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group, the character associated with a translation
(.~R„) is

7tg

d...P exp(ik, "R„),

where d, is the dimension of the mth irreducible
representation of the group of the wave vector k. From
Eqs. (A3) and (A4), and the theorem quot. ed above, the
number of times the mth irreducible representation of
the space group associated with the star s is contained
in the reducible representation is then

ns

c,,=(1/glV) P(E ) P d,gexpLi(k, —k,) R„]
i, j=l

gri, =Q (rl)c,,r4d, .=P (rw) (d,ri.)'. (A6)

This is what we set out to prove. As a, simple corollary,
we see that

(g/rs. ) =Q (m) (d, .)'. (A7)

the reduction of the reducible representation must be
made up out of sets of e,.d„, , functions for the various
irreducible representations of the space group; the
dimensionality of such an irreducible representation
equals the product of d „ the dimensionality of the
group of the wave vector, and e„ the number of wave
vectors in the star. We have seen in Eq. (AS) that we
have c, diHerent sets of basis functions for the mth
irreducible representation. We then have that

= (1/g&) 2 d-, .gA'~*
i„7=1

=dm, s+s (As)

We now use the fact that the gus, basis functions in

Here (g/rc, ) is the order of the point group associated
with the wave vector k. In words: the sum of the squares
of the dimensionalities of the irreducible represen-
tations of the group of the wave vector equals the order
of the point group of the group of the wave vector.
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A treatment of spin-orbit effects in some semiconductors is
given using the effective-mass method and orthogonalized-plane-
wave type wave functions. In this formalism, the spin-orbit split-
ting of valence states in the crystal is expressed directly in terms
of either experimental or calculated values of the spin-orbit split-
ting of the atomic-core states. The calculation yields values in
good agreement with experiments for the splitting at F~5. for Si
and at both I 2; and L3 for Ge. A demonstration is given of the
enhancement of the spin-orbit splitting of valence states in the
crystal over the corresponding atomic value.

The shift in the g tensor due to spin-orbit interactions is studied
in Si and Ge. Because of crystal selection rules, the usual two-band

approximation to the effective-mass sum rule is inadequate for Si
and, in particular, the core state must be considered. When all
important states are included, the calculations yield values in
good agreement with experiment. In the case of Ge, it is found that
core states do not contribute appreciably to the g tensor. However,
the calculated value for. the shift in the transverse component of
the g tensor has an opposite sign to the measured one.

A certain matrix element of the deformation potential for Si is
also evaluated based on the measured shift in the g value due to
strain. The result is compared with other deformation potentials
in Si.

I. INTRODUCTION

'HE effects of spin-orbit (s-o) coupling on the
electronic properties of crystals have been dis-

cussed by several authors. ' ' For semiconductors, these
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properties are largely determined by the nature of the
conduction and valence band edges. In semiconductors
where these band edges are of p atomic symmetry and
split under the s-o interaction, knowledge of the
magnitude of their s-o splittings becomes necessary in
any quantitative calculations. Although there have
been recently several direct measurements of the
valence state s-o splitting for' Si and' Ge by optical
experiments, there is lack of any quantitative estimate
in theory. In this work we attempt to estimate the s-o

' S. Zwerdling, K. J. Button, B. Lax, and L. M. Roth, Phys;
Rev. Letters 4, 173 (1960).
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Physics, Prague, 1960 (Czechoslovakian Academy of Sciences,
Prague, 1961).



splitting of valence states in crystals by treating the
s-o interaction as a perturbation on the crystal states
described by orthogonalized-plane-wave (OPW) type
wave functions, which are well suited to most semi-
conductors. But prior to this calculation, we treat the
s-o splitting of the atomic-valence state using an atomic
valence wave function, which, just like an OPW crystal
wave function, consists of a smooth part plus occupied
core orbitals. In this way, we can make a comparison
between the splitting in the atom and that in the
crystal and then demonstrate why the splitting gets
enhanced in the crystal. Since both the atomic-valence
wave function which we use and the OPW crystal wave
function contain core orbitals, the s-o splitting of
valence states in the atom and in the crystal can be
expressed in terms of the s-o splitting of the atomic-core
states in our formalism. We apply the splitting calcu-
lations to crystalline Si and Ge and obtain values in
good agreement with experiment.

The effect of s-o interaction on the magnetic reso-
nance is first of all a shift in the isotropic g value for
conduction (or valence) electrons from the free electron
value of 2.0023. Furthermore, when for some semi-
conductors like Si and Ge the conduction band edge
consists of several valleys lying in equivalent positions
along certain symmetry directions in the Brillouin zone
(B.Z.), the s-o interaction introduces an anisotropy
into the single-valley g value, which can be expressed
as a tensorial quantity. Theoretical treatment of the

g tensor for semiconductors or semimetals has been
done in the framework. of the effective mass approxi-
mation. In the absence of crystal wave functions, a
two-level approximation to the effective-mass sum
rule was further assumed to evaluate the g tensor for
certain materials. ' ' In other words, for semiconductors,
it was assumed that the major contribution to the g
shift for conduction (valence) electrons came from the
s-o splitting of the nearest valence (conduction) level.
In this way Roth has obtained excellent quantitative
agreement with experiment for the longitudinal g shift
in Ge4 and the isotropic g value for InSb. ' However,
the two-level approximation is not always adequate.
A typical semiconductor which illustrates this failure is
Si. The Si valence s-o splitting at the conduction edge
is very small due to special selection rules, and conse-

quently, its contribution to the conduction g tensor is

by no means dominating. Therefore, we attempt to do
a more careful analysis. We still work with the effective
mass approximation in evaluating the g tensor, but we
use OPW crystal wave functions to calculate all the
matrix elements involved in the effective-mass formal-
ism. With the exception of the transverse component
of the g tensor in Ge, excellent agreement with experi-
ment is achieved. Since effective-mass parameters are
involved in the g tensor calculation, we also include a
section to discuss their evaluation from OPW wave
functions.

The spin resonance linewidth in semiconductors is

largely due to a spin-lattice relaxation. Rotho has
proposed a spin-lattice relaxation mechanism for Si,
which is caused by the modulation of the single valley

g tensor by strain. Using the measured value for a
parameter in the proposed mechanism, we evaluate a
certain shear deformation-potential matrix element.
The result is compared with another deformation-
potential matrix element obtained either from conduc-
tivity measurement. or from measurement of spin-
lattice relaxation rate due to a second mechanism
proposed by Roth' and by Hasegawa" independently.

Part of the work on Si has been reported elsewhere. "

with
(e,j,l~X,-.~e,j,l)= &.,(I s), , (2.1)

2@i c

1 dV
I-'2

~
——dr

(&
(2.2)

where P„t/r is the radial wave function for the state
specified by quantum number e, j, and t. With the
tabulated atomic H-F wave functions we can evaluate
numerically the one electron s-o coupling strength in
(2.2). However, the valence radial wave function P„'
can also be represented by a smooth function which is
orthogonalized to all the occupied core states with the
same symmetry:

(2')sn'+1
p„( 1V ——r"'e " QBgP, '—, (2.3)

(2e')!

where S is a normalization factor and m' and a are two
adjustable parameters. The coefficients 8& can be
determined by the requirement that I „~ be orthogonal
to the core states. In the core region, the wave function
P„' in (2.3) is dominated by its core terms, so we can
neglect the smooth part for the s-o calculation. Then
the s-o splitting A„~ of the one electron valence state
can be expressed in terms of that of the core states as

A t=&'Qt &P~it+&'E', ~ &~&t ((& s)~=i+-„t

—(1 s),' t *, , ,)1/(2m'c') P,~P' t1/r(d U/dr)dr. (2.4)

The second term is usually smaller than the erst one.
' L. M. Rath, Lincoln Laboratory Reports, April, 196O (unpub-

lished), Vol. 15; Proceedings of the International Conference on
Semiconductor Physics, Prague, 1060 (Czechoslovakian Academy
of Sciences, Prague, 1961).

' H. Hasegawa, Phys. Rev. 118, 1523 (1960)."L.Liu, Phys. Rev. Letters 6, 683 {1961).

II. SPIN-ORBIT SPLITTING OF ATOMIC STATES

It is our aim to treat in this section the s-o splitting
of atomic valence states in a formalism related to the
method we adopt later for the crystals so that we can
see how the s-o splitting of energy levels differs in the
atom and in the crystal.

The atomic s-o splitting is characterized by a matrix
element
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3p
3d

Exp.
Corr. exp.
Calc.
Calc.
Calc.

0.72
0.60
0.52

31
27
30
4.0
0.57

TABLE I. Core state spin-orbit splitting, in ev. ) denotes a properly normalized symmetrized
combination of plane waves. The second term in (3.1)
is the core part, which comes from orthogonalization
and takes the following form

1
P P exp[ik (R„+d)]

(sÃ)l R- a
)&Xp(r—R„—d). (3.2)

For neutral Ge, the atomic H-F wave functions have
been calculated by Piper. "We use his wave functions
for I'„i in (2.2) and also for constructing the atomic
potential V assumed to be pure Coulombic to obtain
the atomic s-o splitting for the various states. The
calculated splittings for the core states are listed in
Table I together with the core splitting for Si. The
calculated value for the 4p splitting 64„ in Ge is 0.15
ev. This is to be compared with the experimental value
of 64„=0.18 ev deduced from spectroscopic term values
with a configuration of 4s'4p''P;" the experimental
value is about 20% greater than the calculated value.

On the other hand, we can fit Piper's wave function
reasonably well by (2.3) with the following values for
the parameters:

E= 1.022, 82„= 0.006520,
e'= 4, Bs„=—0.1987.

a= 1.85,

(2.5)

Then, from (2.4), (2.5) and core splittings in Table I
we obtain 24~ ——0.15 ev, which is exactly the value
obtained directly from the tabulated 4p function.

In our later discussion of the crystal case, we shall
compare the crystal result with the atomic result
obtained by (2.4). Through this explicit comparison
we hope to illustrate the enhancement of the s-o
splitting above atomic values found experimentally in
certain crystals.

III. SPIN-ORBIT SPLITTING OF ENERGY BANDS

There are different methods for calculating crystal
energy bands and eigenfunctions in practical cases, but
by far the most successful method for getting valence
state wave functions in semiconductors is the OPW
method. The crystal valence wave functions in terms
of OPW's may be separated into a "smooth" plane
wave part and a core part similar to the atomic valence
function (2.3)

=Z«(Ik+Kl)l(k+K)) +2 b, I4, ) (31)
Here n is a symbol for the irreducible representation
used to denote the symmetry of the wave function, k
is the wave vector and K is the reciprocal lattice vector.
Plane waves are expressed by (k+K). The symbol

"W. W. Piper (to be published).
"C. E. Moore, Atomic Energy Levels, National Bureau of

Standards Circular No. 467 (U. S. Government Printing Otiice,
Washington, D. C., 1949).

Here X& is the atomic-core wave function with sym-
metry specified by n, d is the position of the atom with
respect to the lattice vector R„,E in the normalization
factor is the number of unit cells in the crystal and s
denotes the number of atoms per unit cell. The normal-
ization of the wave function is such that both X& and
P&" are normalized to one over the whole crystal.

For some semiconductors, the s-o coupling strength
is small compared to the energy gap. In this case, the
s-o Hamiltonian, 3C, ,= (h/4m'c') (V VX y) e=—h o, can
be treated as a perturbation term. Then in order to
evaluate the energy band splitting, we must first take
matrix elements of K, , with respect to states Pj,

~
&),

where ~+) and
~

—) are the two spin eigenstates of a-, .
A s-o matrix element using Pi, in (3.1) can be separated
into three parts; namely, the matrix element between
two plane wave parts, between a plane wave part and
a core part, and between two core parts. The last one
gives the most important contribution. For example,
in Si the core-core term is found to be about 96% of the
whole matrix element. In Ge, because it has a larger
core, the core-core term is even more important.
Therefore, for the purpose of evaluating the s-o matrix
element, we represent the valence wave function by
its core part only. In this way a general matrix element
of K, , takes the following form:

~Pi, i b. ,
i"*b., i'(Xi ~h,

~
«'). (3 3)

To obtain the right-hand side of the above equation
we have assumed that there is no overlap between the
core orbitals centered around different lattice points.
The operator h, in (X, ~h,

~
X, ~) is used to denote a

definite component of h determined by the symmetry
n and P.

We notice that the matrix element (Xi ~h,
~
XP) is

connected with the s-o splitting of the core states.
Therefore, the s-o splitting of the crystal valence states
like that of the atomic valence state, can be expressed
in terms of the splitting of all the occupied core states,
the magnitude of which can be obtained either from
x-ray data or from calculation using a model crystal
potential and tabulated atomic wave functions. The
coefficients bk ~ can be expressed in terms of the plane
wave coefficients a(~k+K~) in (3.1) and the orthogo-
nalization coefficients B&(k+K) used in the usual
OPW band calculation,

bi, , i = —Qx a(~k+K~)B, (k+K) exp(iK d), (3.4)
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where n in the summation sign indicates that this is a
symmetrized sum for n irreducible representation. From
(3.4) it is seen that the magnitude of (bq, g )*by, , g

s in
(3.3) depends on the number of terms we take in the
expansion into symmetrized combination of OPW's for
the valence wave functions. Any truncation of the
in6nite secular determinents arising in the OPW
method not only leads to unavoidable errors to the
energy eigenvalues but also to larger errors in the s-o
splitting. Therefore in any calculation of the s-o
splitting, it is advisable to study the convergence.

In order to illustrate the general procedures outlined
above and to make explicit use of the crystal symmetry
we take up in the following section diamond-type
crystals.

IV. DIAMOND-TYPE CRYSTALS

There have been extensive studies on the energy
bands for crystals with diamond structure. In partic-
ular, the band structures without s-o coupling for Si
and Ge are sketched in Fig. 1 and Fig. 2, respectively.
For both substances, the valence edge is at I'25. The
conduction edge for Si lies at ke ——(3,0,0) along Ar with
6=0.85(2x ja), '4 and that for Ge lies at I.r. For these
substances, 3C, , can be treated as a perturbation term.
Therefore, using the method outlined in the above
section, we try to evaluate the splitting of the valence
states at positions in the B.Z. corresponding to both
the valence edge and to the conduct. ion edge, or at 1'25

and A5 for Si and I'25 and L~ for Ge.
The diamond structure consists of two interpene-

trating face-centered cubic sublattices. We take as the
origin of our coordinate system a point midway between
two adjacent lattice points and distinguish the core
orbitals in (3.2) centered around the two sublattices
by a superscript 1 or 2 and denote the valence wave
function by its core part only. In accordance with these

-IO ~is-
ry

~2m

C5
lK
4J -20
UJ

L2/
I

LI

Lpi

Li
I

Frc. 2. Sketch of the
energy bands of Ge
along $111]axis of the
Brillouin zone, after our
own band calculation.
The positions of F2 and
L1 states have been ad-
justed to fit the experi-
mentally observed gap
values. The core states
are not shown.

-30
k=o

+6' = bey (Qsz Qsz )+bsrz (Qss +ass )
+bs "(~s'—es')+b» "(~s '+us')
+bs""'(4.' 4-')+—bs'"(eu'+e. *') (4 2)

We have used the irreducible representation symbols
to denote the wave functions with superscripts speci-
fying the symmetry type. It is to be noted that we
have only included core states up to the atomic 3d state.

At F25~

The valence state rss is sixfold degenerate (spin
degeneracy included). When we treat K. , by pertur-
bation theory, we only take into consideration the three
degenerate orbital states, one of which is given explictly
in (4.1), and the two spin eigenstates I+) and

I

—)
of 0-,. With respect to these states, the only non-
vanishing matrix elements of BC, „are:

(res *"&
I
Bc, „

I
rss "'w)

= ~sf
I
b»"'I'(xs* Ih.

I
xs*)+

I
b»"'I'(xs.

I &.
I
&s.)

+2L«(bs, rz') *bs,r"'j(xs,
I h„l &s.)—

Ibsen'"'I'(Xs.

I

heal

x*.)}=~iS, (4 3)

conventions we list the wave functions I'25 and 6,5.

r, *"=b „""'(y.'—y .')+b „"'(4 .'—4 .')
+b.'"" (y.,'+V.,'), (4.1)

-I8

-28
CI'
4l

LLI

XI

Pro. 1. Sketch of
energy bands of Si along
$100) axis of the Bril-
louin zone, after Klein-
man and Phillips. Super-
script t is used to denote
the 2p core states.

(rss *"~I51' -oIr»"*~) and (r„."~I51'-.-.Ir„"*~)
together with their complex conjugates. The 6X6
Hamiltonian can be reduced to two identical 3)&3
matrices. In other words, the s-o split levels are at
least doubly degenerate (Kramer's degeneracy). After
diagonalization of the Hamiltonian, we see that the
1» state splits into two, for which the energy shifts are

hE~ iS (quartic dege——nerate),
and

-99 = 2P = 65, di DEs 2iS (dou—bly degenerate). ——(4.4)

- I 04
k=O k= {I,OsO) 0

"J.C. Phillips, Phys. Rev. 112, 685 (1958).

Since most of the s-o matrix elements in S are connected
with the atomic core s-o splittings, the valence s-o
splitting in the crystal can be conveniently obtained
through the splitting of the core states A2„, 63„, and
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63g as follows:

~. .(F')= lb.,"- I'~..
+ ( b3,""')'~3„——.

'
(
b3~""'

~

'~w

+6% (b .'"')*b ."'j« Ih. I
X .) (4 5)

According to (3.4), the coefficient b's in terms of plane-
wave and orthogonalization coefficients are equal to

b, „,3„'»'= iL(2/v3) a(v3)B,„i„(%3)
+&2u(2)B,„,„(2)+.

(4 6)
b,.'"» = (2/K3) a(v3)B,&(%3)

+v3u(242) B3g(2v2)+

Here we have used orthogonalization coefficients which
depend only on the magnitude ~k+K~ of the wave
vectors, given in units of 2m/u in the argument of
both a and Bi. The variation of Bi(k+K) with the
directions of a set of wave vectors of the same magnitude
has been absorbed into the numerical factors in (4.6).

In any quantitative evaluation of the splitting of
F~~ according to (4.5), we first need the splitting of
the core states. This can be obtained either from
experimental x-ray data or from calculation. On the
experimental side, Tomboulian and Cady' have com-
pleted the identification of the x-ray emission lines
2p& —&2s and 2p' —+2s for the second row of the
periodic table. Their value for the 2p s-o splitting of Si
is listed in the first line of Table I. By invoking Slater's
rule that the missing electron gives an extra screening
charge of 0.3 ev, we can use Tomboulian and Cady's
values to estimate the 2p splitting in neutral Si (second
line of Table I). As for Ge, there is only an experimental
value for the 2p core s-o splitting by Tyren" from
E-emission data. This value and the corrected value
for neutral Ge are also listed.

On the other hand, to calculate the core s-o splitting
we assume that the crystal potential has spherical
symmetry in the vicinity of each atomic site. We have
already calculated the core splitting for Ge in Sec. II
and we calculate now the 2p core splitting for Si based
on crystal potential and atomic core wave functions
used by Kleinman and Phillips" in their Si band
calculation. All the calculated results are listed in
Table I. In all the subsequent calculations we shall
use the corrected experimental value for the Si 2p core
s-o splitting and the calculated values for the three Ge
core (2p, 3p, and 3d states) splittings.

To obtain the plane-wave and orthogonalization
coefficients for the evaluation of b2„,3„»' and b3~'

in (4.6) for Si, we rely upon K-P's crystal wave func-
tions. For Ge, we use the H-F atomic wave function
by Piper" and a computer program furnished by
Bassani and Yoshimine to run the Ge OPW crystal

"D. H. Tomboulian and W. M. Cady, Phys. Rev. 59, 422
(1944).

' F. Tyren, Arkiv. Mat. Astron. Fysik A25, Nr. 32 (1937).' L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960):
Hereafter referred to as K-P.
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FIG. 3. Convergence ~ f the calculated spin-orbit splitting
values vs number of orthogonalized plane waves taken in the
wave function. The dashed lines indicate expected convergence.

wave function on an IBM /04 computer. We include
in the Appendix a brief discussion on this calculation
and a list of the orthogonalization and plane-wave
coefficients. The corresponding Si values may be
obtained from K-P.

With the core splittings and coefficients b and b',
we evaluate the s-o splitting of the I.'25 state for Si
and Ge by successively taking more and more plane
waves in (4.6). The convergence of the calculation is
shown in Fig. 3. After about 80 plane waves the
calculated splitting is expected to change by no more
than 7%, because the plane-wave coefficients for any
higher K are very small. This expectation is represented
by dashed lines in Fig. 3 indicating approximate
convergence. In the study of convergence, we have
neglected the contribution from 2p —3p interference
term in (4.5) to 5, ,o', this is to be corrected in the
final result. The s-o splittings for Ge and Si thus
obtained are 6, , '(I'25)=0.042 ev and 6, , (F,g.)
=0.29 ev. They are to be compared with the experi-
mental values of h, ,s'(F25 ) =0.0441&0.0004 ev" and
6, ,o'(F2q) =0.3 ev. ' The agreement in both cases is
good. In the calculation for 6, ,o'(F25) we find that
the 3d state contributes only 2% (of opposite sign to
the contribution from p states) and the 2p state 4%
to this value.

As F25 is of atomic p symmetry type, we compare
6, ,o'(F,5) with 64„o' of Sec. II. We notice that
according to calculations the splitting in the crystal is
about 2 times larger than that in the atom. To see
how this enhancement comes about, we compare b~~25'

of (4.6) with XB» in (2.4). The average value of the
orthogonalization coefficients B,(~k+K~) in bir»' is
about the same in magnitude as the corresponding 8&
for the atomic wave function. However the rest of
b&~~', which is essentially a summation of plane-wave
coefficients, adds up to 1.78 for about 80 plane waves
in (4.6) while in the atomic case %=1.02. Physically,
this difference in normalization constants means that
the wave function in crystal gets contracted in the core
region of each atomic site. It is this contraction which
gives rise to an enhancement of the s-o splitting. For
Si, the same enhancement is noticed; the atomic
splitting 63„'=0.028 ev from spectroscopic term
values" with the configuration 3s'3p' 'I'. Since at
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present there are no atomic H-F wave functions
calculated for neutral Si, it is not possible to carry out
a calculation similar to what we did for Ge in Sec. II
to demonstrate the enhancement.

Along 45 for Si

The s-o splitting of the energy bands along 65 in
diamond structure solids has been qualitatively dis-
cussed by Englert. " Although he uses tight. -binding-

type wave functions while we use OPW crystal wave
functions, the qualitative features of our results are
the same since they all depend on the crystal symmetry
only.

For simplicity, we consider explicitly the case for Si
in this section. We first consider the region near the
zone edge X4 and then the region near I'&5. In the
former region, we are far away from the zone center.
Then in studying the s-o splitting of the 65 valence
band, we only need take the two degenerate states
A5& and 65' into consideration, one of which is given
in (4.2). With respect to these states, the only non-
vanishing matrix elements of 3', , are:

(apa
I
X, .

I
As'W)
=(Ib»"'I' —Ib»" I')(X»II

I xs»

and their complex conjugates. Then, the degenerate
65 state splits into two states, each doubly degenerate
(Kramer's degeneracy), and the splitting is equal to

&.-."(~s)=-:
I Ibs.'"I' —Ib ."I'I ~ ." (4 8)

In terms of parameters in OPW-type band calculations,
the coefficients b2„' and b2„' ' are:

According to the terms listed in (4.9), the difference in

I

bs„as
I

and
I
bs„'~s

I
is due to one containing the

(8+1, 2, 0) set of plane waves and the other the
(b —1, 2, 0) set. The first thing to be noted is that at
Xs(5=0), Ib s„sI is equal to Ibs„'asI. Then, according
to (4.8)

h. ,s'(X4) =0, (4.10)

which is consistent with the prediction by Elliott' using
the theory of the double group. Next, we go away from
X4 toward the zone center but keep bI small. By
(4.8) and (4.9), the s-o splitting of the Ds state reffects
the properties of the wave functions through the
difference between b2~~' and b2„'~'. However, the
orthogonalization coefficients and the numerical factors
in

I
bs~~'I and

I

b»'~s
I

are not sensitive functions of k;
their product only changes about 1% when

I
b

I
changes

from 0 to 0.5. Therefore, the difference is mainly due
to the coeKcients a(

I
k+I

I
).The secular determinants

for 55 and X4 in the OPW method have identical
off-diagonal elements; only their diagonal elements
(5'/2m) (k+ K)s differ. Therefore, by using perturbation
technique, we can establish that

"([(&+1)'+4]')= "(v'5) (1+l I
& I),

~"([(b—1)'+4]')=~"(v'5) (1—
s I

& I),
(4.11)

when b is small. It is then evident from (4.8) that
A, ,(As) is proportional to IbI if higher order terms
are neglected. To determine the proportionality con-
stant, we calculate the s-o splitting of A5 at the con-
duction band edge ks for Si (b= —0.15 at ks). The
calculation using the band parameters of K-P estab-
lishes that

bs as=V2i — a((b'+2)l)B~ ((bs+2)i)
(b'+2)-:

(4.9)

&8 o'(&s) =0.17
I
b

I
A. ."(I'95 ) (near X4) (4.12)

where b is in units of 2~/u as before.
We now go to the region in the vicinity of k=0.

First we would like to mention that although there is
a splitting for F», the lower doubly degenerate level
goes to Ar (in the notation of the double group) associ-
ated with the orbital state A2. So, as far as the orbital
state 65 is concerned, the splitting is zero at the zone
center. In the vicinity of k=0, we have to take the

state into consideration when studying the s-o
splitting of 65. The conduction state h~ does not have
much inQuence since the conduction-valence energy
gap is about 30 times larger than the 85 s-o splitting.
Using the three states 65&, A5', and A2 as a basis, we
diagonalize the s-o Hamiltonian and get the energy
shift for the 65 level as

using the direction independent orthogonalization
coeKcients as in (4.6). Here (8+1, 0, 0) is the position
in

' the B.Z. under consideration in units of 27r/a.

' F. Englert, Bull. classe sci., Acad. roy Belg. 43, 273 (1957).
P, and iP„ in Eqs. (5) and (6) oi this paper should be interchanged.
Also Eqs. (27)—(29) are in error.

A. .s'(As) = —', I Ea,—Ea, ,+d„.s'(I', s.)
—

I (Ea —Ea +-'~. ."(ass))'
+ (8/9)d. ,s"(I'» )]l I, (near I'» ). (4.13)

In obtaining (4.13), we have assumed that all band
parameters appropriate to small k are given by those
at k=0. Furthermore, in the vicinity of k=0, Ea, and
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R~, . are given in terms of hole effective-mass param-
eters"" so that

0.03

Es,.(k) —Zs, (k) = (M—L)k'. (4.14) 0.02 —,

The values of M and L for Si as deduced from experi-
ments" "are M = —6.1 and L= —2.8 in units of 5'/2m.
Therefore, we can use (4.13) to get a quantitative
estimate of the s-o splitting for A5 near the center of
the B.Z.

In summary, we see that at the zone center, the s-o

splitting for 65 is equal to zero. As we move away from
the center, the splitting increases and then decreases
to zero again at the zone edge. A sketch of 6, , '(As)
vs k is given in Fig. 4.

At L and Along A. for Ge

To evaluate the s-o splitting at L~ for Ge, we still
treat X, , as a perturbation on the doubly degenerate
state L3, the wave function of which can be obtained
in the same way as (4.1) or (4.2). The calculated results
vs number of plane waves taken for the basis functions
is again shown in Fig. 3. We take as our calculated
result 6, ,o'(Ls ) =0.18 ev after putting in correction
due to 2p —3p cross term. The most recent experi-
mental value for a reluctivity measurement by Cardona
and Sommers' is 6, ,o'(Ls )=0.18 ev. In the calculation
we find again as in the case of 6, ,o'(I'ss) that the
most important state which contributes to the s-o

splitting of these valence states is the 3p core state.
The 3d state contributes a value of less than 1%%uo and

2p a value of about 4%%uo of the total splitting.
In a similar way we calculate 6, ,o'(Ls) to be 0.01

ev, or much smaller in value than 6, ,o'(Ls ). Also
different from the case of L3 is that L3 is predominantly
of d character in the core region. Therefore, in the
tight-binding language, L3 is a bonding 4d state while

Ls is an antibonding 4p state. This comes about
because they are close in energy on the nearly free
electron picture. The significance of the difference in

bonding and antibonding s-o splittings has been
discussed by Phillips and Liu. 22

Next, we discuss qualitatively the behavior of the
s-o splitting of A.3 in going from j.'25 to L3. along the
L111j axis in the B.Z. By symmetry we see that I'ss

contains bonding p character (antibonding d character),
or P„'—P„s type wave functions while Ls contains
antibonding p character (bonding d character), or
p~'+&~' type wave functions. Along As there is no
inversion symmetry in the group of the k vector; hence,
both bonding and antibonding types are allowed in the

"G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368
(1955).

» G. Dresselhaus, Ph.D. thesis, University of California, 1955
(unpublished)."B.Lax, Revs. Modern Phys. BO, 122 (1958)."J.C. Phillips and L. Liu, Phys. Rev. Letters 8, 94 (1962).

0
k=0 I(=(I,p, p) 0

FIG. 4. Sketch of the spin-orbit splitting of the h5 valence
band of Si. The dashed curve represents interpolation from the
calculated results.

wave function. Somewhere along A.3, the weight of the
two types must be equal. Then, according to procedures
which lead to (4.8), the s-o splitting should vanish at
this point. This shows that the s-o split levels along A.3

have a crossover. We shall see in Sec. V that under a
two-band approximation the longitudinal g tensor for
conduction electrons in Si is related to the s-o splitting
of the d5 valence state, and is larger than the free-
electron g value 2.0023. When we go from 65 to L3,
we encounter a crossover in the s-o split levels. Since
the s-o splitting at L3 is related to the longitudinal g
tensor for conduction electrons in Ge, it becomes
smaller than 2.0023 under a two-level assumption,
which is consistent with experiments.

(5.1)

where P is the Bohr magneton. In the absence of s-o

interaction, g becomes a scalar quantity and is equal
to 2.0023. On the other hand, in addition to a diamag-
netic contribution, the orbital motion of the electron
under a magnetic Q.eld changes the value of g from
2.0023 through s-o coupling. For some semiconductors
when the conduction band edges consist of several
valleys and lie along symmetry axis instead of at the
origin of the B.Z. , the electron energy surface may no
longer be a sphere even if the crystal possesses cubic
symmetry. In this case, s-o interaction introduces
anisotropy into the g value and makes it a tensorial
quantity as indicated in (5.1). To obtain in theory the
dependence of the tensor g on the details of the orbital
motion of Bloch electrons is in general a dificult task
because the magnetic interaction cannot be treated as
a perturbation on Bloch states which have a quasi-
continuous energy spectrum. For Na, Yafet' used a
cellular method to solve numerically the magnetic

V. g TENSOR

As we have seen in the last section, there exists a
I ramer's degeneracy in the energy bands of diamond-

type crystals even with s-o interaction. However, if
we put the crystals under a magnetic field of strength
H, the twofold degeneracy is lifted. The Hamiltonian
then has an additional term



Schrodinger equation to obtain the g factor. For
paramagnetic ions embedded in crystalline salts, we
abandon the band picture and regard the electron as
localized at the ion position. Then, with respect to the
discrete atomic states, the electronic interaction with
crystalline field and magnetic field can be treated by
perturbation theory. This localized electron picture
does not apply to conduction electrons in semiconduc-
tors. Nevertheless, since only states in the immediate
vicinity of band edges are important, we can ignore
the k dependence of the g tensor and use the effective-
mass approximation. In this approximation, general
formula for the g tensor are contained in several
papers4' and need not be repeated here. For some
semiconductors like Si and Ge, details of energy band
structure are known and use can be made of the
symmetry properties of various states to obtain
selection rules for the matrix elements involved in the
effective-mass formalism. In this way Roth derived
the following formula for the g shift of conduc-
tion electrons in Si and Ge by treating X, , as a
perturbation.

4
&gl '=&g ~

'"*'=Re—p — —(Lll p. IL3 ""&
mi~, FO„JO„ (5.3)

4 1+«—2 — (L il ~'
I

L3"*')
mi ~, F~O„Fp„

Effective Mass

+Re—p —(J i
I p" I

L~ "")
mZ p ~ v +of ploy

x(L ""Ip" IL -')«-'Ih, IL»

In (5.3), the primed coordinate x' is used to denote
the [111jdirection, which is the principal axis of the
electron energy ellipsoid in Ge. The expression contains
the linear momentum y matrix elements from the
effective-mass approximation and the matrix elements
of h from s-o coupling. See Figs. 1 and 2 for relevant
energy levels. Note the core states with superscript "t."

x(~,-l &.
I
~,-&(~ "*Ip. l

~
&

4 1
Bg

s.
8g s Re—p (a, lp, la, )

SSZ p)v P~p~Ppy

4 1
+R —P — —(s, lb„l ~,„"&

spaz p~y F~(jpI~i(jy

From the formula for the g tensor in the effective
mass formalism like (5.2) or (5.3), we see that any
calculation of the g tensor involves calculation of s-o
and momentum matrix elements. Calculation of s-o
matrix elements from OPW crystal wave functions has
already been discussed. We now discuss the evaluation
of electron effective mass with OPW-type wave func-
tions, which involves the calculation of momentum
matrix elements.

We rewrite the OPW function in a general form

(5.2)
without explicitly specifying its symmetry

1
Pg=P u(k+K) e'"+"i'—Q B,(k+K)yi, g+K,

K QU t

(5.4)

where Pi ~+K is defined similar to pi ~ in (3.2) and the
normalization is such that the plane-wave part of P~ is
normalized to 1 over the whole space. The momentum
matrix element is then evaluated.

and

x(~, *I p. l~ "&(~,"*l&,l~ &,

(O'll ly~&/(O'Ia. &= 2 G"(k+K)G(k+K')
K,Kr

X{A(k+K)[b, —2 P B,*(k+K)B,(k+K')]
4

Ge —gg, oe —Re
'HN 8~v F~(jpA(jy

(L il p' I
J-3 ""')

g
+Re—p (Lilh. IL2")

SSZ p~ v EopF~(jy

x(I -'lh" IL'-'&«'-'lp" IL»

+ P B,*(1+K)B„(kyK')(x,
l pl x, )), (5.5)

where

g~l4~&= E G(k+K)*~i(k+K')

X[g, .—P B,*(k+K)B,(k+K') j. (5.6)
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Since absolute square of the orthogonalization coeffi-
cients is small compared with 1, the last two terms in
(5.5) are normally negligible. In addition, the normal-
ization factor in (5.6) may counterbalance the two
additional factors due to the core orbitals depending
on the sign and the magnitude of the momentum
matrix element (X~

I p I
X,'). This cancellation has been

found by K-P in their calculation of the electron and
hole-effective mass for Si.'~ In a similar calculation for
Ge in this section, we hope that this cancellation still
prevails. Therefore, we shall take the plane-wave part
only for the OPW wave function and at the same time
neglect the core contribution to the normalization
factor.

The two components of electron effective mass in
Ge are given by

pm~ 2 1
=1+—2 I(L IP'IL ""'&I',

km, *),. m . Z,„

fm) 2 1
=1+—2 l(I- IP" I "&I'.

Em,*)o. m ~ L,„

(5.7)

A two-level approximation is sufficient for the evalu-
ation of (5.7). For m/m, * the relevent two levels are
the conduction band L~ and the valence band L3,
for m/m&* they are Lt and I.'s, which lies above the
conduction band in energy. By using the experimental
energy gap value" E&, Er, 2.1 ev'4 f—or m/—m—&* and
our calculated gap value E~,—EI.j,.= —4.8 ev for
m/m~*, the effective-mass components are found to be
(m/m~*)o, = 12 and (m/m~*)o, =0.52. Comparing these
with the experimental values'4 of (m/m, *)o,——12 and

(m/m&*)o, =0.61 from cyclotron resonance, we see that
the agreement is satisfactory. Our calculated value
—4.8 ev for El.,—El,~

~ is probably too small in magni-
tude. A better energy gap value may improve the
agreement in the case of (m/m~*)o, .

Phillips, " using the crystal wave function for Ge
obtained by his interpolation scheme, evaluated
(m/m&*)o, to be 6.7, or only about one half of the
experimental value. It is suspected that this is due to
a computational mistake rather than usage of an
incorrect value for the energy gap as conjectured by
Phillips in his paper.

The Ge hole effective-mass parameters have not been
calculated here because we are not going to consider
the g factor for holes in this work. The calculation of
electron and hole effective-mass tensor components for
Si has been done by K-P."

Two-Band Approximation

From (5.2) and (5.3), we would think it natural that
the s-o splitting of the nearby valence band should be

'3 H. R. Philipp and E. A. Taft, Phys. Rev. 113, 1002 (1959).
'4 R. N. Dexter, H. J. Zeiger, and B. Lax, Phys. Rev. 104, 637

(1956),

responsible for the shift in the g value of the conduction
electron. Then, in theoretical evaluation for the con-
duction g tensor, the momentum matrix elements
involved can be obtained from the effective mass and
the spin-orbit matrix element from the measured
splitting of the valence band, or the atomic spin-orbit
splitting. Also, the energy gap involved may sometimes
be obtained from optical data. In this way, agreement
between the estimated g value and the experimental
one provides us with another internal consistency check
of the one electron theory. Although Roth's calculation'
along this line for 5gll in Ge gives good agreement with
experiment, her calculation for Si on a two-band model
is not sufficient. We shall first demonstrate this inade-
quacy.

Let us assume a two-band case for Si. Then, we
have for the longitudinal shift

4 $ 2

gg
si Re

mi I"g,—Eg,

X I&~tlP, I
~s"& I'(~s" lb.

I
&s*&. (5.8)

From K-P's calculation only 65 contributes appreciably
to the electron effective mass at A~. Then the value
of the momentum matrix element in (5.8) can be
taken from the effective mass. The s-o matrix element
has been calculated for ks in Sec. IV and the energy

gap can be taken from K-P's band calculation. If we
take (m/mi*) s;= 52;- s Es, Err, =4.7 ev," —and
=0.0011 ev from (4.12), the magnitude of 5g„ is
evaluated to be 0.98&(10 '. Next we consider the
question of sign From (5.8). we see that the sign of
Bg„ is determined by the sign of (1/i)(hsvlh, lhs'&,
which can be related to the atomic core s-o matrix
element by

(1/i)(asvlh,
l
as'

&

= (If .'"I'—If u" I')(1/i)«. lh
I

&*& (5 9)

From (4.4) and the fact that the quartic-degenerate
state, which corresponds to an atomic I'; state, lies
above the doubly degenerate one at F, it is readily
established that the sign of (1/i)(X„Ih,

l
X,& is negative.

Furthermore, from the discussion of s-o splitting and
specifically from (4.9) and (4.11), we see that

I

b»'s'I
(Ibr„s'I at ks. Then according to (5.8), 8g„s' has a
positive sign. The question of sign for bgll

' was first
pointed out by Yafet."A rough estimate for 8g&

' in
the two-band case gives it a negative value, the magni-
tude of which is one fifth of that of 8g l.

In short, assuming a two-band case for Si, the
calculated values for the conduction g tensor do not
show any agreement with the experimental values"
which not only give a negative 6gll but also a 6g& larger

"C.J. Rauch, J. J. Strickler, H. J. Zeiger, and G. S. Heller,
Phys. Rev. Letters 4, 64 (1960).

ss V. Yafet (private communication).
"D.K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961).
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in magnitude than 8gll. For Ge, however, a two-band
calculation gives a negative 6gll consistent with experi-
ment. This reversal in sign from Si to Ge is rejected
in the s-o split levels for the valence band by the
cross-over along A3 discussed in Sec. IV.

TABLE II. Relative magnitude of contributions to g tensor in Si."

&glt

Term

&A IP.[n.-"),
&n IP, IA'"),
&ni[P, I»"),

in (5.2) involving:

(n "I«*ln"*),

&~ "Ih. l
»'&, &n5 IP. [n~&

&A5" [« l&5") &A5'*lP I»)

Relative
magnitude

with respect
to first term

in Agile'

1
0.7
0.7

—2.6
—2.6

Bgg (»IP ln~'»
&A. IP IA")
&n~[P*I»'*»

(A:*I«„I»'),
(Dq''*I h

I
D&~)

(»'[h„[ng'),
(n5'*I «vln~')

&»'Ih„la, &

(»'
I P. I »)

&»'IP*[n~&
&»'IP*I »&
&A~'I P.In»

—0.5
0.3

—0.2
—3.1
—0.3

Calculation of g Tensor

From the failure of a two-band approximation, we
see that the problem of g tensor in Si is complicated.
It is not possible to evaluate the shift purely from
experimental parameters. For Si, we use K-P wave
functions to calculate some of the matrix elements
involved. First of all, because of the selection rule
(X4"[h[ X4")=0, we expect that the largest contribution
comes from the interband s-o matrix element
(As" [h[As"') (X4"[h[X4"')" It is found that the
most important terms in the g shift for Si involve
matrix elements of this form when one of the levels
involved belongs to the 2p core state, which is far
below the conduction band. The reason that such a
low-lying state can make important contributions to
the g shift is due to the small magnitude of the s-o
splitting of the valence A5 state at kp which we have
calculated in Sec. IV. Therefore, the gain in s-o matrix
element by going to the 2p core, even after being offset

by the loss due to the energy denominator, still gives
dominating contributions. In the calculation of the
momentum matrix element between valence states,
we follow the discussion in eRective-mass evaluation
and use the plane-wave part of the crystal wave
function. In the evaluation of the momentum matrix
element involving core states, we use the Slater type
analytic wave functions for the core used by Woodruff. "
See Table II for the relative importance of different

terms in calculating the Si g tensor. The calculated
results for 8g» ' and kg&8' are listed in Table III together
with their experimental values by Wilson and Feher."

After the investigation for Si, we come to ask our-
selves whether a two-band approximation is sufficient
for Ge, especially, what is the role of the various core
states involved. For this investigation, we use our own
Ge crystal wave function. We do not want to consider
any term in Eq. (5.3) which contains core states twice
(these are very small because of the square of a large
energy denominator involved). So we have to mix one
of the valence states to the conduction state by a
momentum operator and then mix this valence state
to one of the core states by the s-o operator in order to
get any appreciable contribution to the g tensor. Since
we have seen in the previous section that there is
largely 3p character in the valence states involved, we
need only consider the 3p core state. Investiga, tion
along this line shows that the core contributions to
both 6gl, ' and bg, ' are negligible. Then, a two-band

approximation (I.r and I.s states in Fig. 2) should be
sufficient for 6gll '. For 6g&G' the most important
contribution comes from the first term in the appro-
priate formula in (5.3) when the three bands involved
are I~, I.~, and I'2 of Fig. 2. The contribution from
other terms is very small. In particular Ag&' in Roth's4

original notation amounts only to 1% of the most
important term: This verifies Phillip's conjecture as
mentioned in Roth's paper. Since there are very few
bands involved, we can use the experimental values for
the effective mass and the s-o splitting in the calculation
of conduction g tensor whenever this is applicable. The
calculated values are listed in Table III.

It is to be noticed that the calculated value for 6g&

has the right magnitude but the wrong sign as compared
with the experimental one by Wilson and Feher. "
Several possible causes for this discrepancy may be
mentioned. The one-electron approximation and the
effective-mass formalism have been tested in many
ways in other experiments and in the other parameters
calculated here, with good agreement between experi-
ment and theory. The present calculation is rather
insensitive to the band structure because the most
important energy denominator El.,—EI., is taken from
experiment, and because the momentum matrix ele-
ments are close to those of nearly free-e}ectron wave
functions. Further there is no selection rule for the s-o

TABLE III. g-tensor.

&g»

a The first term in Bgj~ is the only one contributing in the two-band
approximation.

Si Calc.
EXP.

—0.0027—0.0028
—0.0036—0.0040

' The first important observation of the effect of a matrix
element like this was in the intensity ratio of the 'I' —S doublet
by I'ermi I K. Fermi, Z. Physik 59, 680 (1929); also see E. U.
Condon and G. Shortley, Theory of Atomic Spectra (Cambridge
Vniversity Press, New York, 1953), p. 376.j

s' T. O. Woodruff, Phys. Rev. 105, 1159 (1956).

Calc.
Exp.

—1.0—1.13
+0.069—0.082

"D, K. Wilson and Q. Feher, Bull. Am. Phys. Soc. 5, 60 (1960).
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matrix elements, which are normal. It therefore appears
most likely that an error in sign has been made. A
careful search has been made, but with no success.

VI. SPIN-LATTICE RELAXATION IN Si

Roth' has proposed a spin-lattice relaxation mecha-
nism for donor electrons in Si, which is the whole
relaxation mechanism when the magnetic field is in the

I 100] direct, ion (x direction). This mechanism, accord-
ing to Roth, arises from the interaction which is
responsible for the modulation of the single valley
g-tensor values when the crystal is under uniaxial
stress along the L111]direction. The interaction takes
the following form:

%=A(P/2){e„,(o„H,+o,H„)+cycl. perm. }, (6.1)

where P is the Bohr magneton and e„, is the ys compo-
nent of the strain tensor. When the Si sample is put
under stress in the

I 111]direction, the A2 state which
is very close to the 61 conduction band edge gets
mixed into A1 through the shear deformation potential
component E„, if the effect of crystal deformation on
the electronic states is treated by perturbation theory.
Roth argued that in view of the small energy gap
between Aq and A2 at the band edge (0.35 ev according
to our calculation), the most important terms in the
parameter A should involve A2 at least twice and are
equal to

4i (~2 IP*I ~~)(~~ l&a. l~~)A=-
381 +12' +15

&&{(~.p, l
~.")(~."l&,l~')

+(~~I &w I
~5*)(~~'IP.

I
~~ )} (6 2)

We have investigated all the remaining terms in the
perturbation expansion for A, paying particular atten-
tion to the core states and we have estimated that
their net contribution amounts to no more than 10%
of the two terms already listed in (6.2). Wilson and
Feher' in their experiments measured the change in
the conduction g value when the Si sample is put under
stress along the L111]direction and hence the parameter
A. On the other hand, we have calculated all the s-o
and momentum matrix elements and energy-gap values

involved in A. Using their experimental value of
A=0.44&0.04, we then get a value of 23 ev for
(&2 IE„„.

I
A~). This is to be compared with the intra-

band shear deformation potential matrix element E2
= (6&

I
E»

I
3 &)= 7 ev from conductivity measurements. "

Wilson and Feher" also measured the relaxation rate
due to the mechanism in (6.1) and compared the
experimental value with the value obtained by theo-
retical formula after putting A=0.44 from the meas-
urement of shift in g value due to strain. They found
that the theoretical relaxation rate is too slow by about
a factor of 2. In other words, if we are to estimate A

from the relaxation rate measurement, assuming the
proposed mechanism, we would get a value for A two
times larger than 0.44. This in turn would give a value
«» (h~ I&»IA&) two times larger than what we have
estimated.

Roth' and Hasegawa" have independently proposed
another mechanism for the donor spin-lattice relaxation
in Si, which is caused by the change in g value due to
valley repopulation and depends primarily on gal

—g&.

Wilson and Feher" in their experiment also measured
the relaxation rate due to this mechanism. Using their
measured value, Yafet26 then estimated E2 involved to
be 20 ev. Comparison of this value with 7 ev from
conductivity measurements gives us an idea about the
range of error we should expect by estimating defor-
mation potentials from spin-lattice relaxation measure-
ments.

APPENDIX. BAND CALCULATION FOR Ge

A band calculation for Ge is done by the orthogonal-
ized plane wave method. The crystal potential is
assumed to be composed of two parts, Coulomb part
and exchange part. For the Coulomb potential a
superposition of atomic charge distribution is assumed.
The atomic H-F wave function for Ge is furnished by
Piper. For the exchange potential we adopt Slater's
approximation

i -()= —6L(3lg-).()]', (A1)

lumping both core and valence charge densities to-
gether. The valence wave function is orthogonalized to
atomic-core wave function and the orthogonalization
coefficients A~ are listed in Table IV. Note that the

TABLE IV. Orthogonalization coefficients for Ge.

[k+K['
0
3
4

11
12
16
19

A1s

0.00469
0.00468
0.00468
0.00467
0.00466
0.00467
0.00464
0.00463

A2,

—0.03287—0.03193—0.03167—0.03066—0.02994—0.02970—0.02879—0.02813

Ag,

0.15285
0.12669
0.11920
0.09385
0.07872
0.07427
0.05892
0.04952

—iA2„

0.00000
0.00560
0.00641
0.00878
0,01006
0.01043
0.01169
0.01246

—iA3„

0.00000—0.08660—0.09390—0.10505—0.10479—0.10393—0.09848—0.09330

Agg

0.00000
0.06560
0.07652
0.09717
0.10091
0.10109
0.09896
0.09574

"R.W. Keyes, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, Inc. , New York, '1960), Vol. 2.



TAnLE V. Energy eigenvalnes for Ge (in ry).

—1.924

L2

—1 ~ 704 —1.523

L3

—1.172

F25

—1.036

Ll

—0.824

F15

—0.792

F2'

—0.765

L3

—0.730

L2,1

—0.478

TAsx.z VI, Plane-wave coefficients for Ge.

(k+I)
(ooo)
(111)
(2oo)
(220)
(311)1
(311)2
(222)
(400)
(331)1
(331)2

F,

0.977—0.361.

0.007
0,061

0.018
0.038—0.037

F2;

0.796
0,669—0.006

—0.148—0.073—0.094

—0.006

F2

0.974
0.536

0.099

0.076

0.068

0.990

0.316
0.113
0.110
0.026
0.020

—0.014

L2'

1.013
—0.217

0.160
—0.033

0.123—0.097

—0.058—0.042
0.070

L 1

0.946
0.346
0.249
0.025—0.127
0.047

—0.034
—0.054

0.034

L3

1.002—0.149
0.188

0.085
0.134
0.128

—0.004

Ll
0.190—1.054
0.286
0.089—0.025
0.022

0,058—0.042—0.030

Lg

0.820
—0.503

0.110

—0.254
—0.405—0.106

0.043

1

—0.178—0.945—0.085—0.263—0.119
0.049

—0.074—0.009
0.041

orthogonalization coefficients 8& in all the formulas
related to the s-o splitting in this paper differ from the
listed A & by a factor of V2 (8& @2'&).

——This is because
there are two atoms per unit cell for diamond structure
and we have included a 1/v2 factor in the core function

in (3.2) to have it properly normalized. By taking
Vopo= —2.58 ry according to F. Herman LPhysica 20,
801 (1954)j, we have obt.ained the energy eigenvalues
(Table V) and eigenvectors for states at P and I.. The
energy bands thus obtained agree qualitatively with a
similar calculation by Herman, except that our calcu-
lation gives a I'» state lower than F2 state in energy,

in contradiction with both Herman's calculation and
experiment. However, an adjustment of the value for
Vppp can bring down I'2 relative to I'» state, and
produce a value for the conduction-valence gap at I'
and I. in agreement with experiment. For the most
crucial gap value EI.,—EI,. in our g-tensor calculation
we have used experimental value. Moreover, the
calculated crystal band s-o splitting value depends
primarily on the magnitude of the orthogonalization
coefficients, the accuracy of which depends on that of
H-F atomic-core wave function. The plane-wave coeffi-
cients are not even sensitive to band calculations for
different substances of the same crystal structure. For
example, comparing the Si result by K-P and the Ge
result by us, we often find agreement to at least the
first figure between the corresponding plane-wave
coefficients for some of the important states. Therefore,
no attempt has been made to recalculate the eigenvalues
and eigenvectors with different choices of Vppp. The
calculated values for the plane-wave coefficients for
various states of Ge are contained in Table VI.
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