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To experimentally determine that TE does indeed
become zero for perfectly aligned crystals would be
extremely difficult. This experiment would require that
the crystals be aligned to within a tenth or even a
hundredth of a degree since the crystals used in this
work, which were aligned to within one degree, pro-
duced TE voltages as large as 10% of the magneto-
resistance voltage. In addition, these crystals would
have aligned in the magnetic field with the same
accuracy.

The experimental evidence that TE is large for
crystals misaligned by only one degree makes it difficult
to believe that TE will not be observed when there is
complete alignment. However, the very general nature
of the crystal symmetry arguments almost forces one to

assume that TE will be zero for perfectly aligned
crystals.

APPENDIX B: VALUE OF PARAMETERS USED
IN THE OPW CONSTRUCTION

Lattice constants for gallium at 4.2'K":
ao= 4.5103 A,

ho=4.4861 A,

co= 7.6463 A.

Valence of gallium: 3.
Bravais lattice: base-centered orthorhombic.
Number of atoms per base-centered cell: 4.

r9 C. S. Barrett (private communication).
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Atomic arrangement, unit cell, and Brillouin zone of metallic gallium are described, including notations
for the various symmetry directions. The point and space groups are discussed, including character tables,
and basis functions in the form of symmetrized plane waves for electronic wave functions of each symmetry
type. The free-electron approximation is used as a &st step toward finding the energy bands and Fermi
surfaces. This work is preparatory toward a study of energy bands which is under way using the augmented-
plane-wave method.

I. CRYSTAL STRUCTURE AND BRILLOUIN
ZONE OF GALLIUM

A GREAT deal of experimental activity is going
on at present with the aim of studying the Fermi

surface of gallium. ' We do not have a suitable theoretical
treatment of the gallium energy bands. Consequently,
we a,re preparing to apply the augmented-plane-wave

(APW) method to this metal. As a preliminary, we

have studied the group-theoretical properties of this
substance, and the free-electron approximation to the
energy bands and the Fermi surface. ' It is known' that
the free-electron approximation has proved to be a suc-
cessful first approach to the energy bands of a number

*Assisted by the Office of Naval Research, the Army, Navy,
and Air Force, and the National Science Foundation.

' We are indebted to Dr. B.W. Roberts, of the General Electric
Company, for pointing out the importance of this problem to us.' The free-electron Fermi surface has also been studied by
Jules Marcus and W. A. Reed, preceding paper [Phys. Rev. 126,
1298 (1962)g. We are indebted to Dr. Roberts and to Professor
Marcus for information regarding this work.' Much of the old work on energy bands was based on this
approximation; see for instance N. F. Mott and H. Jones, The
Theory of the Properties of Metals and Alloys (Oxford University
Press, New York, 1936), Chap. V. More recent work includes that
of F. Herman, Revs. Modern Phys. 30, 102 (1958); W. A. Harri-
son, Phys. Rev. 116, 555 (1959); 118, 1182, 1190 (1960); con-
tribution in The Fermi Surface (John Wiley 8z Sons, Inc. , New
York, 1960), p. 28.

of elements, so that we may hope that it will give us
a good enough indication of the nature of the gallium
bands to guide us in interpreting the APW calculations
when they are completed.

The crystal structure of gallium is orthorhombic, 4

with eight atoms in an orthorhombic cell. According to
recent data of Barrett, ' the sides of this cell, at 2.35'K,
are a=4.5151A, b=4.4881 A, c= 7.6318 A, respec-
tively. It is an accident, without physical importance,
that the two sides a and b are so nearly equal. According
to earlier work of Bradley, 4 the eight atoms are located
at the following positions:

(ns, 0,p, ), (m+-, , -„p), (m+-„-, , p), (m, 0,p),

(m, —',, p+-,'), (no+-', , 0, g)+-,'), (m+-', ) 0, p+-,'),
(m, :,r+ ') (1)—-.

The values of the parameters nz and p, according to
Bradley, are m=0.0785, p=0. 1525. These values were
determined at room temperature, and we do not know
whether they are correct at 2.35'K. However, nothing
in our argument will depend on the precise values of
these parameters.

4A. J. Bradley, Z. Krist. 91, 302 (1935), who quotes earlier
references.' C. S. Barrett (private communication).
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(b)
FIG. 1. Arrangement of atoms in (a) plane

y=0; (b) plane y b/2=

In Fig. 1 we show the xs plane, with the atoms
located at y=0. These atoms may be considered to form
diatomic molecules, as indicated in the figure; the
atomic arrangement is the same as that found in the
I2 crystal. However, the distance between the two
atoms in a molecule, 2.433A, is only slightly smaller
than the distance from an atom in one molecule to the
closest atom in another molecule. The shortest distance
from an atom in one plane to another atom in the same
plane not contained in the same molecule (as from the
right-hand atom of the molecule centered at the origin
to the left-hand atom of the molecule centered at
g=u/2, y=O, s=c/2) is 2.7O4A, and the shortest
distance from an atom in one plane to the closest
atom in the neighboring plane (as from the right-hand
atom of the molecule centered at the origin to the
right-hand atom of the molecule centered at x=a/2,
y=b/2, s=O) is 2.727A. One may surmise that the
tendency of gallium to form diatomic molecules may
explain its low melting point; presumably it melts into
diatomic molecules.

The atoms in the plane at y=b/2 are shown in
Fig. 1 (b). We see that this plane of atoms is like that
at y=0, but displaced laterally. Hence there are only
four differently located atoms in the unit cell, rather
than eight. This is characteristic of the one-face-
centered orthorhombic translation group, which we
have in this case. ' We can, then, choose a smaller unit

' See for example G. F. Koster, Solid-State Physics (Academic
Press Inc. , New York, 1957), Vol. V, pp. 173, 202. Ke have not
followed in the present paper the notation used in this reference.

FIG. 2. Projection of atoms on ys plane. Heavily outlined atoms
belong to molecules centered in plane x=0, lightly outlined atoms
belong to rnolecnles centered in plane x= —o/2. Translation
vectors t2 and t3 are shown, also hexagonal signer-Seitz cell.

cell than the orthorhombic cell ordinarily used, such
that it will contain only four atoms. Ke shall achieve
this if we take as primitive vectors the following
quantities:

ti=la,
ts ——jb/2+kc/2&

ts ———jb/2+kc/2.

Here i, j, k are unit vectors along the x, y, s axes. The
vector t~ points from the molecule at the origin to that a
distance a above it along x; t2 and t3 point from the
origin to centers of the molecules in the plane @=0, at
the bottom of the rectangle in Fig. 1 (b).

These vectors are better shown in Fig. 2, in which
we project the atoms onto the ys plane. The vectors t2

and t3 are located in this plane. We can now set up a
unit ceH by the Wigner-Seitz construction. We take
vectors from the origin to all equivalent points in the
crystal, and take the planes which are the perpendicular
bisectors of these vectors. Two of the planes bisect the
vectors t~ and ts, two Inore bisect —t2 and —t3. Two
more bisect the vectors of length b along the ~y
directions. These planes cut the ys plane in the hexagon
shown. In addition, we have planes perpendicular to
the g axis, at heights &a/2. Taken together, these
planes bound a hexagonal prism, which may be used
as a unit cell. Two atoms are located entirely within
the prism, others are located on the surface and shared
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TABLE I. Operations of the point, group with nonprimitive
translations. The operations RI - .R8 transform a function
P{x,y,z) into a transformed function R„P{x,y, z}, as given in the
table.

(.I0)
(»'I&)
(~2'lol

R,y(x, y,s) =P(x,y, s)
R|0(x,y,s) =4 (x+-',a, —y, s—+-'sc)

RBP(x,y,s) =P(—x, y, —s)
R,P(x,y, s) =p( x+ ', a,——y, s-+ —,'c)
R;~(*,y,.) =e(—*, -y, —.)
Rqk(x, y, s) =I/( —x+ sa, y, s+sc)
R~O(x, y;)=P(x, —y, s)
Rst(x, y,s)=0(x+sa, y, —s+sc)

with neighboring prisms, in such a way that the prism,
whose volume is abc/2, half the rhombohedral cell,
contains four atoms. The hexagon is not quite a
regular hexagon, though it is very close to it. The atoms
located on the surface are very nearly, but not quite,
at the corners of the hexagon. It seems likely that the
accidental relation between b and c, leading so nearly
to a regular hexagon for this cell, is more significant
in the structure than the fact that a and 6 are so nearly
equal; a measures the height of the hexagon, while b

is related to its dimensions in the basal plane.
The reciprocal vectors are given by the relation

t,"b,=2srb;;. They are

br ——(2m/a)i,

bs ——(2'/b) j+ (27r/c) k,

b, = —(2sr/b) j+ (2sr/c) k.
(3)

' C. Herring, J. Frankhn Inst. 223, 525 (1942).

When we set these vectors up in k space, and take the
planes which form the perpendicular bisectors of the vec-
tors to the points of the reciprocal lattice, we get the cen-
tral Brillouin zone. The section of this zone in the
k„k, plane is shown in Fig. 3, and a perspective drawing
of it is given in Fig. 4. We see that it is also a hexagonal
prism, rotated through 90' in the ys plane so that a
point, rather than a Rat surface, points to the right.
We can see how close the hexagon is to a regular
hexagon by noting that the boundary along the k,
direction comes at 2m./c =0.8232 A ', while the boundary
of one of the other faces of the hexagon comes at
P(ac/b)s+ (sr/c)'$*'= 0.8i20 A '. For comparison, the
faces along the k, direction come at a distance of
sr/a=0. 6958 A '.

In Fig. 4, we have indicated symbols for the various
symmetry directions which we shall encounter in our
group-theoretical study. Since the problem is so similar
to that of the hexagonal structure, we have followed
where convenient the nomenclature of Herring' for
that case. We must note, however, that unlike the
hexagonal symmetry, the faces whose centers are
indicated by Z and M in Fig. 4 have different symmetry
properties, though they would be equivalent in the
hexagonal case.

FIG. 3. Section of Brillouin zone in k„k, plane. The six closest
points of the reciprocal lattice to the origin, in the yz plane, are
shown. The next planes of lattice points above and below this
plane, at k, =+2x/a, have the same arrangement in the k„k„.
plane as that shown above.

2. SYMMETRY OPERATIONS OF THE POINT
AND SPACE GROUPS

The point group of this crystal is D», with eight
operations: the identity; rotations of 180' about the
x, y, and s axes; the inversion; and reQection in the
planes x=O, y=0, s=O. Half of these operations,
namely the rotations about the x and s axes, and
rejections in the planes x=0 and a=0, are accompanied
by nonprimitive translations

~= (a/2)i+ (c/2)k (4)
Ke may describe these operations as in Table I, where
we first describe the operations by symbols such as those
introduced by Seitz, ' and then give the effect of the

kz

Jl

FIG. 4. Perspective drawing of' central Brillouin zone, showing
notations for various symmetry directions.

s F. Seitz, Z. Krist. 88, 433 (1934); 90, 289 (1935); 91, 336
(1935);94, 100 (1936).
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TABLE II. Characters of operations in the group of the wave
vector at the points F, Z, X, and L in the gallium structure.

jVI l&2 R 3 I&4 1C,.- R6 RZ R8

F,+, Z,+

F+ Z+
Z+

Fl p Z2

F3, Z4

Fg, Z3

XI, LI
Xg, L2

1 1 1
1 —1 1 —1
1 1 —1 —1

1 1 1 1
1 —1 1 —1
1 1 —1

—1 —1 1

1 1 1 1
1 —1 1 —1
1 1 —1 —1

—1 —1 1
—1 —1 —1 —1
—1 1 —1 1

—1 1 1
1 1 —1

0 2

0 —2

3. CHARACTER TABLES AND BASIS FUNCTIONS FOR
PROPAGATION IN SYMMETRY DIRECTIONS

The star of wave vectors associated with a general
point in k space consists of eight wave vectors, with
components given by +k.„&k„,&k, . The eight plane
waves with these wave vectors form basis functions for
an eight-dimensional irreducible representation of the
space group. It is useful in discussing space groups to
make use of the group-theoretical theorem that the sum
of squares of the dimensionalities of all irreducible
representations equals the number of operations in the
space group, which is the product of the number of
operations in the point group (in this case eight) and
the number of independent translations R„ included
within the repeating region of space determined by the
periodic boundary conditions. Ke have as many

operations on an arbitrary function. The operations of
the space group, D~~IS, consist of one of the operations
of Table I, combined with a translation

R„=

aptly+

rtgtg+ n 3t3

=nycti+ (N2 —e3) (f/2)j+ (m2+e3)(c/2)k, (5)

where ei, e2, N3 are integers.
Each of the operations of the point group belongs to

a class by itself, and forms its own inverse. Hence each
one transforms the wave vector k in the same way as
the vector in ordinary space. For instance, E2 trans-
forms a wave vector with components k„k„,k, into a
wave vector with components k, —k„, —k, . We can
see this directly by letting the function P in Table I
be an exponential representing a plane wave,
expLi(k, x+k„y+k,s)]. The transformed function, ac-
cording to Table I, is

exp(iLk. (x+-,'u)+k„(—y)+ &.(—s+-', ~)]}
=exp/i(k. x—k„y—k,s)] exp(ik. ~), (6)

where ~ is given in Eq. (4). If in addition to the opera-
tion R2 of Table I we included a translation R„, the
combined operation would lead to an additional factor
exp(ik R„) in Eq. (6).

reduced wave vectors as there are independent trans-
lations. Therefore, the theorem will be satisfied if the
sum of squares of the dimensionalities of the irreducible
representations arising from the wave vectors in a star
equals the number of wave vectors in the star, multiplied
by the number of operations in the point group, in this
case eight. For a general point, where we have eight
wave vectors in the star, the sum of the squares of the
dirnensionalities will be eight times the number of
vectors in the star, or 64. Since we have one 8-dimen-
sional irreducible representation, the theorem checks.
The theorem is trivial in this case, but is a very useful
check on the more involved cases which we find at
various symmetry points. The theorem is proved in
Appendix I.

Now let us take up these symmetry points. First
we must have a notation for the wave vector which
distinguishes the reduced wave vector, within the
central Brillouin zone, from the remaining part of the
wave vector, which represents a vector of the reciprocal
lattice. We shall use k for the reduced wave vector, K
for the vector of the reciprocal lattice, where

K=phd+ pk2+ pa&3
= (2m/a) pg+ (2m/b)(p, —p,))+ (27r/p) (p2+p, )k (7)

and where p~, p~, p3 are integers. We then denote the
whole wave vector by k+K.

We are now ready to take up the erst symmetry
point, I', or k=0, so that the wave vector is K. There
is only one vector forming the star, namely k=0, so that
the sum of squares of the dimensionalities of the irre-
ducible representation is 8. The point group of the wave
vector is the complete group D~q formed from all of the
operators given in Table I. We know that this group
has eight one-dimensional irreducible representations,
checking our statement regarding the sum of squares of
dimensionahties. In Table II we give the character table
for these irreducible representations, and in Table III
we give basis functions in the form of symmetrized
plane waves. A general basis function would consist of a
linear combination of all syrnmetrized plane waves of
the type given in Table III, for all values of E„E„,E,
consistent with Eq. (7), each with an arbitrary coef-
ficient. It is useful to have such expressions in terms
of symmetrized plane waves, to investigate the physical
form of the wave function, and to compare with wave
functions set up by the augmented plane wave or
orthogonalized plane wave method, which will result in
the same symmetry types. In Table II we give also the
characters at the points Z, X, and L.

It is easy to verify the entries of Tables II and III
by direct calculation. As an example, let us verify
the fact that the character for the operation R2, for
the irreducible representation F2+, is —1. From Table
III we see that there are two sorts of basis functions in
this case, depending on whether the quantity exp(iK ~)
equals 1 or —1. It must have one or the other of these
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TAm, z IIE. Symmetrized plane wave basis functions for various symmetry directions, gallium structure.

exp(iK x)
1 —1

exp(iK g)
1 —1

r1+
r2+
F3+

r,+

r,—

r,—

F3
r,—

Zl
Z2+

Z +

Z4+

Zl
Z2

Z3

Z4

Ul
U2

U3

U4

+

Fl
r,+

F +

r,—

Fl
F4
r,—

Z2+

Z +

Z4+

Z3+

Z2

Zl
Z4

Z3

U2

U4

U3

cos(K,x) cos(IC„y}cos(K.z)
sin(E, x) cos(K„y) sin(IC. z)
cos(E,x) sin(K„y) sin(IC.z)
sin(E, x) sin(K„y) cos(E.z)
sin(E, x) sin(K„y) sin(K.z)
cos(E,x) sin(E„y) cos(E,z)
sin(K, x) cos(E„y) cos(E,z)
cos(E,x) cos(IC„y) sin(E'.z)

cos(E,x) cos(IC„y) cos[(2x/c+E, )z)
sin(E', x) cos{K„y) i s[n(2 /x+cK,}z]
cos(E,x) sin(IC„y) sin[(2x/c+E, )z]
sin(IC, x) sin(E„y) cos[(27r/c+E, )z]
sin(K, x) sin(E„y) sin[(2x/c+E. )z)
cos(E,x) sin(E„y) cos[(2x/c+E. )z]
sin(IC, x) cos(IC„y) cos[(27r/c+IC. )z)
cos(E,.x) cos(K„y) isn[(2vr /c+ E) z]

exp[i(k +K,)x] cos(IC„y) cos(IC,z)

exp[i (k,+IC )x5 cos(E„y) sin(IC, z)
exp[i(k, +E )x] sin(E'„y} sin(IC.z)

exp[i(k +K )x5 sin(K„y) cos(E,z)

exp[i(k +E,)x] cos(E„y) cos[(2z/c+K. )z]
exp[i(k, +K )x5 cos(E„y) sin[(2x/c+IC, )z]
exp[i(k, +E,)x] sin(E„y) sin[(27r/c+E, )z]
exp[i(k, +K,)x]. sin(ICzy) cos[(2x/c+K, )z)

&4 X, sin[(x/a+K, )x] cos[ (7r/b+IC„)y+{rr/c-+E. }z)
+i cos[{x/a+E,)x) sin[(rr/b+E„}y+ (7r/c+E, )z]

V1 V2

V2 Vl

exp[i (k,+K,)x]{cos[{rr/b+IC„)y+(rr/c+E,)z]'
+sin[{rr/b+IC„)y+ (7r/c+E, )z7}

exp[i(k, +IC,)x7{cos[(x/b+E„)y+(x/c+K, )z7
sin[(r—r/b+E„)y+ (rr/c+E, )z7}

exp(iE, c/2) [note difference from exp(iK x))
1

~1 A
R2 Rl
R3 R4

R4 E3

cos[{rr/a+E, )(x+a/4)) cos(K„y) exp[i(k.+K.)z)
sin[(rr/a+ K,) (x+a/4)] cos (K„y) exp [i(k,+K,)z)
c os[( x/a+IC, ) (x+a/4)] sin(E„y) exp[i (k,+E,)z]
sin[(x/a+E, )(x+a/4)) sin(E.„y) exp[i (k,+E,)z]

Hr H2 cos[(x/a+K )(x+a/4)]exp{i[(k„+IC,)y+(k, +IC,)z]}
Hz Hg sin[(x/a+K ) (x+a/4)] exp{i[(k„+KJ)y+{k,+K,}z)}

Two-dimensional representations

exp[i(7r/a+K )x7 cos(IC„y) cos(K,z)
exp[ i (vr/—a+K, )x] cos(E„y) cos(E,z)
exp[i(x/a+IC )x] cos(K„y) sin(E', z)
exp [ i (x/a+ K,—)x] cos (E„y) sin (K',z)
exp[i(x/a+IC, )x) sin(K„y) cos(E,z)
exp[ i (rr/a+K, )x—) sin(K„y) cos(E,z)

exp [i(m/a+E, )x5. sin (Kzy) sin (E,z)
exp[ —i(x/a+E )x] sin{E,y) sin(E;z)

Tl
T2

T3

T4

Tl
T2'
T3'

T4

Zl
Z2

Z3

Z4

T2

Tl
T4

T3

T2'

T1
T4
T3'

Z2

Z4

Z3

cos(IC,x) exp[i(k„+E„)y]cos(E,z)
sin(E, x) exp[i(k„+E„)y)sin(K, z)
cos(E,x) exp[i(k„+K„)y] sin(K, z)
sin(E, x) exp[i(k„+E„)y5 cos(IC,z)

sin(E, x) exp[i(k„+E, )y] sin[(2x/c+E, )z)
cos(E x) exp[i(k„+E„)y5 o [c(2s/ +xKc,) ]z
sin(E, x) exp[i(k„+IC„)y] cos[(2x/c+K, )z)
cos(K,x) exp[i(k„+IC„)y) sin[(2x/c+IC, )z]

cos(E,x) cos(E„y) exp[i (k,+E,)z]
sin(E,.x) cos(IC„y) exp[i(k, +E,)z]
cos(E,x) sin(E„y) exp[i(k, +K,)z5
sin(E, x) sin{E„y) exp[i(k, +E.)z5

cos[(x/a+E, )x) cos[(x/b+K„)y+ (x/c+E*)z)
+i sin[(x/a+IC, )x] sin[(x/b+K„)y+ bc /+E)z].

cos[{z/a+IC, )x] cos[{rr/b+IC„)y+ (rr/c+E. }z)
i sin[(x/a+—E,)x] sin[(x/A+K„)y+ (x/c+E. )z)

sin[(x-/a+K, }x)cos[(rr/b+K„)y+ {x/c+E.)z)
i cos[(rr/a+E, )x) sf—n[{rr/b+K„)y+ (7r/c+E. }z)

Sl

cos[(x/a+K ) (x+a/4)] cos(K„y) exp[i (2rr/c+K, )z)
sin[(x/a+E, ) (x+a/4) ]cos (K„y) exp [—i (2x/a+E. )z)
sin[(x/a+If, ) (x+a/4)] cos(E„y) exp[i(2'/c+K, )z]
cos[(x/a+K, ) (x+a/4)) cos(E„y) exp[ i (2x/c+—K,)z)
cos[(x/a+K, ) (x+u/4)] sin(E„y) exp[i(27r/c+E'. )z]
sin[(x/a+K. ){x+a/4)] sin(E„y) exp[ i {2rr/c+IC, )z]—
(sin[(x/a+E, ) (x+a/4)] sin(K„y) exp[i(2x/c+K. )z)
(cos[(x/a+K, )(x+a/4)) sin(E„y) exp[ —i(2x/c+K. )z]

c os([x/a+E)(x+a/4)] exp[i(k„+K„)y5 cos(K,z)
sin[(x/a+E, ) (x+a/4)] exp[i(k„+E„)y]cos(E,z)
cos[(rr/a+IC, ) (x+a/4)] exp[i(k„+E„)y]sin(IC, z}
sin[(x/a+E, )(x+a/4)] exp[i(k„+L„)y) sin(K, z)

cos[{rr/a+E )(x+a/4)] exp[i(k„+K'„)y] cos[(2x/c+E, )z)
sin[(x/a+E, ) (x+a/4)] exp[i (k„+K„)y]cos[(2x/c+E, )z]
cos[(x/a+K ) (x+a/4)] exp[i (k„+E„)y]sin[(2x/c+E, )z)
sin[(rr/a+E, )(x+a/4)] exp[z(k„+E'„)y] sin[(2x/c+E, )z]

cos (IC,x) exp {i[(x/b+K„)y+ (rr/c+K, )z]}
cos(K,x) exp& i[( /b+xK„)—y+(x/c+E*)z7}
sin(IC, x) exp {i[(x/b+K„)y+(7r/c+E. )z)}
sin(K, x) exp{ i[( /b+xE„)y+—( c7r/I+)zC5}

exp(iK x) =exp(zri(ps+ps+ps) j (8)
cosLE, (@+a/2)j cos(E„y) cosPE, (s c/2)]-

= cos(Ezg) cos (Eyy) cos (Egz) cos(zl Pl)
Xcostzr(ps+ps)] (9)

which must be ~1, since the p's are integers. Let us
choose the case where it equals —1. Then from Table
III we see that a basis function is cosE~ cosE„y cosE,s.
Let us now operate on this function with the operator where we have used Eq. (7). Now cos(zrp&), where pr

values, for if we combine Eqs. (4) and (7), we see that Ez, which means that we replace x by @+a/2, y by —y,
it equals z by —s+c/2. The function then becomes
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TABLE IV. Characters of operations in the group of the wave
vector at the points 6, U, in the gallium structure.

Rg

TABLE VI. Characters of operations in the group of the wave
vector at the points Z, R in the gallium structure. (Do not confuse
operators Ri, R4, R6 R7 with representations Ri, R2, R3 R4.)

Ai, Ui
d2, U2
a„U3
h4, U4

exp(ik e)
e—xp(ik ~).
exp(ik c)—exp(ik s)

exp(ik e)—exp(ik ~)
ex—p(ik s)
exp(ik ~)

Z2
Z3
Z4

R4

exp(ik ~)
ex—p(ik ~)
ex—p(ik ~)
exp(ik ~)

exp(ik v)—exp(A &)
exp(ik s)—exp(ik e)

1
1—1—1

is an integer, equals 1 if p, is even, —1 if pi is odd, so
that it equals exp(xipi). Similarly cos[x (p&+p3)]
=exp[xi(p2+ p3)]. Hence, cos(m pi) cos[m. (p~+ p3) 1
= exp[vri(Pi+ P2+P3)j=exp(iK ~). Since we have
taken the case where this is —1, we see from Eq. (9)
that the effect of operating on our basis function with
R2 is to multiply it by —1, as we wished to show.
Similar proofs hold in all cases.

Next we consider propagation along the x axis, the
direction A. The group of the wave vector consists of
the operations E~, E2, Ry, Es, which as we see from
Table I leave the sign of x unchanged, and hence leave

unchanged. The point group is C2„with four one-
dimensional irreducible representations. There are now
two wave vectors in the star, the reduced wave vectors

and —k, so that each one-dimensional irreducible
representation of the point group goes into a two-
dimensional irreducible representation of the space
group. The sum of squares of the dimensionalities is
then 4(2') =16, 8 times the number of vectors forming
the star, verifying the general theorem quoted at the
beginning of this section. We shall not repeat the
verifications of this theorem in further cases which we

shall take up, but the reader can easily carry out these
checks on the correctness of the analysis. The character
table is given in Table IV, and basis functions are
given in Table III.

As in the case of the point I', these entries are easily
verified by direct use of the operators on the basis
functions. A similar situation is found at the other
symmetry points, and we give character tables and
basis functions for them in Tables III, V—VIII.

One particularly important result of the study of
the symmetry behavior of wave functions is to find the
degenerate representations, showing in what cases
energy bands must stick together on account of sym-
metry. We find two-dimensional irreducible represen-
tations at X, 5, 5', L,, and M. In addition to these cases

Ri
R2
R3
R4

i exp(ik s)—i exp(zk c)
i e—xp(ik ~)
i exp(ik c)

i exp(ik. g)
i e—xp(ik s)
z exp(ik-e)—z exp(ik e)

1
1—1—1

in which two levels must be degenerate on account of
the properties of the irreducible representations, we
have several additional cases of degeneracy arising on
account of time reversal. These cases are found at R,
iV, at a general point of the hexagonal face, denoted by
H, and at V. We thus see that, as in the hexagonal
structure, all energy levels are twofold degenerate on
the hexagonal face. Also they are twofold degenerate
all along the line V (which includes the case 3E, where
the degeneracy arises from the properties of the
irreducible representation of the space group).

We can easily verify the time-reversal degeneracy in
these cases, from the basis functions which are given in
Table III. The operation of time reversal replaces the
wave function by its complex conjugate. If in addition
we apply the inversion, our operation E5, the reduced
wave vector remains unchanged, so that this combined
operation belongs to the group of the wave vector, when
time reversal is included. If this combined operation
applied to one of the basis functions produces the basis
function for another irreducible representation, these
two representations must be connected with wave
functions which are degenerate with each other.

The only cases where this leads to additional de-
generacy are enumerated above. At E, we find that the
time-reversal plus inversion operations changes the
first basis function cos[(m/u+E, )(@+a/4)j cos(E„y)
Xexp[i(k, +E„.)zj into plus or minus the second func-
tion, sin[(m. /a+E ) (@+a/4) jcos(E„y)exp[i(k, +K,)zj
Hence these two functions correspond to the same
energy, showing that the one-dimensional irreducible
representations E& and R2 must be degenerate. Similarly
we can show that E3 and E4 must be degenerate. We
find by the same argument that E~ and S2 are de-

TABLE V. Characters of operations in the group of the wave vector
at the points T, T', S, S', in the gallium structure.

TABLE VII. Characters of operations in the group of the wave
vector at the points g, M in the gallium structure.

Tip Tl
T2 T2'
T3p T3
T4p T4

R3

1

—1—1

1—1
1—1

1—1—1
1

Si
E2

A'4

Z—$

Z

R6
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TABLE VIII. Characters of operations in the group of the wave
vector at the points H, a general point in the hexagonal face, and
V, in the gallium structure.

TABLE IX. Compatibility relations between irreducible represen-
tations for different symmetry directions, gallium structure.

Hl
H2

Vl
V2

Rl

i exp(ik ~)
i—exp(ik ~)

i exp(ik—s)
i exp(ik s)

generate, E3 and E4,. the two representations Hi and II2
at a general point of the hexagonal face are degenerate;
and Vi and V2 are degenerate.

By inspection of the character tables, or of the basis
functions, it is simple to establish the compatibility
relations between symmetry types in different sym-
metry points. These relations are given in Table IX.

Zl+ Z2+ Z3+ Z4+

Vl U2 U3 V4
T2 T] T4 T3
Zl Z2 Z3 Z4

Tl T2 T3 T4

Tl T2 T3 T4

1V'4

Vl V2 Vl V2

Rl R2 R3 R4

Hl H2 Hl II2

Z3 Z4

U3 U4 Vl U2
Tl' T2' T3' T4'
Z4 Z3 Z2 Zl

cVg

Vl
V2

r I+ r,+ r,+ r,+ r,— r,— r; r;
~l ~2 ~3 ~4 ~3 ~4 ~l ~2
Tl T2 T3 T4 T2 T] T4 T3
Zl Z2 Z3 Z4 Z4 Z3 Z2 Zl

XI X2

b, 4

Rl R3
R2 R4
Sl Sl

LI L2

Ul U3
U4

Rl R3
R2 R4
Sl' Sl'

4. ENERGY BANDS IN THE FREE ELECTRON
APPROXIMATION

We have mentioned' that the free-electron approxi-
mation has been found to give a fairly good first
approximation to the energy bands of a number of
metals. Therefore in the present section we shall
examine the results of this approximation for gallium.
We are to assume that the energy is given by

Energy = (5'/2m) [(k,+E )'+ (tc„+E„)'
+ (k,+E.)'j. (10)

It is convenient in working out the energy bands by
this method to start at the point I', k=0. Then we can
set up different combinations of the quantities E„E„,
E„according to Eq. (7), and get the energies of the
various states of symmetry I'. For each combination of
E's, there will be only definite symmetry orbitals which
are nonvanishing, as we can find from Table III. Hence
we can immediately find the energy levels, and sym-
metries, found at k=0.

This calculation, for the lower energy levels, is given
in Table X. The first entry, for E=O, corresponds to
E,=E„=E,=O, As we can see from Table III, the
only nonvanishing basis function will be the first one

listed, corresponding to F~+, since each other function
has a sine, which vanishes. For the second entry, we
have E,=&2m./a, E„=E,=O. Hence, in Table III
we must have the factor cos(E,y) cos(E,s), but we may
have either cos(E,x) or sin(E, x), so that, since in this
case exp(iK ~) = —1, we may have either I'&+ or I'4 .
Similar arguments apply in each entry in the table.

It is now easy, starting with this point I', to proceed
along the x, y, or s directions, using Eq. (10) for the
energy, and get the energy as a function of k. When we
reach the edge of the Brillouin zone, we can proceed
along the surface of the zone. In each case we may find
the symmetries of the states resulting by use of the
compatibility relations, Table IX, or by working out
the basis functions. In Fig. 5 we give the resulting
energy as a function of 4, for a good many of the
symmetry directions, plotting in the way used by
Herman' in discussion of the free-electron approxi-
mation. To avoid confusion, we have indicated the
symmetry types at the points I' and Z only on the
boundaries of the figure, and we have not given a scale
of energy. The horizontal line approximately half way
up the diagram represents the Fermi energy, which
comes at 0.7739 ry, or 10.53 ev; this establishes the
energy scale.

TABLE X. Energy levels and their symmetries for 4=0, gallium. Free-electron approximation. Energies in ry.

Pl

0
~i

0
0
0
0

+1
~i

0
0

0
1—1

~1
0

P3

0
0
0

~1
1—1

0
%1

E,a/2' E„b/2x

0
0

E.c/2n. Energy

0,0000
0.5422

0.7386

0.7592

1.2808

1.3014

exp(iK ~) Symmetries

+

F2+, F4

F+F+ I I

F,+, r;
r,+, r,+, r,+, r4+

rl pr2 pr3 pr4
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FIG. 5. Energy as function of k, in symmetry directions, free-
electron approximation for gallium. Horizontal line, Fermi
energy=0. 7739 ry=10.53 ev. (Note an error in the figure: The
states labeled Ui, U4 going to the lowest Zj+, Z4, should be Ul,
U2.)

Perhaps the most striking feature of Fig. 5 is the
complication of the figure in the neighborhood of the
Fermi energy, and the widely varying number of energy
bands occupied in different parts of the Brillouin zone.
For example, as we go along the direction T, from F to
the boundary of the zone, where the direction changes
to T', we see that we start at 1 with nine occupied bands,
namely the T~ arising from the lowest level at F, T~ and
T3 arising from the second level, two T~'s and two T4's

from the third level, and Ti and T3 from the fourth
level. As we go along T, the T2 and T4 forming the
upper branch arising from the third level at I' rise
above the Fermi level, leaving seven occupied bands.
Next the T~ and T3 rise above the Fermi level, leaving
five bands, and finally the T2 and T3 rise above the
Fermi level, leaving only three occupied bands at the
edge of the Brillouin zone. Similar situations arise in
other symmetry directions. It is obvious that relatively
small departures from the free-electron bands shown
in Fig. 5 could make a profound change in this situa-
tion, so that we should not trust the free-electron
predictions very far.

Nevertheless, it is interesting to investigate the
predictions of the free-electron approximation regarding
the Fermi surface of gallium, since this is what is needed
to compare with most of the experiments. Such an
investigation has been made by Marcus and Reed, '
and for that reason we shall not go into great details in
describing the results. To carry out the construction,
we must draw Fermi spheres centered on each of the
points shown in Fig. 3, and on corresponding points
in the layers above and below the one shown in Fig. 3,
in the reciprocal space. These can be easily seen to be
the only Fermi spheres which will cut through the
central Brillouin zone. These spheres, in the central
zone, form parts of the various Fermi surfaces.

It is not always realized clearly just what is the
nature of the Fermi surface, in a complicated case like
the present. At each point of the central Brillouin zone,

there will be a definite number of occupied energy
bands, whose energies lie below the Fermi energy. Thus,
we have just seen that as we go along the line T, from
F to the boundary of the zone, this number of occupied
bands is successively 9, 7, 5, and 3. There is a Fermi
surface separating the regions where the number of
occupied bands has one integral value or the next.
Thus, in the present problem, we find that there are
parts of the Brillouin zone having each number of
occupied bands from 2 to 9, inclusive. Hence, there is a
2—3 Fermi surface (separating the regions where there
are two and three occupied bands respectively), a 3—4
surface, and so on, up to an 8—9 surface. These would
be referred to as the third band surface, fourth band
surface, and so on up to the ninth band surface, in the
language used by Harrison, Marcus, and Reed. ' ' The
same situation will be found with the true solutions of
the periodic potential problem, as well as with the free-
electron approximation. This complicated situation
contrasts with the very simple situation found in an
alkali metal, where part of the Brillouin zone has one
occupied band, part has none, and the only Fermi surface
is the one which would be denoted as 0—1, or the first
band surface. Each of these Fermi surfaces, which in
general will be independent of each other, can be
concerned in such phenomena as the de Haas-van
Alphen effect, magnetoresistance, and so on.

The Fermi surfaces in the present case are shown in
Fig. 6, where we show sections through the Brillouin
zone made by planes perpendicular to the x axis. These
surfaces could be shown in perspective, but we shall
omit doing so, since Marcus and Reed will present
such drawings. In Fig. 6, we have divided the Brillouin
zone from F to X into ten equal intervals, and have
shown the corresponding sections of the Fermi surfaces.
For ease in understanding the situation, we have given
two sets of sections, one indicating the areas where
there are 9, 8, 7, and 6 or less bands, and the other
showing the areas where there are 6 or more, 5, 4, 3, or 2
occupied bands.

If gallium were a semiconductor, there would be six
occupied bands, since there are four atoms per unit
cell, each containing three outer electrons, or a total of
twelve electrons per unit cell, occupying six bands with
the two spin directions. In some respects it is more like
a semimetal. We are familiar with cases in which there
are some parts of the Brillouin zone where there are
more occupied bands than in a semiconductor, with
compensating regions where there are fewer. In the
former regions, we should speak of conduction bands
containing some electrons, if we were dealing with a
semiconductor, and in the latter regions there would be
holes left in the valence bands. Here in a sense we may
regard the large parts of the Brillouin zone where there
are six occupied bands as the normal situation, re-
sembling a semiconductor. The regions where more than
six bands are occupied correspond to occupied conduc-
tion bands in a semimetal, while those where fewer than
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FIG. 6. Intersections of Fermi surfaces with planes from k, =0 to boundary of Brillouin zone. First set of
sections, surfaces corresponding to six or more bands. Second set, six or less bands.
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six bands are occupied correspond to holes in a valence
band.

It is interesting to examine the various Fermi
surfaces more in detail from Fig. 6. The reader will, in
the first place, be able to compare the situation with
Fig. 5. For instance, the case which we discussed above,
namely the line T, corresponds to the horizontal line
passing through the middle of the hexagonal sections
for k =0, in Fig. 6. In the erst section shown, corre-
sponding to six to nine bands, we see that we start at
F with nine bands, then go down to seven. In the
section corresponding to two to six bands, for k, =0,
we see the large range of this horizontal line where
there are five bands (this starts in fact where the region
of seven bands leaves off), and the small segment at the
corner of the Brillouin zone where there are three
bands.

The next interesting feature of Fig. 6 concerns the
general topological properties of the various Fermi
surfaces. The 6—7 surface, or seventh band surface, for
instance, consists of a number of isolated segments,
including the star-shaped solid at the center of the
Brillouin zone, and isolated solids of various shapes on
the surfaces of the zone, extending from one zone into
the next, but not multiply connected. In contrast, the
5—6 surface, or sixth band surface, shows a very compli-
cated multiple connectivity. In the plane k, =0 we
have six pointed spearlike sections pointing toward the
origin. As we increase k, these merge, so that at
k, =3m/10' there is a complicated structure like a
crown with stars, extending throughout space. This
detaches itself from the next Brillouin zone as k,
increases, leading to an isolated surface near the origin.
This, however, maintains itself at the top of the Brillouin
zone, and as we go into the next higher zone, it is
attached to an inverted version of the same sequence
of shapes, showing that there is a multiple connectivity
along the x direction, as well as in planes at right angles
to this direction. Since it is known' that multiple
connectivity of the Fermi surface has important
implications for magnetoresistance and other proper-
ties, this property of the Fermi surfaces related to hole
conduction, which seems well enough established so
that it very likely would persist in the true Fermi
surface, seems likely to be important experimentally.

We may now ask which features of the Fermi surfaces
as determined by the free-electron model are likely to
be found for the true Fermi surface as well. We shall

probably find the same general sort of surfaces, though
the sharp points found in Fig. 6 will normally be
rounded off. One feature of Fig. 6 arises from the free-
electron model: the way in which in many cases the
number of bands jumps by two units from one area to
the next, rather than by one unit at a time. This is in
general a result of accidental degeneracies introduced

' R. G. Chambers, The Fermi Surface (John Wiley R Sons, Inc. ,
New York, 1960), p. 100, inclndes a good description of this effect,
with references.

by the model. The only cases where this situation must
be expected, for the true surfaces, are those where
twofold degeneracy is required by symmetry: that is,
on the hexagonal faces of the Brillouin zone, and along
the line V in Fig. 4.

It is hardly worth while trying to extract more
information from the free-electron model, which will

certaintly not be correct in detail. It will be a useful
guide, however, in the interpretation of the results of
the calculation by augmented plane waves, when those
results are available.

k;=uk,

k,—k, wK,
(A2)

where K is a primitive translation of the reciprocal
lattice in k space, and the index i runs from 1 to n, .
It is not hard to see that the gn, functions nk, .

(i=1 N„n runs over the point group) form a basis
for a reducible representation of the space group.

We now wish to find the number of times the mth
irreducible representation of the space group associated
with the star s is contained in the reducible represen-
tation described above. We use the group-theoretical
theorem g (operations) X*& = c times the number of
operators in the group, where x is the character of the
reducible representation, X is the character of the
desired irreducible representation, and c the desired
number. We first find the character of the reducible
representation. The only matrices in this representation
that have diagonal elements are those corresponding
to the primitive translations. If we call X, ({n~a+R„))
the characters of this representation, we can see that

rl g

X,({n~a+R„})=b,g P exp(ik, ,"R„). (A3)
i=1

Next we find the character of the irreducible represen-
tation. For an irreducible representation of a space

APPENDIX I

Consider a space group, of order gE, consisting of S
primitive translations and a point group of order g.
For this group we construct a representation in the
following wav. Imagine that we have a function f(r)
with no special translational or rotational symmetry
properties, and construct from it the gÃ functions

u~, ——P (R„) exp( —ik R„){c
~
R„}{n

~
a)f(r), (A1)

where {e
~
R„){n

~
a) is one of the operations of the group

in Seitz s notation. Here R„ is a primitive translation,
& is the identity, n is a member of the point group, and
a is a nonprimitive translation which may be associated
with n. k is one of the S inequivalent wave vectors in or
on the surface of the first Brillouin zone. Associated
with a given wave vector k there are I, distinct wave
vectors, belonging to a star, related by
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group, the character associated with a translation
(.~R„) is

7tg

d...P exp(ik, "R„),

where d, is the dimension of the mth irreducible
representation of the group of the wave vector k. From
Eqs. (A3) and (A4), and the theorem quot. ed above, the
number of times the mth irreducible representation of
the space group associated with the star s is contained
in the reducible representation is then

ns

c,,=(1/glV) P(E ) P d,gexpLi(k, —k,) R„]
i, j=l

gri, =Q (rl)c,,r4d, .=P (rw) (d,ri.)'. (A6)

This is what we set out to prove. As a, simple corollary,
we see that

(g/rs. ) =Q (m) (d, .)'. (A7)

the reduction of the reducible representation must be
made up out of sets of e,.d„, , functions for the various
irreducible representations of the space group; the
dimensionality of such an irreducible representation
equals the product of d „ the dimensionality of the
group of the wave vector, and e„ the number of wave
vectors in the star. We have seen in Eq. (AS) that we
have c, diHerent sets of basis functions for the mth
irreducible representation. We then have that

= (1/g&) 2 d-, .gA'~*
i„7=1

=dm, s+s (As)

We now use the fact that the gus, basis functions in

Here (g/rc, ) is the order of the point group associated
with the wave vector k. In words: the sum of the squares
of the dimensionalities of the irreducible represen-
tations of the group of the wave vector equals the order
of the point group of the group of the wave vector.
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Effects of Spin-Orbit Coupling in Si and Ge*t

L. LIU)
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A treatment of spin-orbit effects in some semiconductors is
given using the effective-mass method and orthogonalized-plane-
wave type wave functions. In this formalism, the spin-orbit split-
ting of valence states in the crystal is expressed directly in terms
of either experimental or calculated values of the spin-orbit split-
ting of the atomic-core states. The calculation yields values in
good agreement with experiments for the splitting at F~5. for Si
and at both I 2; and L3 for Ge. A demonstration is given of the
enhancement of the spin-orbit splitting of valence states in the
crystal over the corresponding atomic value.

The shift in the g tensor due to spin-orbit interactions is studied
in Si and Ge. Because of crystal selection rules, the usual two-band

approximation to the effective-mass sum rule is inadequate for Si
and, in particular, the core state must be considered. When all
important states are included, the calculations yield values in
good agreement with experiment. In the case of Ge, it is found that
core states do not contribute appreciably to the g tensor. However,
the calculated value for. the shift in the transverse component of
the g tensor has an opposite sign to the measured one.

A certain matrix element of the deformation potential for Si is
also evaluated based on the measured shift in the g value due to
strain. The result is compared with other deformation potentials
in Si.

I. INTRODUCTION

'HE effects of spin-orbit (s-o) coupling on the
electronic properties of crystals have been dis-

cussed by several authors. ' ' For semiconductors, these
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properties are largely determined by the nature of the
conduction and valence band edges. In semiconductors
where these band edges are of p atomic symmetry and
split under the s-o interaction, knowledge of the
magnitude of their s-o splittings becomes necessary in
any quantitative calculations. Although there have
been recently several direct measurements of the
valence state s-o splitting for' Si and' Ge by optical
experiments, there is lack of any quantitative estimate
in theory. In this work we attempt to estimate the s-o

' S. Zwerdling, K. J. Button, B. Lax, and L. M. Roth, Phys;
Rev. Letters 4, 173 (1960).

s A. H. Kahn, Phys. Rev. 97, 1647 (1955); M. Cardona and
H. S. Sommers, ibid. 122, 1382 (1961);J. Tauc and A. Abraham,
Proceedi ngs of the International Conference on Semiconductor
Physics, Prague, 1960 (Czechoslovakian Academy of Sciences,
Prague, 1961).


