced by a dipole u; at
r; from the origin (the charge site) at a point r;, is given
in the point dipole approximation as:

E;=vVi{u,V:(1/r)], 1)

where 1’ is the radius vector from r; to r;. The subscript
1 on the V’s indicates that the differentiation is to be
carried out at r;. With this model it is now possible to
calculate the dipoles on the atoms in the lattice. Since
the dipole on any one atom depends on the dipoles on
all the other atoms, the exact solution of the problem
involves N simultaneous equations in the N atoms of
the lattice. Mott and Littleton chose a set of atoms
surrounding the charge and arranged them into spheri-
cal shells around the charge. The induced dipoles in a
given shell were presumed to be equal, and it was then
only necessary to find the dipoles on any one atom of a
shell. The problem was now solved in the nth order
approximation by treating the dipoles on the first »
shells as unknown. The dipoles on atoms beyond the
nth shell were approximated by their macroscopic
value, and their contribution to the field on atoms of the
first » shells was taken into account. Rittner et al.l”
decided to drop the contributions of dipoles beyond the
nth shell to the field. Besides making the computations
for any order of approximation simpler, the method can
be justified by the following argument: If the crystal
beyond the nth shell is considered as a continuum, the
field produced by the induced charges on the surface of
the spherical cavity carved out by the # shells, will in
general be equal to zero. In the #th order approximation,
the following set of equations is therefore to be solved:

,u1=Ol(6/712+E11M1+E12M2+E13M3' o —‘f_Eln,uﬂ)?
,u2=01(6/7’22+E21u1+E22,U«2+E28M3' o +E2n.un)>
us=a(e/rd+ Esjur+ Esopot+ Esspse + -+ Esnpin), @)

Mn=0!(6/7n2+En1M1+En2M2+En3M3' : ‘+Enn,un)-

In this equation, 1, pe, - * -, 4, are the dipoles on atoms
of the first, second, - - - and nth shell, and 74, 73, - - -7, are
the respective distances of these shells from the charge.
The vector symbol has been omitted from the dipoles
since, according to assumption (3), all dipoles are
directed along the radius vector from the charge. A
matrix element £;;, when multiplied by u;, is the electric
field in the radial direction produced at an atom of shell
% by the dipoles in shell j. E;u; refers to the field at an
atom of shell ¢ by the other dipoles in the same shell <.
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The elements E;; or E;; are of course given by carrying
out the differentiation indicated in Eq. (1) at a point
(%0,¥0,20) of shell 7.

1
Ei= % E;,—SS i) 3)

[—;(r"2—38) +y;(38n) +2;(3%p) Jwo/R:
Sii=~+[x;(38n) — v;(r"*— 3n*) +2,(3np) Jyo/R:
+[x;(38p) +v;(3np) — 2 (r'*— 3p*) Jz0/ R

The summation is to be carried out over all G; lattice
points (x;,9;,2;) in shell j. For E;; the summation omits
the contribution of the point xq, ¥, 20 at which the fields
E;; is to be computed. In Eq. (3), R, is the radius of the
Jth shell; xo, ¥o, and 2 is an arbitrary lattice point of the
ith shell since by definition a shell is chosen so that all
atoms in it experience the same field from all the dipoles
in the lattice. The Greek symbols £, %, p are the com-
ponents of the distance from a lattice point x;, y;, 2, of
the jth shell to the reference point wq, yo, 20 of the ith
shell; 7 is the distance between these points: £=x;— o,
n=y;—%Yo, p=2—20, ¥ =r;—ro. The polarizability «
which enters these equations can be obtained from the
Lorentz-Lorenz equation which relates the dielectric
constant K and the atomic polarizability :

(K—1)/(K+2)=%ma/v, 4)

where v is the volume occupied by each atom. The
derivation of this relation'® is based on precisely the
same assumptions which are employed in the method
of Mott and Littleton. It should be emphasized that
although the host atoms are considered as discrete
entities they are not considered as free atoms. Their
polarizability is determined not only by their properties
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'8 See for example: C. Kittel, Introduction to Solid-State Physics
(J. Wiley ‘& Sons, Inc., New York, 1956), 2nd ed., Chap. VII.
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as free atoms but by their interaction with the lattice
as a whole.?®

Having solved Eq. (2) for the u’s, the potential ¢
produced by them at the charge site can then be
computed from

n Mj q 1
st (1) )
i @ R#% Rap K

Gj is the number of atoms in the jth shell of radius R;,
# is the order of approximation, and the u’s are the
values found for the #th order approximation. The
second term on the right is the contribution to the
potential from dipoles beyond the #th shell if this region
is treated as a continuum.® The polarization energy is
equal to $¢%.

The calculations were carried out for the two inter-
stitial positions in the diamond lattice shown in Fig. 1.
An initial set of atoms was chosen around each origin,
and arranged into shells of atoms equidistant from it.
A maximum radius of 1.5 a¢ was chosen for the set of
points, which totaled 112 for the hexagonal case and 108
for the tetrahedral case. The matrix elements E;; and
E;; of Eq. (3) were then computed with the help of an
IBM 7090 computer. To insure that all atoms of a given
shell are geometrically equivalent, the quantities E;;
were obtained for all points of a shell. In most cases it
was found that it did not matter which shell point was
taken as representative of a given shell but for some
shells it was found necessary to split them into two sub-
shells; each subshell contained atoms which gave the
same F;; with respect to all shells j. After the computa-
tion of the E;j, Eq. (3) could be solved using the value
for a derived from Eq. (4). An #nth order solution for
the u’s yields an nth order approximation for u;, an
(n—1)st order approximation for we---, and a first-
order approximation for u,. As seen in Fig. 2, the con-
vergence one obtains with successive orders of approxi-
mation for the solution of the u’s is very satisfactory for
the hexagonal case but not quite as satisfactory for the
tetrahedral case. In the latter case a difficulty arose
when the approximation was increased from third to
fourth order. The fourth shell had to be split, as
explained above, and the E;; value for one of the split
shells turned out to be very large. As a result, serious
loss of convergence occurred which did not disappear
even when a fourteenth-order approximation was used.
To obtain convergence it was necessary to average the
E;i’s involving the fourth shell. In the case of the
hexagonal site where such shell splitting was also
necessary it made very little difference whether the
E;j’s were averaged as just described, or whether the
w’s of the subshells were averaged.

19 W. Cochran, Proc. Roy. Soc. (London) A253, 260 (1959).

20N. F. Mott and R. W. Guerney, Electronic Processes in Ionic
Crystals (Oxford University Press, New York, 1948), 2nd ed.,
Chap. II.
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TasLE I. Repulsive energy contribution to the energy of diffu-
sion for various impurities in germanium and silicon according to
Eq. (8).

Tonic radius® AUt (ev)

Impurity A) Ge Si

Lithium 0.60 0.18 0.23
Copper 0.96 0.54 0.69
Sodium 0.96 0.53 0.68
Silver 1.26 1.35 1.70
Gold 1.36 1.83 2.30

& See reference 5.

Figure 3 shows the convergence for the polarization
energy as a function of the order of approximation. It
is seen that very satisfactory convergence was obtained
for both cases. In fact, it seems hardly necessary to
have carried out the calculations beyond the third-order
approximation.

From the point of view of understanding diffusion by
an interstitial ion, the important result is that the
polarization energy at the hexagonal site is greater by
about 0.75 ev (see Fig. 3) than at the tetrahedral site.
While the results shown in Figs. 2 and 3 are for silicon,
the calculations give essentially the same results for
germanium.

C. Repulsive Energy

To estimate the repulsive energy U.e, between the ion
and the surrounding host atoms, we have used the
Born-Mayer equation, which has been successful in the
theory of the cohesive energy of ionic crystals!:

Usrep=A exp(ritri—r)/p. ©)

In Eq. (6), 4 is merely a scalar factor (0.63, if U,ep is to
be expressed in electron volts), 7, is the effective radius
of a host atom, 7 the ionic radius of the impurity, and
r the distance between them. The constant p determines
how rapidly the repulsion falls off with distance. The
repulsive energy of the ion at the center of the tetra-
hedral and of the hexagonal cavities is thus given by

Uip=4A4 exp(ri+ri—rr)/p
+64 exp(rp+r1—1.1577)/p,

tetrahedral site, (7a)
Uiep=64 exp(rr+ri—ru)/p
+84 exp(rp+rr—1.5671)/p,
hexagonal site, (7b)

where interaction with nearest and next-nearest neigh-
bors has been included. In Egs. (7a) and (7b), rr and
ry are the distances from the center of each “cavity”
to the nearest host atom for the tetrahedral and
hexagonal case, respectively.

To estimate the magnitude of the repulsive energy it
is necessary to assign values to the constants p and 7z.
For ionic crystals a value of p=0.33)X10~% cm has been
found to be an average for many ion-pairs.! It does not
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Fi1c. 3. Polarization energy (silicon) vs order of approximation
(interstitial charges).

seem unreasonable to choose the same value for p in the
case dealt with here: the repulsion between an ion and
a host atom with a filled valence shell by virtue of being
covalently bonded to other host atoms. In both cases
the repulsion arises from the Pauli exclusion principle,
and hence one might expect it to fall off similarly with
distance. As for the other parameter, the effective
host-atom radius 7z, there is experimental reason to
choose it as the covalent radius of a host atom, or one-
half the interatomic distance. The experimental reason
is that pairing experiments between lithium and
acceptors in germanium and silicon* show that the
distance of closest approach is given by the sum of the
lithium ionic radius and the covalent radius of the
acceptor. We shall therefore take 77, equal to 1.22 A for
germanium and 1.17 A for silicon.??

With these values for the parameters appearing in
Eq. (7), we estimate that the contribution of next
nearest neighbors is equal to about 509, of that of the
nearest neighbors in the tetrahedral case, and about
2% in the case of the hexagonal site. The difference in
repulsive energy between the two sites is equal to

Urep? — Usrep” = AUrep (ev)=0.030 exp(r1/p)
for Ge, (8)
=0.038 exp(r1/p)
for Si.

The important conclusion for the understanding of
diffusion is that from the point of view of lowering the
repulsive energy, the ion prefers the tetrahedral site.
Values for the repulsive energy contribution to the
energy for diffusion for various ions in germanium are
given in Table 1.

Before concluding this section on the repulsive inter-
action energy it should be pointed out that Eq. (7) can
only be a lower limit for the repulsive energy for a very
large ion. When (r.+7r) exceeds rr or rm, either
expansion of the lattice or compression of the ion or both

21 See for example: H. Reiss, C. S. Fuller, and F. J. Morin, Bell
System Tech. J. 35, 535 (1956).
2 See reference 18, Chap. I.
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must take place. In other words, we would then have to
add the Wert-Zener theory to the one developed here.
For this reason, it is probable that the repulsive energy
for gold is somewhat higher than is estimated here.

III. PRE-EXPONENTIAL FACTOR OF THE DIFFUSION
CONSTANT. ENTROPY OF DIFFUSION

Following Wert and Zener® we write the pre-
exponential factor in the diffusion expression

D= D exp(—AUYE/RT)
as
Do=3%gl (AU /2m)* exp(ASUH/R). 9)

No specific model is involved in this equation, except
that it is assumed that the diffusing atom oscillates in
its equilibrium position, in the direction toward the
saddle point, with a frequency equal to (AUt/2%m)%.
In Eq. (9), g is the number of saddle points surrounding
the equilibrium site; 7 is the distance between equilib-
rium sites; AU%f is the activation energy for diffusion,
and R is the gas constant. AS¥f is the entropy of
diffusion.

Since the entropy of a solid is determined by its
vibrations,?® the entropy of diffusion will be given by the
difference in vibrations with the ion in the saddle point
and in its equilibrium site. A solution to this problem
seems only remotely possible but an estimate of the
magnitude of the entropy of diffusion can be gained by
treating the lattice as a continuum of given dielectric
constant. This approach is similar to the one taken by
Wert and Zener? in their theory of interstitial diffusion
in metals, in which the host lattice was treated as an
elastic continuum. In the continuum expression for the
polarization energy, the ion is considered to be em-
bedded in a cavity of radius R. carved out of the
dielectric. The polarization energy is then equal to!®:%

Upor=—(¢*/2R.)(1—1/K). (10)

The right side of Eq. (10) represents the energy liberated
when the space beyond R, is filled with a dielectric
medium with permittivity K. It can be shown, that the
entropy associated with this process is given by!®

o 12 dK
——av,

Spol:
r, 8w dT

(11a)

where E is the electric field in the dielectric, and dV is
a volume element. Setting E equal to ¢/ K72, dV equal to
47r2dr, and integrating Eq. (11a) yields

¢ dlnkK

" 2R.K 4T

(11b)

pol
The contribution to the entropy of diffusion, which is
due to polarization, is then equal to the difference in

28 See for example: R. C. Tolman, Siatistical Mechanics (Oxford
University Press, New York, 1938), Chap. XIV.
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the entropy of polarization at the hexagonal site and the
tetrahedral site:

¢ dinkK/ 1 1\ AUy dInK
ASy 1= (———v)z . (1)

2K dT \RH R,/ K 4T

In our calculations for the interaction energy, and hence
the activation energy for diffusion, we have assumed so
far that the atoms retain their normal positions. In
Appendix B we attempt to show that this approximation
is quite good in that only a small portion of the inter-
action energy goes into distortional energy of the lattice.
Hence we shall neglect that part of the entropy of
diffusion which according to the Wert-Zener theory
comes from the distortion of the lattice. We assume,
therefore, that Eq. (12) represents the major part of
the total entropy of diffusion. Using values for AU,
calculated in Sec. IT(B) and experimental values for** K
and?® d InK /dT for germanium and silicon, we obtain an
entropy of diffusion of 6.6X107% ev/deg for the former
and 5.1X107% ev/deg for the latter. Even near the
melting points of the elements the correction TAS to
AUy is thus of the order of only about 0.01 ev.

Having estimated AS?H we obtain the following
values for Dy:

Dy=0.22a¢(AU% /)3,
tetrahedral equilibrium site  (13)
=0.11a,(AU Y/ ;)
hexagonal equilibrium site.

The difference between the two sites arises from the fact
that g equals two for the hexagonal site and four for the
tetrahedral site. In calculating Do from Eq. (9) we have
set / equal to 2q,.

IV. COMPARISON OF THEORY WITH EXPERIMENT

Using the value of 0.75 ev for AU, found in Sec.
II(B) and the values for AU, listed for various
impurities in Table I, it is possible to calculate the
activation energy for diffusion as the difference between
the two. The total energy is of course the absolute value
of this difference. Depending on whether the repulsive
energy is greater or smaller than 0.75 ev, the equilib-
rium site will be tetrahedral or hexagonal. The proper
value for Dy from Eq. (13) can then be chosen, and the
diffusion constant can be computed.

In comparing theory and experimental data it is best
to treat lithium separately from other elements. In the
first place, lithium has been studied extensively, and
its diffusivity is well known over a wide range of tem-
perature. In the second place, since it exists only in
interstitial form, the complication of isolating inter-
stitial diffusion from total diffusion does not exist. The
diffusion of lithium in germanium and silicon has been

% E. M. Conwell, Proc. Inst. Radio Engrs. 40, 1327 (1952).

25 M. Cardona, W. Paul, and H. Brooks, J. Phys. Chem. Solids 8,
204 (1959).
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Tasie II. Comparison of theoretical and experimental results® for
D, and AU for lithium in germanium and silicon.

AUdiff AUc.liif

D, D,
(calc) (exp) (calc)  (exp)
(cm?/sec) (ev)
Liin Ge 1.7%X1073 2.5X1078 0.57 0.51
Liin Si 1.6X103 2.3X1073 0.53 0.66

& See reference 1.

studied by means of the p-z junction method with and
without electric field by Fuller and Ditzenberger,? by
Fuller and Severiens,® and by an out-diffusion method
by Pell.?” At low temperatures the diffusion constants
have been obtained from ion-pairing experiments by
Maita?® as well as by the ion-drift method developed by
Pell.?? Agreement between the various methods is quite
remarkable.! In Table IT we compare the experimental
results with those derived here theoretically. It should
be emphasized that according to our theory the equilib-
rium site for lithium is the hexagonal site, and the
saddle-point position is the tetrahedral site. As shown in
the Appendix, however, appreciable displacement from
the center is likely to occur.

In general, the agreement of theory and experiment is
quite satisfactory. Somewhat disturbing is the failure
of the theory to predict any marked difference in the
activation energy for diffusion for germanium and
silicon. Since the theory predicts the same value for
AUy and a slightly larger value for AU,,, for silicon,
it predicts a lower activation energy for diffusion for
silicon than for germanium, contrary to experimental
data. The author is unable to offer an explanation for
this discrepancy.

Other elements which can exist in substitutional as
well as interstitial form, such as copper, silver, or gold,
appear to diffuse by the so-called dissociative mecha-
nism. This mechanism, first suggested by Frank and
Turnbull® to explain the diffusion of copper into

Tasie III. Calculated values for Dy and® AUdiff = for sodium,
coppet, silver, and Gold in germanium and silicon.

Germanium Silicon
Ionic radius D, AUt D, AUt
(A) (cm?/sec) (ev) (cm?/sec)  (ev)
Sodium 0.95 4X10— 022 2X10  0.07
Copper 0.96 3X10 021 2%X10~*  0.06
Silver 1.26 9X 10 0.60 11X10~ 1.05
Gold 1.37 9%x10—  1.08 10X10*  1.55

& AUt = | AUpo1 —AUrep| =]0.75 —AUrep|, Where AUrep is taken from
Table I. The theory predicts that the equilibrium site for copper and
sodium is the hexagonal site, and the tetrahedral site is the saddle point. For
the other elements the situation is reversed. It is of interest that no experi-
mental data are available for sodium.

(1235% S. Fuller and J. A. Dietzenberger, J. Appl. Phys. 28, 40
957).

2 F, M. Pell, Phys. Rev. 119, 1014 (1960).

28 J. P. Maita, J. Phys. Chem. Solids 4, 68 (1958).

% E. M. Pell, Phys. Rev. 119, 1222 (1960).

3% F. C. Frank and D. Turnbull, Phys. Rev. 104, 617 (1956).
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germanium, explains the dependence of the diffusivity
on the dislocation content of the crystals. The proposal
that copper exists both in interstitial and in substitu-
tional form was first made by van der Maesen and
Brenkman,® and the dependence of the diffusivity on
dislocation content was first observed by Fuller and
Ditzenberger.?® When dissociative diffusion takes place
the effective diffusion constant is not equal to the
diffusion constant of the interstitial species alone.! In
dislocation-free material, however, it is possible to
isolate the diffusion of the interstitial species. Working
with such material, Tweet has studied the diffusion of
copper into germanium,?? and Wei has recently studied
that of silver into germanium.?® Tweet found too much
scatter in the data to allow him to calculate an activa-
tion energy for diffusion, but states that it is certainly
less than 0.5 ev. Wei measured diffusion at only one
temperature, namely 710°C. In Fig. 4 we plot the
calculated and the experimental values of the diffusion
constants at that temperature against the ionic radius
of the impurity for lithium, copper, and silver in
germanium. The agreement with experiment is quite
satisfactory, and the graph clearly brings out the idea
of an optimum size for the diffusing ion. In Table III
we also present the values for Dy and AU calculated
with our theory. It is hoped that future experiments
with diffusion into dislocation free crystals will be used
to check these values. It is worthwhile to point out that
the theory predicts an even larger diffusion constant for
copper in silicon than in germanium.

3 F. van der Maesen and J. A. Brenkman, J. Electrochem. Soc.
102, 229 (1955).

2 A. G. Tweet, J. Appl. Phys. 30, 202 (1959).

#L.Y. Wei, J. Phys. Chem. Solids 18, 162 (1961).
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Diffusion studies of copper, silver, and gold in germa-
nium and silicon without regard to the role of disloca-
tions in the diffusion process have been fairly exten-
sive.® It is felt that there is no point in comparing the
experimental data with our theory since neither agree-
ment nor disagreement would be convincing in view of
the fact that the measured diffusion constants will not,
in general, reflect the diffusion constant of the inter-
stitial species alone. Agreement of theory with these
experimental data is generally within one or two orders
of magnitude.

V. DISCUSSION

It is first of all worthwhile to point out that the theory
developed here is applicable with only minor modifica-
tions to any element or compound which crystallizes in
the diamond or zincblende lattice. One interesting
difference between these two lattices is the fact that
there are two types of tetrahedral sites in the latter,
one in which the four nearest neighbors are atoms 4
and the six next-nearest neighbors atoms B, and the
other site in which the situation is reversed. There may
thus be a preferred diffusion path in which one type
of tetrahedral site is preferred over the other. This effect
would, of course, show up most markedly in compounds
in which the two constituent atoms differ markedly in
size and polarizability ; it would be interesting to study
the diffusion of a given impurity such as lithium in a
large number of compounds. In general, however, one
might expect that the results obtained in this paper for
germanium and silicon are valid for the compounds as
well, making the hexagonal site the one favored for the
reason of lowering the electrostatic energy, and the
tetrahedral site the one with a lower repulsive energy.
Hence, one would expect an optimum ion size for
diffusion, and in particular one would expect copper to
have a high diffusivity. Recent results by Fuller and
Wolfstirn on Li in GaAs®® and by Hall and Racette on
copper in GaAs?® confirm that copper diffuses more
rapidly than Lithium.

The idea of an optimum diffusion size for an inter-
stitial impurity should also be applicable to such
elements as hydrogen or helium. In this case, the attrac-
tive potential will be given by a van der Waals potential
which falls off as the sixth power of distance.” We have
estimated the van der Waals interaction energy of such
an impurity with the host atoms out to eight shells

# W, C. Dunlap, Phys. Rev. 97, 614 (1955); J. D. Struthers,
J. Appl. Phys. 27, 1560 (1956); A. A. Bugay, V. E. Kosenko, and
E. G. Miselyuk, Zhur. Tekh. Fiz. 27, 1671 (1957); B. I. Boltaks
and I. I. Sozinov, 7bid. 28, 679 (1958) [translation: Soviet Phys.—
Tech. Phys. 2, 1553 (1958)7; see reference 11; B. I. Boltaks, G. S.
Kulikov, and R. Sh. Malkovich, Fiz. Tverdogo Tela 2, 181 (1960)
[translation: Soviet Phys.—Solid State 2, 2134 (1961)].

3 C. S. Fuller and K. B. Wolfstirn, J. Appl. Phys. (to be
published).

( 36 R) N. Hall and J. H. Racette, Bull. Am. Phys. Soc. 7, 234
1962).
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surrounding each site, and we find that in this case too
the hexagonal site is favored. If, however, the repulsive
energy is greater than the attractive energy, the
tetrahedral site will be favored. Again, therefore, an
atom or molecule of just the right size may diffuse with
almost no activation energy. Since diffusion studies for
neutral impurities have been limited to hydrogen and
helium?® not enough experimental evidence exists to test
his hypothesis.

It is unfortunate that it is difficult to test separately
the various approximations and parameters which have
been employed in developing the theory presented here.
The good agreement between theory and experiment is,
of course, very gratifying, but it is always possible that
a cancellation of the errors introduced by the various
approximations and assumptions is responsible for it.
To test the theory more rigorously, it is first of all de-
sirable that diffusion studies in dislocation-free crystals
be carried out with a larger number of elements and over
a wider temperature range. Diffusion experiments
carried out under hydrostatic pressure would also
provide a valuable check on the theory. Such experi-
ments may be difficult to do at high temperatures, but
since ion-pairing permits a study of diffusion at very
low temperatures such experiments are quite feasible.

In any case, it is hoped that the theory developed
here, besides explaining such puzzling facts about inter-
stitial diffusion as the great diffusivity of copper, will
serve as a useful guide to the planning and interpreta-
tion of future experiments.
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APPENDIX A. DISPLACEMENT OF THE ION
FROM THE CENTER OF THE CAVITY

The theory developed in the body of the text assumes
that the ion remains at the center of either the tetra-
hedral or the hexagonal cavity. Since a charge cannot
be in a position of stable equilibrium with respect to
electrostatic forces only, the ion may move away from
the center of the cavity toward the host atoms until the
opposing repulsive force becomes equal to the force of
electrostatic origin which tends to displace it from the
center. The effect will be most pronounced for a small
ion like lithium and will decrease in importance for the
larger ions. One may obtain an idea of the magnitude of
the displacement and the correction it introduces to the
energies calculated in the following manner:

37 A. Van Wieringen and N. Warmoltz, Physica 22, 849 (1956);
l({. C. Frank and J. E. Thomas, J. Phys. Chem. Solids 16, 144
1960).
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If the charge is not at the center of a cavity of a
dielectric, the continuum expression for the polarization
energy is expressed in spherical harmonics,®

2 1
A8
2R. K
2 9

X[1+§ E—Fhigher powers in (O/R):I, (A1)

c

— Upol:

where 8 is the displacement of the charge from the
center of the cavity of radius R,. It is clear that Eq. (10)
is the leading term of this expansion. The total energy
with the ion displaced from the center of a tetrahedral
cavity will then be given to second order by

Utot= — Up0]0[1+%(62/Rc2)+ .. :|

+1U,ep%(ed 7+ 3e709/0),  (A2)

where the superscripts O indicate the value of the two
energies with the ion at the center of the cavity. For
the sake of simplicity we have chosen as the direction
of displacement the direction toward one of the nearest
host atoms. Each host atom with its associated next
nearest neighbors contributed one quarter of the
repulsive energy at the center. The factor g (g=cos71°
=0.33) in the exponent of the last term arises from the
geometry of the tetrahedral site since 9 cos71° is the
projection of 9 in the direction toward one of the other
three atoms. We differentiate Eq. (16) with respect
and set the derivative equal to zero:

alu

a0

49 U
Up 0_

ol
3R2 4p

(e3P —g=09/p) =0,

The resulting transcendental equation can be solved
graphically for deq, the equilibrium displacement from
the center; a value of deq=0.41 A was obtained for
lithium in germanium. The change in total energy is
then given by:

AUt = — Upol0 %‘(aeq/Rc)2
F 3Tt (e19— 1)+ 3 (eoer—1)]
=—0.2540.18=—0.07 ev.

‘A similar calculation was carried out for the hexagonal
.case. Since the method of calculating the change in
.energy is similar to the one shown above the details of
the calculation will not be given here. The resulting
lowering in energy is 0.12 ev. The over-all change in the
energy of diffusion is thus 0.05 ev in going from a
hexagonal site to a tetrahedral site. The correction is
undoubtedly less than the accuracy of our calculation
and can be neglected. For larger ions than lithium the
correction becomes even smaller.

1435

APPENDIX B. DISTORTION OF THE LATTICE
SURROUNDING THE ION

The question arises as to how serious the approxima-
tion is of treating the lattice as stationary. The electro-
static forces will tend to pull the host atoms toward the
ion, while the repulsive forces will tend to repel the
lattice atoms. The displacement will stop when the
forces tending to displace the lattice atoms are balanced
by elastic restoring forces. Let us first consider the
inward displacement of the lattice as a result of the
electrostatic attraction. From Eq. (10) we see that the
polarization energy is inversely proportional to the
effective cavity radius R.. Equation (10) treats the
lattice as a continuum with a dielectric constant K.
We shall call R, the “dielectric” cavity radius to dis-
tinguish it from the “physical” cavity radius Ro, which
we identify with the distance to the nearest neighbors.
The dielectric cavity radius is obtained by inserting the
value for the polarization energy calculated in Sec.
II(B) into Eq. (10). For the tetrahedral site the value
of 0.26a, is obtained, and for the hexagonal site a value
of 0.22a,. These distances are approximately one half
the “physical” cavity radius. We now regard the lattice
as an elastic as well as a dielectric continuum, and we
assume that, as the lattice contracts, the change in
dielectric radius is approximately equal to the change in
“physical’” radius. The total energy will then be given by

7
2(R.~AR)

The second term on the right side of Eq. (B1) is the
energy needed to expand a cavity of radius R, by an
amount AR in an infinite elastic medium of shear
modulus G.+3% We differentiate Eq. (B1) with respect
to AR, set the derivative equal to zero, and solve for
AR. For the tetrahedral site we find R=~0.1 A. Sub-
stituting this value into Eq. (B1) we find that the
polarization energy is increased by about 0.50 ev at the
expense of about 0.25 ev of strain energy. Thus, since
the polarization energy is about 5 ev, only about 5%, of
the total energy goes into distortional energy.

Similarly, to estimate the expansion of the lattice in
order to reduce the Born-Mayer repulsive potential, we
may write the total energy as

Usor=Urep’e 2 EI74-8TGRo(AR)?, (B2)

where it is understood that U..p° is the repulsive energy
calculated by means of Eq. (8), i.e. with the impurity
at the cavity center. We again differentiate with respect
to AR, set the derivative equal to zero, and solve for
AR. Using the rather high value of 1.5 ev for U, (see
Table I), we find AR approximately equal to 0.08 A.
Substituting this value into Eq. (B2), we find that the
Born-Mayer repulsive energy has been reduced by
about 0.30 ev, at the expense of about 0.16 ev of elastic
strain energy. In this case, approximately 109, of the

38 K. Weiser, J. Phys. Chem. Solids 7, 118 (1958).

2

pol=

1
(1— —)+87rGRo(AR)2. (B1)
K
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We conclude that the contribution of lattice distortion
to the energy of diffusion in the diamond lattice should
be negligible (of the order of a few percent), except for
much larger impurities than the ones considered here.

energy goes into lattice distortion. It must be re-
membered that the actual lattice expansion will be less
because of the opposing tendency toward contraction
due to the electrostatic attraction considered above.
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Treatment of Ionized Impurity Scattering in Degenerate Semiconductors. Application
of the Variational Technique in the Partial-Wave Method

P. CsAvINSZKY
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Using the partial-wave method, ionized impurity scattering in degenerate semiconductors is discussed.
It is shown that the scattering process is adequately described by considering only the zeroth-order phase
shift. By making use of Kohn’s variational principle this quantity is determined analytically and an analyti-
cal formula is derived for the resistivity due to ionized impurity scattering alone.

I. INTRODUCTION

ONIZED impurity scattering is an important factor
in determining the charge transport in semicon-
ductors. Theoretical treatments! of the scattering proc-
ess make use either of the Born approximation? or of the
more exact partial-wave method.? The latter approach
has been used by Blatt* for discussing ionized impurity
scattering in nondegenerate semiconductors. Unfortu-
nately, the form of his scattering potential did not
permit the derivation of analytical formulas for the
phase shifts of the partial waves.

The present paper considers ionized impurity scat-
tering in degenerate semiconductors. It is shown that in
this case the scattering process is adequately described
by considering only the zeroth-order phase shift. By
making use of Kohn’s variational principle® this quan-
tity is determined analytically. As an example, the
scattering of electrons by donor ions is discussed and an
analytical formula is derived for the resistivity due to
ionized impurity scattering alone. The scattering po-
tential used is of the same form as that of Blatt,* namely
a screened Coulombic potential.® It is assumed that in
an elastic scattering act only one donor ion participates.
Asin Blatt’s work, anisotropies in the electronic effective
mass are ignored and a scalar effective mass is used.

1 The subject is reviewed by F. J. Blatt, Solid State Physics,
edited by F. Seitz and D. Turnbull (Academic Press Inc., New
York, 1957), Vol. 4, p. 343 ff; H. Brooks, Advances in Electronics
and Electron Physics, edited by L. Marton (Academic Press Inc.,
New York, 1955), Vol. VII, p. 156 ff; W. Shockley, Electrons and
Holes in Semiconductors (D. Van Nostrand Company, Inc.,
Princeton, New Jersey, 1950), p. 258 ff.

21, I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), 2nd ed., p. 161 ff.

3 See reference 2, p. 103 ff.

4F, J. Blatt, J. Phys. Chem. Solids 1, 262 (1957).

5 W. Kohn, Phys. Rev. 74, 1763 (1948).

8 R. B. Dingle, Phil. Mag. 46, 831 (1955).

II. CALCULATIONS

1. Calculation of the Total Scattering
Cross Section

In the partial-wave method? the total scattering cross
section for elastic scattering of a particle by spherically
symmetric potentials is given by

Q'=2r / o (&) sinddd, €]
where ’

1 0
a(ﬁ)=;| ; (214-1)eim siny, P (cosd) | 2 (2)

is the differential scattering cross section. If a weighting
factor is introduced for large-angle scattering, then Eq.
(1) becomes,”

Q=2r / " (1—cost)o (@) sinddd. (3)

Using Eq. (2) one finds from Eq. (3) that

©

0- z Q=% () sitlri—n), @

=0

where 7, is the phase shift of the /th partial wave and %
is the wave number of the scattered particle. Assuming
a radius R beyond which the scattering potential is
“negligible,” the summation for practical computations.
extends® from /=0 to a maximum [ of the order of 2R.
In what follows it is assumed that the electron’s energy
is such that 2RZ1. In this case Eq. (4) reduces to

Qo= (47/k?) sin® (no—m1). (S)
7K. Huang, Proc. Phys. Soc. (London) 60, 161 (1948).



